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Abstract

The spontaneous mutation rate is a very variable trait that is subject to drift, selection and is sometimes highly plastic. Consequently, its var-
iation between close species, or even between populations from the same species, can be very large. Here, I estimated the spontaneous
mutation rate of Drosophila pseudoobscura and Drosophila persimilis crosses to explore the mutation rate variation within the Drosophila
genus. All mutation rate estimations in Drosophila varied fourfold, probably explained by the sensitivity of the mutation rate to environmen-
tal and experimental conditions. Moreover, I found a very high mutation rate in the hybrid cross between D. pseudoobscura and D. persi-
milis, in agreement with known elevated mutation rate in hybrids. This mutation rate increase can be explained by heterozygosity and
fitness decrease effects in hybrids.
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Introduction
The spontaneous mutation rate, denoted m, currently has been
estimated in more than 60 species [Figure 1 of Krasovec et al.
(2019)] from bacteria and eukaryotes (Lynch et al. 2016; Katju and
Bergthorsson 2018), and recently in one archaeal species
(Kucukyildirim et al. 2020). These studies pointed out a substan-
tial variation in the mutation rate at all scales. One of the most
interesting findings is the large variation of m between close spe-
cies, or between strains or populations from a same species. One
of the most cited studies is the case of the green alga
Chlamydomonas reinhardtii where m varies sevenfold between sev-
eral strains (Ness et al. 2015). More recently, a study based on a
mutation accumulation experiment of three populations of
Daphnia magna reported an even greater variation in m, from 3.6 �
10�9 to 3.4 � 10�8 (Ho et al. 2020). A putative explanation of this
variation is the effect of the environment on the mutation rate,
which has been reported in yeast (Liu and Zhang 2019),
Escherichia coli (Chu et al. 2018), and Arabidopsis thaliana (Jiang et al.
2014). For instance, in A. thaliana, stress seems to be at the origin
of mutation rate increase, which was twice as high in stressful
than in benign conditions. It so appears that the mutation rate is
a plastic trait and its estimation can vary between experimental
conditions. This raises questions about the repeatability of muta-
tion accumulation experiments in the same species, addressed in
a previous study (Behringer and Hall 2016) showing that m esti-
mated from independent experiments are significantly different
in Drosophila melanogaster, Caenorhabditis elegans, and
Schizosaccharomyces pombe. In D. melanogaster, for example, a sig-
nificant approximately twofold variation of mutation rate
(Welch’s t-test, P-value< 0.05) has been reported by Behringer

and Hall (2016) using previous data (Schrider et al. 2013; Keightley
et al. 2014).

If environment or culture conditions have a high impact on

the mutation rate, then we can reasonably expect that the muta-
tion rate estimated under laboratory conditions may be far from

the real mutation rate in the wild. This is also relevant for closely
related species or strains, which should have different mutation

rates as a function of their ecological and environmental ranges
even with a similar genomic background. On the other hand,

there are several reported cases where the mutation rate esti-
mated from close species are similar such as in the Caenorhabditis

genus (Denver et al. 2012); or much lower than observed in C. rein-

hardtii (Ness et al. 2015) and D. magna (Ho et al. 2020), such as in
Mycobacterium (Ford et al. 2011; Kucukyildirim et al. 2016) or Vibrio

(Dillon et al. 2016; Strauss et al. 2017) genera. In this study, I took
advantage of available parents-progenies genomic data from a

previous study to measure the mutation rate of Drosophila pseu-
doobscura and Drosophila persimilis crosses (Korunes and Noor

2019) and explore the mutation rate variation within Drosophila
genus.

Materials and methods
Genomic data analyzed were from a previous study on Drosophila
crosses (Korunes and Noor 2019). Briefly, Korunes and Noor did

three crosses to F2 generations with three genotypes of D. pseu-
doobscura and one genotype of D. persimilis [see Figure 2 of

Korunes and Noor (2019)]. A grandparent female D. pseudoobscura
PP1137 (isolated in New Mexico, USA) was crossed with three

males D. pseudoobscura PP1134 (isolated in New Mexico, USA),
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D. pseudoobscura MSH177 (isolated in California, USA), and D. per-
similis MSH1993 (isolated in California, USA), which gave the
three F1 parent generations. Then, a female from this F1 genera-
tion was crossed with a D. pseudoobscura PP1137 male, which gave
the three F2 progeny generations. All genomes (2 grandparents, 2
F1 parents, and 10 F2 progenies for each cross) were sequenced
by Illumina HiSeq 100-bp paired-end with 20� coverage (SRR
numbers provided in Supplementary Table S1). A summary of
the crosses is provided in Supplementary Figure S1.

The mutation identification was done following the highly strin-
gent method developed previously (Schrider et al. 2013; Keightley
et al. 2014) that gave almost 100% of true positives. Raw reads were
aligned against the D. pseudoobscura PP1137 reference genome with
bwa mem (Li and Durbin 2010), then the resulting bam files were
treated with samtools (Li et al. 2009), and SNP calling was done with
HaplotypeCaller from GATK (McKenna et al. 2010). Mutation calling
was done separately for each cross. A candidate mutation was con-
sidered true only if it fulfilled the following conditions: the site was
covered by at least 10 reads in all individuals (the 2 grandparents,
the 2 F1 parents, and the 10 F2); all sites with at least one individual
with 50 coverage or more were discarded to limit false positives due
to repetitive elements; the mutation is identified in only one F2 indi-
vidual; the site was strictly homozygous in all individuals without
any alternative allele, even if support by only one read; the alterna-
tive allele had a coverage of five or more and was supported by at
least 20% of total site coverage; all candidate sites were verified by
visual inspection of the mpileup files (alignment text files generated
by samtools) and with IGV (reads with more than 2% mismatches
were considered as miss mapping) (Robinson et al. 2011); and all
mutation candidates inside an indel were removed with bcftools,
option -snpgap 1 (Li 2011). Last, final mutation candidates were
checked in other crosses, even if all individuals did not have cover-
age of 10 or more. The mutation rate was calculated counting one
generation for the F2 because parents and grandparents were used
as ancestral lines: l ¼ N

G�2�n�g where N is the number of mutations,
G* the number of callable sites (G*2 because the genome is diploid
and m is calculated per site per haploid genome), n the number of F2
progenies and g the number of generations (here g¼ 1).

Data availability
Raw reads data of the crosses are available under bioproject
PRJNA492790. Reference D. pseudoobscura and D. persimilis raw
reads are submitted in the SRA database under numbers
SRR330107 and SRR363439, respectively. Supplementary files are
available on the G3 figshare portal: https://doi.org/10.25387/g3.
14501343. Supplementary Table S1 containing SRA accession
numbers of raw reads used in this study; Supplementary Figure
S1 summarizing the three Drosophila crosses; File IGV_denovo
_screenshots containing IGV screen shots of mutated positions.

Results and discussion
In all, I identified 14 nucleotide mutations in 28 F2 progenies.
Two F2 progenies were removed because of low coverage, one
from the cross PP1134 and one from the cross MSH1993. No
mutations were found in the cross PP1134, 4 mutations in the
cross MSH177, and 10 mutations in the cross MSH1993. On the 15
identified mutations within the cross MSH1993, 9 arose in a same
individual. The mutations were GC -> AT biased, with an AT bias
of 3.7 and 12.2 in the crosses MSH177 and MSH1993 (assuming
one hypothetical AT to GC mutation in MSH1993 cross), respec-
tively. This GC -> AT bias is very is common in metazoans and
even in all eukaryotes [see Table 2 of Katju and Bergthorsson

(2018), Supplementary Table S11 of Krasovec et al. (2017)]. Only
one reported eukaryote species has a GC -> AT mutation bias,
the haptophyte Emiliania huxleyi (Krasovec et al. 2020).

The calculated mutation rates are m <2.7 � 10�09 for the cross
PP1134 assuming one hypothetical mutation, m ¼ 3.5 � 10�09

(Poisson CI: 0.7 � 10�09—10.2 � 10�09) for the cross MSH177 and m
¼ 19.3 � 10�09 (Poisson CI: 9.3 � 10�09—35.6 � 10�09) for the cross
MSH1993 (Table 1). However, the Drosophila genome is about
165 Mb and the callable genome for the three crosses was 20, 26,
and 63 Mb (Table 2). The callable genome size of the cross
MSH1993 is probably reduced due to the divergence between the
two species with an average nucleotide identity of 97.7% esti-
mated with fastANI (Jain et al. 2018). Mutation candidates due to
miss mapping were removed by IGV inspection (see Materials and
methods) and IGV screenshots of de novo mutations are provided
in supplementary documentation. Considering the variation of
the mutation rate within a genome, we cannot exclude that the
mutation rates estimated here do not reflect the average muta-
tion rate. The mutation rate varied by approximately fourfold be-
tween the lower and the higher measures in the Drosophila genus
(Table 1), excluding the cross MSH1993 that is a particular case of
hybrid species (see below). Taking the cross MSH1993 into ac-
count, this variation reached �11-fold, which is the same muta-
tion rate variation across metazoan species that counts several
estimations from mammals (Uchimura et al. 2015; Besenbacher
et al. 2016; Koch et al. 2019), birds (Smeds et al. 2016), worms
(Denver et al. 2012; Weller et al. 2014), and arthropods (Schrider
et al. 2013; Keightley et al. 2014; Flynn et al. 2017; Liu et al. 2017;
Oppold and Pfenninger 2017).

Mutation rate variation within the same species, or between close
species, is starting to be well documented (Ness et al. 2015; Behringer
and Hall 2016; Chu et al. 2018; Liu and Zhang 2019; Ho et al. 2020). The
main explanation of such variation is the effect of the environment
on the mutation rate. The different isolated Drosophila lines used in
this study came from different places in United States, Spain, and
Africa, corresponding to variable ecological range. Given the sensitiv-
ity of the mutation rate to the environment, it is possible that these
lines evolved several different mechanisms that control mutation
rate or dedicate different amounts of energy to control it. Also, the dif-
ferent experimental conditions that the lines were subjected to be-
tween the published studies may have directly increased or decreased
the mutation rate. Specifically, experimental conditions will influence
factors such as metabolic rate, generation time, oxidative stress or en-
ergy devoted to replication/fidelity, and mutagen control, all of which
impact the mutation rate (Martin and Palumbi 1993; Baer et al. 2007).
Oxidative stress, which is linked to the metabolic rate, has been
known for years to increase the mutation rate (Dizdaroglu 1992;
Cooke et al. 2003), particularly via guanine oxidation. The generation
time is also a key parameter, particularly in multicellular species, be-
cause it defines the number of germline cell divisions and the time
where the germinal lines are subjected to any mutagenic process. In
primates, the spontaneous mutation rate decreases when the genera-
tion time is shorter (Thomas et al. 2018; Wu et al. 2020).

The case of the cross MSH1993 is a particular because it is a
cross between two species, D. pseudoobscura and D. persimilis.
Hybrids often have higher mutation rate than initial species,
such as was reported in Drosophila many years ago (Belgovsky
1937; Sturtevant 1939), and more recently in plants from the
Prunus genus (Xie et al. 2016). However, here we do not have the
mutation rate of D. persimilis. We so cannot exclude that D. persi-
milis may have a particularly high mutation rate compared to
other Drosophila species, increasing the mutation rate of the hy-
brid cross. The mutation rate of the hybrid cross is, however,
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much higher than in any other Drosophila study and of the same

order of higher mutation rate ever measured in the tree of life

(Katju and Bergthorsson 2018). In Arabidopsis, it is hybrids be-

tween populations or ecotypes that induce a mutation rate

change (Bashir et al. 2014). The reasons for this observed increase

of mutation rate in hybrids remains unclear, although there are

several proposed explanations. First, the heterozygosity associ-

ated mutation rate is the observation that heterozygosity is posi-

tively linked to the mutation rate (Amos 2010; Yang et al. 2015). In

that case, it is proposed that the higher heterozygosity in hybrids

compared to original species induces an elevated mutation rate.

Another explanation is the possible fitness decrease of the

hybrids compared to original species. Stress or fitness loss is

known to be at the origin of mutation rate increase in Arabidopsis

and Drosophila (Baer 2008; Sharp and Agrawal 2012; Jiang et al.

2014) and thus may similarly be the main contributor to higher

mutation rate in hybrids.
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