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Abstract: Soil contamination with heavy metals is an emerging concern in the modern era, affect-
ing all forms of life. Pigeon pea is a multi-use shrub with medicinal and nutritional values. On
the basis of a randomized complete design, we investigated in the current project the combined
cadmium (Cd) and copper (Cu) effect on plant growth and physio-chemical/medicinal properties
of pigeon pea. Three-week-old seedlings were grown in combined Cd and Cu amended soil with
increasing metal concentrations (control, 20 + 30 mg/kg, 40 + 60 mg/kg, and 60 + 90 mg/kg) for
three months. At high-dose metal cumulative stress (60 + 90 mg/kg), plant shoot and root growth
in terms of plant height as well as fresh and dry weight were significantly inhibited in association
with decreased photosynthetic attributes (chlorophyll a and b contents, net photosynthesis, tran-
spiration rate, stomatal conductance, intercellular CO2 concentrations) and diminished nutrient
contents. Cd and Cu at high amounts inflicted oxidative stresses as assessed in elevated lipid peroxi-
dation (MDA), hydrogen peroxide (H2O2), and electrolyte leakage contents. Antioxidant enzyme
activities, namely, those of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and
glutathione peroxidase (GPX), were enhanced, along with proline content with increasing metal
quantity. Phenolics and flavonoids exhibited a diverse response regarding metal concentration, and
their biosynthesis was significantly suppressed at high Cd and Cu cumulative stress. The reduction
in secondary metabolites may account for declined medicinal properties of pigeon pea as appraised
in reduced antibacterial, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), and ferric-reducing antioxidant
potential (FRAP) activities. Our results clearly demonstrate that the exposure of pigeon pea to Cd-
and Cu-contaminated soil might affect consumers due to the presence of metals and the negligible
efficacy of the herbal products.

Keywords: metals cumulative stress; oxidative damage; antioxidant enzymes; medicinal properties;
pigeon pea
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1. Introduction

Soil contamination with heavy metals is a widespread environmental issue, origi-
nating from industrial growth, urbanization, agriculture practices, mining activities, and
municipal waste [1,2]. These pollutants adversely affect the surrounding environment,
reduce agricultural productivity, and cause severe health hazards to living organisms [3,4].
Among all heavy metals, cadmium (Cd) and copper (Cu) are of main concern, owing to
their higher mobility, non-degradability, and toxicity, which affects animals and plants [5].
Cadmium (Cd) does not have any physiological role in plant metabolism and is very toxic,
even at low concentrations. Its contamination sources include lithogenic, pedogenic, and
anthropogenic sources that release approximately 1–70, 11,000, and 16,000 metric tons per
annum of cadmium into the biosphere, respectively [6,7]. Cd2+ excessive accumulation in
plants might cause severe phytotoxicity and numerous physiological, morphological, and
biochemical toxic effects on plant attributes such as pigment destruction, photosynthetic
and respirational process inhiations, lessening nutrient uptake, overproduction of reactive
oxygen species (ROS), enzyme and gene suppression, growth inhibition, and even plant
death [8–13].

Copper (Cu) is an essential micronutrient for plants since it contributes to different
physiological processes of plants, including mitochondrial respiration, photosynthetic
electron transport, cell wall metabolism, DNA transcription, protein trafficking, hormone
signaling, and protein regulation [14–16]. However, in excessive amounts, it is toxic for
plants because of its redox properties [17]. However, it’s in excessive amount inhibits
plant growth, affects photosynthetic and respiratory processes, decreases nutrients uptake,
targets the membrane transport system, and produces ROS in undue quantities [18–21].
Its contaminations sources include industrial waste, copper mining, anti-fouling paints,
farming practices, copper-based pesticides, and copper marine drainage [22,23].

Plant exposure to metals stress generates reactive oxygen species (ROS) in an ex-
cessive amount that inflicts oxidative stresses [24]. Oxidative stresses disturb cellular
redox balance and damage delicate cellular entities such as DNA molecules, proteins,
and membranes [25,26]. To minimize metals induce damages, plants have evolved dif-
ferent strategies including metal exclusion; compartmentalization; chelation; and a wide
spectrum of ROS-scavenging mechanisms, including antioxidant enzymes such as super-
oxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione reductase (GR),
ascorbate peroxidase (APX), as well as non-enzymatic antioxidants including phenolics,
flavonoids, proline, ascorbate (AsA), glutathione (GSH), along with an array of stress miti-
gation molecules [27–31]. Plants’ secondary metabolites not only perform their role in plant
adaptation to the specific environment, but also are an important source for pharmaceutical-
related drugs [30]. Thus, any environmental contaminant that causes fluctuations in these
photochemicals might affect the medicinal properties of its derivatives plants [32,33].

Pigeon pea (Cajanus cajan L.), a member of Fabaceae, is grown mostly in the tropical
region of the world. The plant body is erect, branched with oblanceolate leaves and having
yellow flowers, with versatile properties including use as a nutritional supplement as
well as for medicinal purposes. Its seeds serve as an affluent protein source, pods as
a vegetable, and leaves and husks as silage. Moreover, its extracts display strong anti-
bacterial, anti-viral, anti-diabetic, anti-malarial, anti-fungal, anti-inflammatory, anti-cancer,
and antioxidant action due to the presence of various classes of phytochemicals such
as phenolics, saponins, alkaloids, flavonoids, and stilbenes [34–40]. To the best of our
knowledge, previously, no work has been carried out on the interactive effect of Cd and
Cu on Cajanus cajan; hence, the present experiment was conducted in order to explore the
combined Cd and Cu effect on plant physiological response, oxidative stresses, and growth
in association with its medicinal properties (antibacterial and anti-oxidant actions).
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2. Results
2.1. Plant Growth Attritubutes

The results of one-way ANOVA showed significant effect of metals’ combined treat-
ment effect on pigeon pea shoot length, root length, and biomass, which are given in
Table 1. Plant growth attributes were decreased with increasing Cd and Cu contents in soil.
As compared to the control, maximum reductions in the shoot length (19.69%), fresh weight
(34.28%), and dry weight (37.18%) were observed at higher dose of Cd and Cu combined
stress, i.e., Cd 60 + Cu 90 mg/kg. Similarly, the root attributes, including root length, fresh
mass, and dry mass were decreased by 42.52%, 29.36% and 30.26% respectively at higher
Cd and Cu combined stress (60 + 90 mg/kg) as compared to control.

Table 1. The combine effects of cadmium (Cd) and copper (Cu) on the roots’ and shoots’ fresh and dry weights (g) and root
and shoot length (L) in the pigeon pea plants. Various statistical letters represent significant differences from control.

Treatment
Roots Shoots

Fresh Weight (g) Dry Weight (g) Length (cm) Fresh Weight (g) Dry Weight (g) Length (cm)

Control 5.55 ± 1.0 d 2.61 ± 0.23 d 23.40 ± 1.1 d 9.45 ± 0.55 b 5.11 ± 0.43 d 91.40 ± 1.15 d

Cd 20 + Cu 30 mg/kg 5.10 ± 0.99 c 2.42 ± 0.60 c 21.40 ± 0.85 c 8.75 ± 0.77 b 4.91 ± 0.89 c 86.10 ± 0.85 c

Cd 40 + Cu 60 mg/kg 4.72 ± 0.7 b 2.11 ± 0.32 b 18.45 ± 0.77 b 7.11 ± 0.01 a 4.01 ± 1.02 b 80.50 ± 0.5 b

Cd 60 + Cu 90 mg/kg 3.92 ± 1.23 a 1.82 ± 0.94 a 13.45 ± 0.9 a 6.21 ± 0.5 a 3.21 ± 0.93 a 73.40 ± 0.23 a

2.2. Chlorophyll Content and Photosynthetic Parameters

It was taken into consideration that metals combined stress at high concentration
(Cd 60 + Cu 90 mg/kg) adversely affect the photosynthetic parameters, i.e., chlorophyll a
and b, net photosynthetic rate, transpiration rate, stomatal conductance, and internal CO2
concentrations (Figure 1). There was a significant difference among different treatments
with respect to the control, and the chlorophyll contents significantly declined with the
increasing concentration of metals in the soil. Maximum reduction of 52.61% in the
chlorophyll a, 42.27% in chlorophyll b, and 51.17% in the net photosynthesis were measured
at a high dose in the metal-treated plants with respect to the control (Figure 1A–C). Similarly,
Cd and Cu substantially reduced the transpiration rate, internal CO2 concentration, and
stomatal conductance. A maximum reduction of 23.5% was noted in the transpiration
rate, followed by 54.9% in the internal CO2 concentration and 38.53% in the stomatal
conductance at Cd 60 + Cu 90 mg/kg amended soil plants as compared with the control
(Figure 1D–F).

2.3. Flavonoid, Phenolic, and Proline Contents

Cd and Cu combined effect on secondary metabolites (phenolic and flavonoids) in the
leaves of pigeon pea were monitored (Table 2). Secondary metabolites displayed diverse
responses with regard to metals concentrations in soil. The plants grown on low Cd and
Cu amended soil (20 + 30 mg/kg), flavonoid and phenolic production was significantly
increased by 28.42 and 23.45%, respectively, as compared to the control. On the other hand,
the increasment of metals in soil significantly reduced secondary metabolites productions.
Maximum reduction of 46.18% in flavonoids and 41.52% in phenolics was measured in
plants exposed to combined Cd and Cu stress (60 + 90 mg/kg). Cd and Cu impact on
proline contents are given in Table 2. Proline contents were significantly increased with
increasing Cd and Cu stress as compared to control. Where, maximum increase of 342%
was observed in plants exposed to combined Cd and Cu stress (60 + 90 mg/kg).
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Figure 1. The effect of different Cd and Cu concentrations (0, Cd 20 + Cu 30 mg/kg, Cd 40 + Cu 60 mg/kg, and Cd 60 + Cu
90 mg/kg) on the chlorophyll a (A), chlorophyll b (B), net-photosynthesis (C), transpiration rate (D), intercellular CO2 (E),
and stomatal conductance (F) on the leaves of the pigeon pea. Different letters represent significant differences between the
treatments at p ≤ 0.05.

Table 2. Total flavonoid, phenolic, and proline contents of pigeon pea under different cadmium and copper concentrations.
Various statistical letters represent significant differences from control.

Treatment Flavonoids (mg/g DM GAE) Phenols (mg/g DM Rutin) Proline (µg/g FW)

Control 32.35 ± 0.34 c 55.51 ± 0.91 c 20.43 ± 0.15 a

Cd 20 + Cu 30 mg/kg 42.40 ± 0.12 d 68.53 ± 0.21 d 45.41 ± 0.18 b

Cd 40 + Cu 60 mg/kg 26.45 ± 0.39 b 45.42 ± 0.45 b 70.40 ± 0.71 c

Cd 60 + Cu 90 mg/kg 17.41 ± 0.78 a 32.46 ± 0.81 a 90.47 ± 0.12 d

2.4. Medicinal Properties (Anti-Bacterial, DPPH, and FRAP Activity)

Collective Cd and Cu effect on Cajanus cajan L medicinal properties in terms of its
anti-bacterial activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) level, and ferric reducing
antioxidant power assay (FRAP) is shown in Figure 2.
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Figure 2. The impact of different Cd and Cu stress concentrations (0, Cd 20 + Cu 30 mg/kg, Cd 40 + Cu 60 mg/kg, and Cd
60 + Cu 90 mg/kg) on the shoot’s FRAP (A) and DPPH (B) contents of pigeon pea plants. Bars represent means from the
three independent replicates (±, n = 3); different letters indicate significant differences between the treatments at p < 0.05.

In general, the plants grown on low Cd and Cu amended soil (20 + 30 mg/kg)
extracts exhibited slightly higher anti-bacterial inhibition zone (12.93, 11.22, and 13.75 mm)
against S. aureus, E. coli, and S. thyphi strains, respectively, compared to control plants’
inhibition zone (11.45 mm, 10.52 mm, and 12.43 mm, respectively) (Table 3). On the other
hand, addition of Cd and Cu at higher concentrations in the soil significantly reduced the
antibacterial activity of Cajanus cajan L. Maximum reduced bacterial inhibition zone was
observed in 60 + 90 mg/kg plant extract (9.65, 8.44 and 8.21 mm) as compared to control
plants. Likewise, the plants grown in low Cd and Cu amended soil (20 + 30 mg/kg) extract
showed enhanced 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant
power (FRAP) (Figure 2A,B). However, increasing metal content in soil gradually reduced
plant extracts’ DPPH and FRAP antioxidant power as compared to control.

Table 3. The anti-bacterial activities of pigeon pea leave crude extracts of different Cd and Cu treatments through the disc
diffusion approach. Various statistical letters represent significant differences from control.

Antibacterial Activities

Inhibition Zone (mm)

Gram-Positive Bacteria Gram-Negative Bacteria

S. aureus E. coli S. thyphi

Control 11.60 ± 0.86 c 10.52 ± 0.57 c 12.36 ± 0.97 c

Cd 20 + Cu 30mg/kg 12.93 ± 0.34 d 11.22 ± 0.77 d 13.75 ± 0.58 d

Cd 40 + Cu 60 mg/kg 10.10 ± 0.57 b 9.92 ± 0.33 b 10.91 ± 0.11 b

Cd 60 + Cu 90mg/kg 9.65 ± 0.83 a 8.44 ± 0.45 a 8.21 ± 0.63 a

Ciprofloxacin 17.61 ± 0.88 e 19.59 ± 0.71 e 21.29 ± 0.77 e

2.5. Oxidative Stresses

Combined Cd and Cu impact on oxidative stress indicators, i.e., malondialdehyde
(MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) contents in the Cajanus
cajan shoot and roots were monitored (Figure 3). The results revealed that these oxidative
stress indicators were significantly increased with increasing metal contents in the soil. At
the highest Cd and Cu combined stress (60 + 90 mg/kg), the H2O2, EL, and MDA contents
in the shoot were increased by 246.76%, 278.29%, and 319.18%, respectively (Figure 3A,C,E),
while in the root, malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte
leakage (EL) were increased by 412%, 323% and 247.38% respectively as compared to the
control (Figure 3B,D,F).
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Figure 3. The effect of different Cd and Cu treatments (0, Cd 20 + Cu 30 mg/kg, Cd 40 + Cu 60 mg/kg, and
Cd 60 + Cu 90 mg/kg) on the shoot (A,C,E) and root (B,D,F) H2O2, EL, and MDA contents of pigeon pea plants. Bars
represent means from the three independent replicates (±, n = 3); different letters indicate significant differences between
the treatments at p < 0.05.

2.6. Antioxidant Enzyme Response

Antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase
(CAT), and glutathione peroxidase (GPX) response were checked under different Cd and
Cu combined stresses (Figure 4). As compared to the control, the activities of these enzymes
were significantly enhanced with respect to the metal increasing quantity in the soil. At the
highest Cd and Cu cumulative stress (60 + 90 mg/kg) SOD, POD, CAT, and GPX activities
in leaves were increased by 211.74%, 144.35%, 247.11%, and 132.64%, respectively, while in
the roots, this increase was 196.16%, 132.98%, 100.16%, and 124.85% as compared to control
(Figure 4A–D).
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Figure 4. The effect of different cadmium and copper concentrations (0, Cd 20 + Cu 30 mg/kg,
Cd 40 + Cu 60 mg/kg, and Cd 60 + Cu 90 mg/kg) on shoots and roots’ antioxidant enzymes, namely,
SOD (A), POD (B), CAT (C), and GPX (D) contents in pigeon pea plant. Bars represent means from
the three independent replicates (±, n = 3); different letters indicate significant differences between
the treatments at p < 0.05.
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2.7. Metal (Cd and Cu) Accumulation

The accumulation of cadmium (Cd) and copper (Cu) in pigeon pea root and leaves
tissues are given in (Figure 5). It was observed that Cd and Cu mainly accumulated in
the roots as compared to leaves in all Cd and Cu combined treated plants. Maximum Cd
accumulated i.e., (191.45 µg/g), Cu (576.52 µg/g) were detected in roots, and (117.48 µg/g),
(367.55 µg/g) in the leaves were detected in plants exposed to highest Cd and Cu combined
treatment (60 + 90 mg/kg).

Figure 5. The effect of different cadmium and copper concentrations (0, Cd 20 + Cu 30 mg/kg, Cd 40 + Cu 60 mg/kg, and
Cd 60 + Cu 90 mg/kg) on shoot (A) and root (B) metal accumulation of cadmium and copper in pigeon pea plant. Bars
represent means from the three independent replicates (±, n = 3); different letters indicate significant differences between
the treatments at p < 0.05.

2.8. Nutrient Uptake

Cadmium and copper combined effect on distribution of macro-nutrients (K+, Ca+,
and Mg2+), and micro-nutrients (Fe+, Zn and Mn) in pigeon pea is shown in Figure 6.
Cadmium (Cd) and Copper (Cu) cumulative stress significantly inhibited both macro and
micro nutrients distributions among the plant’s organs, where maximum reductions of
29.98% in K+,28.76% in Ca+ and 43.23% in Mg2+ was detected at (60 + 90 mg/kg) Cd and
Cu combined stress in the leaves of pigeon pea. Similarly, 28.30%, 32.28%, and 37.14%
reduction in the micro-nutrients (Fe+, Zn, and Mn, respectively) were monitored in the
leaves of pigeon pea exposed to (60 + 90 mg/kg) Cd and Cu stress.
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Figure 6. Effect of different cadmium and copper concentrations (0, Cd 20 + Cu 30 mg/kg, Cd 40 + Cu 60 mg/kg,
and Cd 60 + Cu 90 mg/kg) on shoot macro-nutrient K+, Ca+, and Mg2+ (A–C) and macro-nutrient Fe+, Zn, and Mn
(D–F) contents in pigeon pea plant. Bars represent means from the three independent replicates; different letters indicate
significant differences between the treatments at p < 0.05.

3. Discussion

Metal toxicity in plants causes growth inhibition and biomass reduction [1,2]. Though,
these declines are mainly associated with species type, metal nature, the contaminant’s
quantities in the soil, and time exposure. Worldwide, agricultural land is progressively
contaminated with Cd and Cu, which reduces crop yields and creates health concerns
among the consumers [3–6]. Cu is essential for the plant’s growth and development in a
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very minute quantity between 15 and 20 µg/g, Whereas Cd has no known physiological
role in the plants and is considered to be one of the most damaging threats to plants,
even at very small quantity i.e.,0.7 µg/g [7,8]. Recently, it was taken into consideration
that due to the rapid increases of industrialization, particularly in China, in last few
years, the concentrations of Cd and Cu are noticeably increasing in the soil, causing
severe damage in plants, even at very low concentrations [9–12]. In our previous studies,
different physiological and growth attributes of Cajanus cajan L. and Cicer arietinum L.
plants were monitored under different Cd-stressed environments [13,14]. Generally, plants
have the capability to cope with a stressed environment in limited conditions; thus, the
aim of this study was to check the medicinal, physiological, and growth parameters of
C. cajan L. plant exposure to increasing Cd and Cu combined treatment. It was found
that these metals significantly affected growth in terms of repressed stem and root length
as well reduced biomasses (Table 1). These results were quite similar to our previous
articles [15–18], wherein similar findings were also noticed accordingly. The possible cause
of such reduction might be the association of Cd and Cu with the cell wall and middle
lamellae, which enhances the pectin’s cross-linkage [19,20]. Furthermore, the reduced
photosynthetic activities (Figure 1), decreased nutrient content (Figure 6), and excessive
ROS production under Cd and Cu exposure might also contribute to growth inhibition.
Our obtained results are consistent with the previous findings, where similar reduced
growth parameters were observed under Cd and Cu exposure [21,22].

Photosynthesis is the life driving process often at risk to metal stresses. Chlorophyll
plays an essential role in light absorption, transmission, and translation into chemical
energy at the light phase of photosynthesis. Heavy metals, particularly Cd, have been
reported in chlorophyll degradation by inhibiting its biosynthetic enzymes such as pro-
tochlorophyllide reductase and δ-aminolaevulinic acid dehydratase [23]. In our results,
chlorophyll a and b contents, net photosynthetic rate, transpiration rate, stomatal con-
ductance, and internal CO2 concentrations were inhibited severely, even at very low Cd
and Cu concentrations. Our observation was consistent with that of previous findings,
where similar inhibition in photosynthetic attributes have been reported in other plant
species [24,25]. The reason might have been due to the binding nature of Cd and Cu that
might substitute the Mg2+ molecule of chlorophyll, thus decreasing its light absorption
capacity. Moreover, the presence of these metals at the photosynthetic apparatus and
decrease of CO2 partial pressure in the stroma lead to the closure of stomata and reduce the
transpiration rate, stomatal conductance, and internal carbon dioxide concentration [25].

Metal uptake and distribution in a plant depends on the species, the metal concentra-
tion in the growth medium, and the plant’s exposure to metal stress [26,27]. In our results
(Figure 5), pigeon pea roots retained higher Cd and Cu content compared to leaves. Our
results are in line with previous findings, wherein similar metal retention in the root and
leaves has been reported [28–30]. This illustrated the slow translocation of metals among
plant tissues, while the higher contents of Cd and Cu in the root might also have been due
to the direct exposure in the soil, compartmentalization in vacuoles, and cross-linkage of
cadmium and copper with the carboxyl group of the cell wall protein and their interaction
with protein thiol groups [31,32].

Plants require mineral nutrients in an appropriate quantity for growth and other vital
physiological and biochemical process. Increasing cadmium and copper concentrations in
the soil gradually decreased secondary metabolite biosynthesis (phenolics and flavonoids)
in pigeon pea (Table 2). These predictions were quite similar to previous findings of Printz
et al. and Khan et al., who claimed that the presence of Cd and Cu in the growing medium at
elevated quantity affects the absorption and transport of macro- and micronutrients [33,34].
These metals, particularly Cd, have been reported to decrease membrane permeability by
altering its H+-ATPase activities [35]. Furthermore, the existence of cadmium and copper
in a plant’s body compete with other minerals in apoplast and root vacuoles and thus
decrease their transport among plant organs. This might be due to the suppression of
genes that participate in phenolic and flavonoids production [36]. Secondary metabolites
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are of great importance on account of their medicinal properties such as antimicrobial,
anti-inflammatory, and antioxidant activities [37]. The reduced contents of phenolic and
flavonoids (Table 2) affected the medicinal properties of pigeon pea, as assessed in terms
of its reduced anti-bacterial and antioxidant activity (Table 3, Figure 4). Similar reduced
phenolic and flavonoid contents have been reported by Ibraham et al. and Okem et al.,
under Cd, Cu and Cd, and Al stress in Sambung Nyawa (Gynura procumbens Lour.) and
Drmia elata (Jacq.) species, respectively [38,39].

Besides plant’s secondary metabolites, proline is also an important osmole, being
responsible for stress mitigation. Similarly, the proline contents were considered mandatory
in order to know its quantity in C. cajan plant under different Cd and Cu concentrations
in the soil. In our results, the proline contents were found to be significantly stimulated,
even at high concentrations (60 + 90 mg/kg) of Cd and Cu (Table 2); similar findings were
also reported by [40–42]. This substantial increase of proline contents might have been
due to slow protein oxidation and increased glutamate synthesis rate. Consistent with
our results, the previous findings’ increased proline contents were observed under Cd
and Cu combined stress [43]. In this vein, it is known that plants adapt several tactics to
counteract and detoxify oxidative damage under metals stresses such as accumulation
of non-enzymatic antioxidants such as ascorbate (AsA), glutathione (GSH), and proline.
In a stressful environment, proline regulates cellular redox potential, maintains osmotic
balance, scavenges free radicals, and sustains photo-system 11 in photosynthetic chain
reaction [44,45].

Plants’ aerobic metabolism produces ROS as a by-product, which plays a vital role
in homeostatic and cell signaling [46]. However, in metal stress environment this ROS
production level exceed its normal rate which leads to oxidative damage. The consequences
of oxidative damage results in membrane leakage, DNA damage, enzymes inhibition and
photosynthesis suppression. In the present study, exposure of pigeon pea at increasing Cd
and Cu combined stress significantly increased MDA contents, hydrogen peroxide (H2O2)
and electrolyte leakage (EL) (Figure 3). Similar oxidative damage has been reported in other
plant species under Cd and Cu combined stress, [47–49]. ROS are of several types such
as superoxide (•O−

2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH). Among
them all, superoxide (•O−

2) is highly unstable and extremely reactive, originating from
molecular oxygen (O2) reduction and acting as the precursor to other reactive oxygen
species [50]. Likewise, hydrogen peroxide (H2O2) is formed from the same synthetic
channel, and it is comparatively stable in comparison to other ROS molecules to a certain
extent under normal cellular conditions. It will act as a dual molecule on its production
rate, either as a signaling or oxidative stress inducer [51]. Plants activate antioxidant
enzymes’ defense scheme in opposing metal induce oxidative stress, therefore contributing
a leading role in plants’ physiological defense mechanism against ROS-induced oxidative
damage [52,53]. Antioxidant enzymes are of several types, and each of them performs
different functions, such as superoxide dismutase (SOD), which helps in the reduction of
superoxide radicals (•O−

2) into hydrogen peroxide (H2O2), which is further scavenged by
ascorbate peroxidase (APX), catalase (CAT), and glutathione peroxidase (GPX) into a final
H2O molecule through a series of oxidation reduction chain mechanisms [53].

4. Materials and Methods
4.1. Material and Growth Conditions

The pot experiment was conducted in the greenhouse at Northeast Forestry University
Harbin China. Greenhouse growth conditions were maintained as follows: 28/21 ◦C
temperature (day/night), a 14 h photoperiod per day, 65–75% relative humidity, and
410–570 m−2 s−1 average daily photosynthetic active radiation. Pigeon pea seeds were
properly ordered from the Chinese Medicinal University. Healthy seeds were primarily
sterilized for 30 s with 80% ethanol and transferred to a 5% sodium hypochlorite (NaOCl)
solution for 15 min and swabbed three times with de-ionized water. After sterilization,
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seeds were sown in pots (9 cm in height, 13 cm in diameter) containing a soil mixture of
vermiculite and peat (1:4, w/w) mixed with sand (3:1, w/w) for germination.

4.2. Soil Preparation and Experimental Designs

Soil was collected from the botanical garden (1–27 cm depth) at Northeast Forestry
University Harbin, China. The fine powder soil was dried for 7 days and ground with the
help of a pestle and mortar and passed through 2 mm sieve tubes. Soil basic characteristics
were determined by following the work of Sparks et al. [54]. Its physio-chemical properties
were as follows: clay (72.8%); silt (11.2%); soil (13.4%); pH (6.4); electrical conductivity
(2.3 mS/cm); organic matter (14.52 g/kg); available phosphorus (64.63 mg/kg); available
potassium (79.39 mg/kg); total nitrogen (75.62 mg/kg); total copper (13 mg/kg); and soil
Cd (0.09 mg/kg).

All pots were filled equally with soil and organized in the following complete random-
ized block design (CRBD) with three replications. After 21 days of germination, uniform
seedlings were transferred to each single pot carefully. In the case of the control, the water
was provided on a daily basis in order to maintain soil moisture at 75–85%. However, in
the case of treatment, soil was artificially spiked with an increasing combination of CdCl2
and CuSO4 solutions as follows: 0, 20 + 40, 40 + 60, 60 + 90 mg/kg.

4.3. Determination of Gaseous Exchange

Determination of gaseous exchange, such as net photosynthesis (Pn), transpiration
rate (E), stomatal conductance (Gs), and intercellular CO2 concentration (Ci), was mon-
itored at healthy, top, and fully expanded young leaves with the help of a portable gas
exchange system (Li-Cor model 6200, Lincoln, Dearborn, MI, USA). The whole procedure
was conducted on a clear day’s with average temperature (25–29 ◦C), relative air moisture
(67–73%), from 10.30 to 12.30 a.m. and 2.30 to 4.30 p.m. Leaves were supplied illumination
from the red-blue LED light source. Leaf chamber temperature was kept at room tempera-
ture with 410 ppm of CO2 concentrations and a photosynthetic photon flux density (PPFD)
of 680 mol photon/m2s1 [55].

4.4. Chlorophyll a and b Determination

For chlorophyll determinations, 500 mg fresh leaves were ground in 80% acetone with
the help of a pestle and mortar and homogenized at 1000 rpm for 1 min. The homogenate
was gathered and filtered, and the filtrate was centrifuged at 2500× g at 4 ◦C for 10 min.
Absorbance was taken at 663 and 645 nm through a UV spectrophotometer (Lab Digital
China) for chlorophyll a and b against blank of 80% acetone. Total chlorophyll a and
chlorophyll b contents were calculated by the Lichtentaler equations [56]

Chlorophyll a = [12.7(OD663nm) − 2.69(OD645nm)] × (V/W) (1)

Chlorophyll b = [21.7(OD663nm) −4.57(OD645nm)] × (V/W) (2)

4.5. Determination of Proline Contents

Proline contents were determined according to the method of Bates et al. [57]. Fresh
leaves of 500 mg were ground, then homogenized in 10 mL of 10% sulfo-salicylic acid and
centrifuged at 90,000× g for 1 min. A total of 2 mL of the supernatant was mixed with an
equivalent volume of ninhydrin and acetic acid. The mixture was incubated at 100 ◦C for
60 min and kept in a separating funnel. Subsequently, 4 mL of toluene was added, and the
mixture was vigorously shaken until a pink layer appeared. Absorbance was calculated
at 520 nm with the help of a UV spectrophotometer. The proline concentrations were
estimated with the help of the following equation and are expressed as µg−1 fresh mass.

Total proline contents = (Abs extract − blank)/slope × Vol extract/Vol aliquot × 1/FW (3)
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4.6. Determination of Total Phenolics and Flavonoids

Fresh leaves (500 mg) were ground, and samples were extracted with 10 mL of
80% ethanol on an orbital shaker at 50 ◦C for 120 min. The blend was filtered (Whatman™
No.1, Maidstone, UK), and the filtrate was used to estimate total phenolics and flavonoids.

Total phenolic contents of leaf extract were determined by Folin–Ciocalteu reagent
following the procedure of Singleton and Rossi [58]. Sample extract (1 mL) and 1 mL
of Folin–Ciocalteu reagent were mixed in a 10 mL test tube, followed by the addition of
1 mL of saturated sodium carbonate (35%). After 3 min, the blend was diluted with 7 mL
distilled water and incubated for 90 min in the dark at room temperature. The absorbance
was measured at 725 nm by a UV spectrophotometer against a blank using gallic acid as a
standard. The results were expressed in ‘mg’ of gallic acid equivalents (GAE) per gram of
dry leaf extract.

Total flavonoid contents in the leaf extracts were estimated by the method of Zhishen et al. [59].
Leaf extracts of 1 mL and 0.3 mL (NaNO3) were mixed in an aluminum foil-covered test tube
and allowed to stand for 5 min. We further added 10% AlCl3 (0.3 mL) into the test tube, fol-
lowed by 1 mM NaOH (2 mL). At 510 nm, the absorbance was measured against blank by UV
spectrophotometer using as a standard. The results are shown as mg/g of the Rutin dry sample.

4.7. DPPH Free Radical Scavenging Activity

DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activity of plant sam-
ples was measured by Mensor et al. [60]. DPPH 0.1 mM solution was prepared in methanol,
and its initial absorbance was checked at 518 nm. Samples extract of 40 µL was added to
DPPH methanolic solution (3 mL) and kept in the dark for 30 min, and the difference in
the absorbance was made at 518 nm by UV spectrophotometer. Ascorbic acid (synthetic
antioxidant) was used as a positive control. The DPPH (%) activity was calculated by using
the following equation,

AA% = 100 − (Absorbance of Sample-Absorbance of blank) × 100)/Absorbance
of control

(4)

4.8. FRAP (Ferric-Reducing Antioxidant Power) Assay

FRAP assay was measured following Benzie and Strain’s method [61]. Briefly, 300 mM
sodium acetate buffer (pH 3.6), 10 mM TPTZ solution in 40 mM HCl, and 20 mM solution
of FeCl3·6H2O were mixed at a ratio of 10:1:1 to prepare FRAP reagents. Different sample
extracts (50, 100, 150, 200, 250 µg/mL) were added to FRAP reagents (3 mL). The reaction
mixture was kept in a water tube for 30 min at 37 ◦C; an increase in absorbance was
measured at 593 nm by UV spectrophotometer and compared with ascorbic acid (synthetic
antioxidant). Different FeSO4 solutions formulated a calibration curve. Ferric reducing
antioxidant power (FRAP) ability was calculated from the following equation and is
expressed in µM Fe (II)/g dry mass:

FRAP Value = (Change in absorbance of Sample/Change in absorbance of blank)
× Absorbance of standard (ascorbic acid)

(5)

4.9. Anti-Bacterial Assay

The anti-bacterial assay of plant leaves crude extracts was performed by the disc diffu-
sion method [62]. Three bacterial strains, including one Gram-positive (Staphylococcus aureus)
and two Gram-negative (Escherichia coli and Staphylococcus typhi) were obtained and cul-
tured on nutrient agar. The bacterial density was standardized with the help of McFarland
0.5 turbidity standard and wiped on Mueller–Hinton agar surface. A total of 3 mg of sam-
ple extract was dissolved in 10 mL methanol and loaded onto sterile Whatman No.1 filter
paper discs (6 mm) that were permeated onto inoculated agar. The discs were allowed for
extract diffusion at 4 ◦C for 1 h and incubated for 24 h at 37 ◦C in the incubation chamber.
Inhibition zones were measured using Vernier caliper and are expressed as the ‘mm’ zone
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of inhibition. Ciprofloxacin was used as a positive control (10 µg/mL). All the experiments
were performed in triplicate.

4.10. MDA Contents

MDA (malondialdehyde) contents were calculated as described by Heath and Packer [63].
Plant samples (leaves and roots samples) of 500 mg were homogenized with 2 mL TCA (5%),
and then we centrifuged the mixture at 10,000× g for 15 min. The supernatant in 1 mL
volume was mixed with 1 mL TBA (0.5%) in 20% TCA, and the mixture was incubated at
95 ◦C for 30 min. Subsequently, the mixture was instantly cooled in an ice bath, centrifuged at
10,000× g for 5 min, and with the help of UV spectrophotometer absorbance was monitored
at 532 and 600 nm. The non-specific value at 600 nm absorption was subtracted, and the total
MDA contents were determined from its extinction coefficient at 155 mM−1cm−1.

4.11. Hydrogen Peroxide (H2O2)

H2O2 (hydrogen peroxide) levels were assessed according to Junglee et al. [64]. Fresh
root and leaf samples of 500 mg were homogenized in 5 mL of 0.1% tri-chloroacetic acid
(TCA) solution in an ice bath. Subsequently, the homogenate was centrifuged at 12,000× g
for 15 min. A total of 1 mL of the supernatant, 0.5 mL of 10 mM K-phosphate buffer
(pH 1

4 7.0), and 1 mL of 1 mM potassium iodide (KI) were mixed in the test tube, and
absorbance was taken at 390 nm by a UV spectrophotometer. Total H2O2 contents were
calculated and expressed as µmol of H2O2 g −1 fresh weight (FW).

4.12. Electrolyte Leakage

EL (electrolyte leakage) was determined according to the method of Lutts et al. [65].
Plant samples of leaves and roots were separately sliced into minute fractions equal to
5 mm and incubated for 24 h on rotary at 24 ◦C. Afterward, the preliminary EC1 was
measured, and again the samples were kept in the oven for 120 min at 90 ◦C, collected, and
cooled at 25 ◦C, and the second EC2 was calculated. Total EL value was measured with the
help of the following equation:

EL (%) = (EC1/EC2) × 100 (6)

4.13. Antioxidant Enzyme Extraction

Antioxidant enzymes of leaf and root samples were determined spectrophotomet-
rically by using a pre-cooled mortar and pestle. Briefly, 500 mg fresh samples were
homogenized in to 0.5 mL ice-cold K-phosphate buffer (100 mM and pH 7.3) containing
EDTA (0.1 mM), phenylmethylsulfonyl fluoride (1 mM), and 3.65% polyvinylpyrrolidone.
The homogenate was centrifuged for 15 min at 15,000× g and used for enzymatic analyses.
The whole procedure was conducted at 4 ◦C.

4.14. Enzyme Determinations

SOD activity (EC 1.15.1.1) was measured according to Ries procedure with slight
modification [46]. The reactant mixture contained 50 mM K-phosphate buffer (pH 1

4 7.5),
35 µM nitro-blue tetrazolium (NBT), 10 mM methionine, 0.61 mM EDTA, 2.5 µM riboflavin,
and 0.21% enzyme extract in a 3 mL final volume. The mixture was incubated at 28 ◦C
under fluorescent light for 30 min. After incubation, absorbance was measured at 560 nm.

CAT activity (EC 1.11.1.6) was determined following the Aebi procedure [66] by
observing the decrease in absorbance at 240 nm for 60 s. Briefly, the reactant mixture
comprised 50 mM potassium phosphate buffer (pH 7.1), 15 mM H2O2, and 0.32% en-
zyme extract in a 3 mL final volume. The reaction was initiated by adding H2O2 to the
reactant mixture, and CAT activity was calculated from the extinction coefficient, i.e.,
39.4 mM−1cm−1.

GPX activity was calculated according to the procedure of Hossain et al. [67] by
observing the decrease in absorbance at 340 nm for 60 s. The reaction mixture comprised
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50 mM sodium phosphate buffer (pH 1
4 7.2), 0.1 mM NADPH, 0.1 mM FeSO4, 0.1 mM

H2O2, 0.1 mM EDTA, 0.1 mM (GSH), 0.1 unit of (GR), and 0.65% enzyme extract in a final
volume of 3 mL. The reaction was initiated by adding enzyme extract, and GPX activity
was measured using its extinction coefficient of 6.62 mM−1 cm−1.

POD activity was determined following the method of Wu et al. [68], using guaiacol
as the substrate. The reaction mixture included 50 mM K-phosphate buffer (pH 1

4 7.3),
1% (w/v), 0.1 Mm H2O2, 0.1 Mm guaiacol, and 0.71% enzyme extract in a total volume of
3 mL. The reaction was initiated by adding guaiacol to the mixture, and absorbance was
measured at 470 nm.

4.15. Elemental Analysis

Elemental analysis was done by following the procedure of Bankaji et al. [69]. The
oven-dried samples (0.5 g) were ground into fine powder using a mortar and pestle and
digested in acid mixture (HNO3 + HClO4) in a 5:1 proportion. After digestion, the samples
were analyzed by ICP-OES (Optima-8300 DV; PerkinElmer, Inc., Waltham, MA, USA).

4.16. Statistical Analysis

The experiment was performed using a completely randomized design (CRMD). Data
were recorded in the form of triplicates and analyzed by one-way analysis of variance
(ANOVA) using statistical software package SPSS V. 21.0 (SPSS, Chicago, IL, USA). Mean
separations were executed by Duncan’s multiple range tests. As compared to control,
the percent inhibition/stimulatory effect were checked using the following formula), and
significant differences were considered using different statistical letters/bars at p ≤ 0.05.

Percentage (%) =
Control − Treatment

Control
× 100 (7)

5. Conclusions

This research project aimed to determine the effect of Cd and Cu on the growth, physio-
chemicals, and medicinal changes in the medicinal plant pigeon pea. Cadmium (Cd)- and
copper (Cu)-contaminated soil significantly influenced the morphological, biochemical,
and physiological features of C. cajan L. Physiological activities such as chlorophyll a
and b content, net photosynthesis, transpiration rate, and stomatal conductance were
significantly declined in association with nutrient reduction among plants tissues with
increasing Cd and Cu concentrations in the soil, leading to its growth inhibition. Pigeon pea
experienced severe oxidative injuries under Cd and Cu stress, as measured in an elevated
amount of MDA content, hydrogen peroxide, and electrolyte leakage. Cd and Cu at high
concentrations suppressed phenolic and flavonoid biosynthesis that altered the medicinal
efficiency of pigeon pea, as assessed in reduced antibacterial and antioxidant activates
(DPPH and FRAP assays). Antioxidant enzymes—SOD, POD, CAT, and GPX—along with
proline contents were significantly enhanced with increasing Cd and Cu concentration to
minimize the oxidative damage caused. On the basis of results obtained in our present
study, it could be concluded that the cultivation of pigeon pea in Cd and Cu amended soil
could inhibit plant growth and alter its medicinal properties.
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