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Joint prediction of multiple quantitative traits using a
Bayesian multivariate antedependence model

J Jiang1,5, Q Zhang1, L Ma2, J Li3, Z Wang4 and J-F Liu1

Predicting organismal phenotypes from genotype data is important for preventive and personalized medicine as well as plant
and animal breeding. Although genome-wide association studies (GWAS) for complex traits have discovered a large number of
trait- and disease-associated variants, phenotype prediction based on associated variants is usually in low accuracy even for a
high-heritability trait because these variants can typically account for a limited fraction of total genetic variance. In comparison
with GWAS, the whole-genome prediction (WGP) methods can increase prediction accuracy by making use of a huge number of
variants simultaneously. Among various statistical methods for WGP, multiple-trait model and antedependence model show
their respective advantages. To take advantage of both strategies within a unified framework, we proposed a novel multivariate
antedependence-based method for joint prediction of multiple quantitative traits using a Bayesian algorithm via modeling a
linear relationship of effect vector between each pair of adjacent markers. Through both simulation and real-data analyses, our
studies demonstrated that the proposed antedependence-based multiple-trait WGP method is more accurate and robust than
corresponding traditional counterparts (Bayes A and multi-trait Bayes A) under various scenarios. Our method can be readily
extended to deal with missing phenotypes and resequence data with rare variants, offering a feasible way to jointly predict
phenotypes for multiple complex traits in human genetic epidemiology as well as plant and livestock breeding.
Heredity (2015) 115, 29–36; doi:10.1038/hdy.2015.9; published online 15 April 2015

INTRODUCTION

In human genetic epidemiology, accurate prediction of disease risk is
vital for disease prevention and personalized medicine. Although
thousands of genome-wide association studies (GWAS) have discov-
ered a large number of variants that are significantly associated with
complex human traits and diseases (Hindorff et al., 2014), it is still a
challenge to directly implement these findings to predict yet-to-be
observed phenotypes and thus to advance preventive and personalized
medicine. Partly, this is owing to the so-called ‘missing heritability’
that these associated variants can typically account for only a small
fraction of the total genetic variance (Manolio et al., 2009). The issue
of ‘missing heritability’ probably results from the limitations of
statistical techniques commonly used in GWAS, as pointed out by
previous studies (Yang et al., 2010; de los Campos et al., 2010;
Makowsky et al., 2011); for example, in single-locus association
analyses for either SNP markers or gene expression levels, we can
merely derive a small number of statistically significant loci even for a
complex trait affected by a large number of small-effect variants.
To address the weakness of conventional GWAS on phenotype

prediction, some of recent studies have turned to take advantage of the
whole-genome prediction (WGP) method initially proposed by
Meuwissen et al. (2001). WGP seeks to model genome-wide SNPs
simultaneously to predict yet-to-be observed phenotypes, for example,
human height (Makowsky et al., 2011; de Los Campos et al., 2013),

human lifespan (de los Campos et al., 2012) and skin cancer risk
(Vazquez et al., 2012). These studies have demonstrated the strength
of WGP methods for predicting human complex traits of which the
underlying genetic architecture likely consists of numerous variants of
small effect. In addition, a number of studies suggested that many
human diseases, like schizophrenia and bipolar disorder (Purcell et al.,
2009), multiple sclerosis (Bush et al., 2010) and rheumatoid arthritis
(Stahl et al, 2012), also have such a polygenic architecture, implicating
a broad utility for WGP methods to predict human disease risk.
Besides phenotype prediction in human genetics, WGP has been
receiving much attention and widely employed to genetically improve
economically important traits in domestic animals, including milk
production performance and fitness traits of dairy cows (VanRaden
et al., 2009).
Since the seminal work of Meuwissen et al. (2001) for predicting

genomic breeding values in animal and plant breeding, a number of
WGP methods have been developed and extensively investigated based
on different algorithms (Gianola et al., 2006; VanRaden, 2008; Gianola
et al., 2010; Habier et al., 2011; Legarra et al., 2011). Among these
methods, the most popular are the parametric approaches, for
example, GBLUP (VanRaden, 2008) and the Bayesian alphabet
(Gianola, 2013), which are basically based on the framework of linear
regression. Generally, these parametric methods assume that the effect
of each marker is independently distributed with a specific prior
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distribution given by corresponding statistical methods. Clearly, such
an assumption of independent distribution for each SNP effect is
statistically inappropriate, especially when the adjacent markers are in
high linkage disequilibrium (LD) with the same causal gene.
This unrealistic assumption potentially sacrifices the prediction
accuracy to some extent. To address this issue, Yang and
Tempelman (2012) proposed a first-order antedependence model to
account for the nonstationary correlations between SNP markers
through assuming a linear relationship between the effects of adjacent
markers. As expected, the proposed antedependence-based WGP
models outperformed their conventional counterparts in the predic-
tion accuracy of genomic merit in the context of single-trait analyses.
Compared with single-trait analyses, multiple-trait joint analyses

have been widely confirmed as having obvious advantages in statistical
power and parameter estimation accuracy in earlier studies of
quantitative trait locus (QTL) mapping and GWAS (Liu et al., 2007;
Liu et al., 2009; Jiang and Zeng, 1995; Korte et al., 2012). Following
this evidence, it can be speculated that in WGP fields, joint prediction
of multiple traits should benefit from genetic correlation between
traits and thus have the potential to obtain higher prediction accuracy
than single-trait methods, especially for a low-heritability trait that is
genetically correlated with a high-heritability trait. Statistical methods
for joint prediction of multiple traits have received close attention in
recent years. Particularly, Bayes A, Bayes C and Bayes Cπ have been
extended to be applicable for multiple trait analyses (Calus and
Veerkamp, 2011; Jia and Jannink, 2012), demonstrating clear advan-
tages over single-trait methods.
Logically, a more natural strategy for enhancing WGP is to take into

consideration relations between multiple traits, as well as those
between SNP effects simultaneously for achieving high prediction
accuracy from the viewpoint of statistics. So far, there is still a gap
between multiple-trait joint prediction approaches and models con-
sidering correlated SNP effects, for example, antedependence-based
WGP models. Therefore, aiming at developing an improved prediction
methodology, we are in an attempt to construct a multiple-trait
antedependence-based WGP model to bridge such a gap aforemen-
tioned under the framework of Bayesian algorithm. Specifically, we
proposed a novel multivariate method with two different types of
prediction models via setting the antedependence parameter as either a
matrix or a scalar, respectively. Theoretically, our proposed models
can relax the conventional assumption of independence of marker
effects while simultaneously taking advantage of the correlation
between traits by modeling a linear relationship of effect vector
between each pair of adjacent markers. Using simulations as well as
the publicly available data sets including the 16th QTL-MAS workshop
data and the heterogeneous stock mice real data, we compared our
proposed method with the classical approaches including the Bayes A
version by Habier et al. (2011) and multi-trait Bayes A by Jia and
Jannink (2012) to further validate the performance of our proposed
method. Our study clearly demonstrated that the proposed multiple-
trait antedependence-based WGP method is more accurate and robust
than corresponding traditional counterparts for genomic prediction,
offering a feasible way to jointly predict complex traits in human
genetic epidemiology, as well as plant and livestock breeding.

MATERIALS AND METHODS

Bayesian multivariate antedependence model
We developed a Bayesian version of first-order multivariate antedependence
model (Zimmerman and Nunez-Anton, 2010). The performance of proposed
method herein was evaluated by comparison with traditional single-trait Bayes
A (Meuwissen et al., 2001; Habier et al., 2011), as well as the multi-trait Bayes A

method initially developed by Jia and Jannink (2012) (see Supplementary
Method, Section 1 for details). Considering different types of correlation
between SNP effects, we developed two forms of first-order multivariate
antedependence models considering the antedependence parameter
(Zimmerman and Nunez-Anton, 2010) as a matrix as well as a scalar, named
as ‘matrix model’ and ‘scalar model’, respectively.

Matrix model. Assuming n individuals were genotyped at p SNP markers, the
matrix model for joint prediction of m traits is expressed as,

yijl;a�;RBNðlþ
Xp
j¼1

Zijaj;RÞ i ¼ 1; :::; n

aj ¼ dj j ¼ 1
Tj;j�1aj�1 þ dj j ¼ 2; :::; p

�

Tj;j�1jM;Vdj ;VTBMatrixNormalðM;Vdj ;VTÞ j ¼ 2; :::; p

djjVdjBNð0;Vdj Þ j ¼ 1; :::; p

VTBW�1ðscale ¼ I; d:f : ¼ mÞ
RjWS; vSBW�1ðscale ¼ WS; d:f : ¼ vSÞ

Vdj jWV ; vVBW�1ðscale ¼ WV ; d:f : ¼ vV Þj ¼ 1; :::; p

WVBWmðscale ¼ I; d:f : ¼ mÞ
WSBWmðscale ¼ I; d:f : ¼ mÞ ð1Þ

where yi is an m-element phenotypic vector for individual i (i= 1,…,n); l is the
vector of overall population mean of m traits; aj is an m-element vector for the
effects of the jth SNP marker on all m traits (j= 1,…,p); Zij is the SNP genotype
code for individual i at marker j; and R is an m ´m covariance matrix of the
residual effects. In this study, all markers are considered to be biallelic, and
marker genotypes were coded as 0, 1 or 2 corresponding to the number of
copies of an allele at a locus.

As shown in the model (1), each marker effect is assumed to have a linear
relationship with that of the preceding adjacent marker based on the physical
position or the genetic position along a chromosome, that is,
aj ¼ T j;j�1aj�1 þ dj. It should be pointed out here that in the traditional
univariate model, the prior of antedependence parameter t generally follows a
normal distribution (Yang and Tempelman, 2012). For the case of multivariate
model, we accordingly adopted a random matrix T j;j�1 herein with the prior of
normal distribution. It has been demonstrated elsewhere (Minka, 2001) how to
use such a matrix normal prior in similar analyses. Following this initial work,
we constructed corresponding prior normal distribution for the matrix
antedependence parameter T j;j�1 in our proposed methodology. Here T j;j�1

is a m ´m matrix corresponding to the jth maker, following a matrix normal
distribution with mean matrix M (m ´m), among-row covariance Vdj and
among-column covariance VT . dj is an m-element vector for the residual part
of the jth marker’s effects, following a multivariate normal distribution with
mean zero and covariance V dj . Note that Vdj is the among-row covariance of
the prior distribution of T j;j�1 as well as the covariance of the prior distribution
of dj. Introducing Vdj to the prior of T herein can clearly facilitate the
implementation of Gibbs sampling. The reason is that we can readily get a close
form of the conditional posterior of T under such case (see Page 7 in
Supplementary Method). As we know, an explicit expression of posterior
probability density function (pdf) is a prerequisite for performing Gibbs
sampling. Further, we specified for VT an inverse Wishart prior distribution
with an identity scale matrix and m degrees of freedom. Accordingly, we
assigned an inverse Wishart prior distribution with scale matrix WS and vS
degrees of freedom for matrix R and an inverse Wishart prior distribution with
scale matrix WV and vV degrees of freedom for Vdj (j= 1,..,p). Both WS and
WV were further assumed to follow a Wishart distribution with an identity scale
matrix and m degrees of freedom.

In our application, we specified the hyperparameters in model (1) as
vS ¼ 4:2; vV ¼ 4:2;M ¼ 0m;m

� �
. The matrix model was solved through Gibbs

sampling. We give the details on the Gibbs sampling procedures in
Supplementary Method, Section 2. In total, 200 000 MCMC iterations were
conducted for the matrix model and the first 100 000 iterations were discarded
as burn in. Every 10th sample was kept for the follow-up inference.
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Scalar model. Basically, the scalar model is a simplified version of the matrix
model. The antedependence parameter in the scalar model was specified as a
scalar rather than a matrix, that is,

aj ¼ dj j ¼ 1
tj;j�1aj�1 þ dj j ¼ 2; :::; p;

�
ð2Þ

where tj;j�1 is the scalar antedependence parameter of aj on aj�1. Using the
scalar means that the antedependence parameter at a marker is identical for all
traits. The simplified model can decrease the sampling complexity in MCMC
cycles and still reflect the correlation between each pair of adjacent markers.
Further, we set tj;j�1 a normal prior as

tj;j�1jmt ;s2tjBNðmt ; s2tj Þj ¼ 2; :::; p;

where s2tj was further given a scaled inverse χ2 prior distribution as

s2tj jnst ; t2stBw�2ðd:f : ¼ nst ; scale ¼ t2st Þj ¼ 2; :::; p:

The hyperparameter, t2st , is given a Gamma (shape= 1, rate= 1) prior and need
to be estimated in the model. All of other underlying parameters, including dj
(j= 1,..,p), Vdj (j= 1,..,p), WV , R and WS, were separately given a prior as the
same as in model (1).

We herein specified the hyperparameters in the scalar model as
vS ¼ 4:2; vV ¼ 4:2; nst ¼ 4:2;mt ¼ 0f g. The scalar model was solved through
Gibbs sampling similar to the matrix model, and the details on the Gibbs
sampling procedures were given in Supplementary Method, Section 3.

Prediction of multiple traits. We used a training population to predict the effect
of each marker, aj (j= 1,…,p), and then estimated the total genetic values of m
traits for an individual as gi ¼

Pp
j¼1 Zijaj, where gi is an m-element vector of

additive genetic values of m traits for the ith individual. Prediction accuracy is
defined as the correlation between the estimated total genetic values and known
true total genetic values in the validation population. If the true total genetic
values are unknown in the validation population, we used predictive ability to
compare the various methods. Predictive ability is defined as the correlation
between the estimated total genetic values and their corresponding phenotypes
in the validation population.

To validate the performance of the proposed methods, we conducted
extensive simulation and the analyses on the 16th QTL-MAS workshop data set
and the heterogeneous stock mice real data to compare it with the single-trait
and multi-trait Bayes A models with respect to prediction accuracy or predictive
ability.

Simulation analyses
We conducted extensive simulation by considering different levels of genetic
and phenotypic correlations between traits, SNP densities and the numbers of
underlying QTLs to validate the prediction accuracy and robustness of our
proposed models.

Data simulation. A whole-genome simulation program, GPOPSIM (Zhang
et al., 2012), which is based on the mutation-drift equilibrium model, was used
to generate biallelic markers and QTLs. The simulation started with a base
population of 100 individuals (50 unrelated males and 50 unrelated females),
followed by 5000 generations of random mating with the same population size,
to generate data with realistic LD patterns caused by mutation and drift.
The entire genome was composed of one chromosome of length 1 Morgan. All
of 20 001 potential SNP markers were equally spaced on the chromosome with
a QTL placed directly in the middle of each interval of adjacent markers.
The mutation rate for both SNP markers and QTLs was specified to be 1.0E-4
per locus per generation. In generation 5001, the population size was expanded
to 500 by randomly mating 50 males with 50 females from generation 5000.
Generation 5002 was generated by randomly mating 50 males with 50 females
from generation 5001 and also had a population size of 500. Similar to the
study by Yang and Tempelman (2012), we randomly selected 30 QTLs with a
minor allele frequency (MAF) 40.05 to generate true breeding values for
individuals in generations 5001 and 5002. Following Jia and Jannink (2012),
QTL effects on two phenotypic traits were sampled from a standard bivariate
normal distribution with correlation 0.5, which assumes a certain level of
pleiotropy effects at all loci. The true breeding value for each individual was the

genotype-based sum of the QTL effects for each trait. The total genetic

covariance matrix for the two traits was determined as
P30

k¼1 2 1� pkð Þpkgkg 0k,
where pk and gk is the MAF and the sampled vector of effect at QTL k,

respectively. Normal error deviates were added to achieve heritabilities of 0.5

for trait 1 and 0.1 for trait 2. All individuals have phenotypes on both traits. The

covariance of errors between traits was set to zero.

We considered the above simulation scenario as the default validation data
set. Accordingly, we perturbed a single-simulation parameter at a time from the

default scenario to generate simulated data under other scenarios for

comparison. Perturbed parameters for simulations included genetic correlation

between traits (0.2, 0.5 and 0.8), error correlation (−0.2, 0 and 0.2), and

number of selected QTLs (30 vs 300). Each of these simulation scenarios was

repeated 30 times for producing convincing results. For all simulation

scenarios, generation 5001 was used as the training population and generation

5002 as the validation population.

Estimation of prediction accuracy in simulated data. For each simulated data
set, we filtered the 20 001 SNP markers using a criterion of MAF40.05, leaving

~ 4100 markers. The filtered SNPs were sorted merely according to the physical

position in base pair and then used to predict genomic breeding values for the

validation population. The prediction accuracy for each data set was calculated

as the correlation between the estimated genomic breeding values and the

known true genomic breeding values in the validation population. In each

scenario, we used a paired t-test to test if there was a significant difference of

prediction accuracy between our proposed models and the conventional

models based on the 30 replicates.

Furthermore, based on the default scenario, we also employed the subsets
of SNPs through sampling every 10th and 25th SNPs from the full set of

SNPs respectively to predict genomic breeding values for testing the effect of LD

between adjacent markers on the prediction accuracy.

Analysis of the 16th QTL-MAS workshop data set
In addition to our simulated data sets, we analyzed the 16th QTL-MAS

workshop data set (http://qtl-mas-2012.kassiopeagroup.com/en/index.php) to

further validate the prediction accuracy of our proposed methods.
The workshop data were generated to investigate performance of various

WGP approaches when dealing with multiple correlated traits. Specifically, a

base population of 1020 unrelated individuals (20 males and 1000 females) was

generated with a 499.750Mb long genome consisting of five chromosomes.

Each chromosome had a size of 99.95Mb and carried 2000 equally distributed

SNP. A total of 50 QTLs were generated, and each QTL had an effect on at least

two traits. The detailed information of the QTLs can be found at http://qtl-

mas-2012.kassiopeagroup.com/en/dataset.php. Each of four generations (G1–

G4) consisted of 20 males and 1000 females and was generated from the

previous generation by randomly mating each male with 51 females. The female

prolificacy was set to 1 except for the 20 dams of male that generated two

offspring (1 male and 1 female). No Generation overlapped in the process of

data simulation. The mimic phenotypes consisted of three genetically correlated

milk production traits.
In the analyses, we removed all SNP markers with MAF= 0, leaving 9969

markers for further analyses. The SNP markers had been sorted by physical

position. The 3000 females from G1–G3 had observations for all three traits,

which were used as the training population. The remaining 1020 individuals

from G4 with known total genetic values were used as the validation

population. The prediction accuracies obtained by the different multi-trait

methods were compared with officially reported results (http://qtl-mas-2012.

kassiopeagroup.com/en/index.php). Briefly, four different groups indepen-

dently submitted their results, and all the 14 analytical methods were merely

focused on single-trait prediction, including GBLUP, the Bayesian alphabet

and various regularized regression methods. The highest prediction accuracies

obtained by the methods were 0.794, 0.853 and 0.828 for traits 1, 2 and 3,

respectively, which were used as the results of best single-trait methods and as a

benchmark for comparison with the results herein.
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Real data analyses on heterogeneous stock mice data set
The heterogeneous stock mice data set (http://mus.well.ox.ac.uk/GSCAN) consists
of 1940 genotyped mice generated based on intercross mating among eight inbred
strains (Valdar et al., 2006). We randomly selected two pairs of immunological
traits, %CD4+/CD3+ and %CD8+, and %CD4+ and %CD8+, to compare
prediction accuracy between the methods used in our study. Phenotypes for these
traits had been preadjusted for marginally significant covariates.
Following the study by Speed and Balding (2014), SNPs were removed if they

had MAFo0.01, HWE Po10-4, or call rate o0.99. Missing SNP genotypes
were imputed on the basis of their corresponding allelic frequencies in the data
set following Legarra et al. (2008). Individuals were removed unless they had
phenotypes of all the selected traits. After quality control, 1404 individuals
having both phenotypes and genotypes were kept, and each individual had
genotypes of 9159 SNPs mapped to autosomes. In addition, we ordered SNP
genotypes on the basis of their genetic positions along the chromosome.
We randomly divided individuals into two nearly equal-sized subsets as

training and validation sets, respectively. This was replicated 20 times for
performance comparison among different prediction methods.

RESULTS

Results from the simulations
Prediction accuracy under different LD levels of adjacent markers. We
investigated the performance of the proposed methods with default
simulation parameters while dealing with SNPs with different densities

to explore the effect of LD extent on prediction accuracy. Table 1
presented the three average LD levels (r2 ¼ 0:33, 0.22 and 0.14) of
adjacent markers corresponding to the full set of markers and two
subsets of markers sampled from the full set of markers with intervals
of 10 and 25, respectively.
As clearly shown in Figure 1, our proposed methods always

exhibited the best performance among all methods across different
LD levels. Especially, with the increase of average LD, our methods
were becoming more advantageous over other analytical approaches
for the low-heritability trait 2.

Prediction accuracy under scenarios with a varied number of QTLs.
Besides the default 30-QTL scenario, we considered a 300-QTL
scenario for further comparison among different analytical methods.
Despite the clear superiority of the proposed methods under the
30-QTL scenario, there were no significant differences of prediction
accuracy between our proposed models and the traditional multi-trait
Bayes A model for the 300-QTL scenario (Figure 2).

Prediction accuracy under scenarios with varied genetic correlations. It
can be clearly shown from Figure 3 that our proposed methods were
always among the top rank on the prediction accuracy compared with
other analytical models under different levels of genetic correlations.

Table 1 Number of used markers and LD level across 30 replicates under varied scenarios

Scenario

no.

Genetic

correlation

Error

correlation

No. of

QTLs

Way of using

markers

Average no. of

used markers (std.)

Average LD level of

adjacent markers (std.)a

1 (default) 0.5 0 30 All 4119 (159) 0.333 (0.016)

Every 10th 411 (16) 0.220 (0.018)

Every 25th 164 (6) 0.136 (0.015)

2 0.5 0 300 All 4140 (126) 0.333 (0.015)

3 0.2 0 30 All 4044 (162) 0.336 (0.013)

4 0.5 −0.2 30 All 4030 (164) 0.338 (0.015)

5 0.5 0.2 30 All 4071 (141) 0.334 (0.013)

Abbreviation: QTLs, quantitative trait loci.
aAverage= sum(Ai)/30 and std.= sqrt(sum((Ai-Average)2)/29), where Ai is the average LD level in the ith replicate.

Figure 1 Prediction accuracies of various models for the high-heritability trait (a) and the low-heritability trait (b) under different LD levels of adjacent
markers.
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Furthermore, all multi-trait prediction methods significantly out-
performed the single-trait analyses on the traits investigated under
all scenarios.
It is worth to note that the gain in prediction accuracies of multi-

trait over single-trait models were becoming more significant for the
low-heritability trait 2 as genetic correlation increased between traits.
In contrast, for the high-heritability trait 1, no obvious change in
prediction accuracy was observed as the genetic correlation increased
from 0.2 to 0.8. The similar trend was also observed in previous
studies (Calus and Veerkamp, 2011; Jia and Jannink, 2012). This
implied that the superiority of our proposed models over the multi-
trait Bayes A model resulted from the feature that the model
accounted for the dependence on the effects of adjacent markers.

Prediction accuracy under scenarios with varied error correlations between
traits. Besides the default scenario with error correlation of 0.0, we also
considered another two scenarios with varied error correlations of −0.2
and 0.2, respectively. From Figure 4, for both low- and high-heritability
traits, the prediction accuracies were largely consistent for each individual
analytical across the three scenarios. Similar profiles as those aforemen-
tioned, our proposed methods still achieved highest prediction accuracies
across various scenarios, and all the multi-trait prediction methods
rendered obvious advantages over the single-trait approach.

Results from the analysis of the 16th QTL-MAS workshop data set
We also used the 16th QTL-MAS workshop data set to validate our
proposed methods. As shown in Figure 5, multi-trait methods,

Figure 2 Prediction accuracies of various models for the high-heritability trait (a) and the low-heritability trait (b) under scenarios with a varied number of
underlying QTLs.

Figure 3 Prediction accuracies of various models for the high-heritability trait (a) and the low-heritability trait (b) under scenarios with varied genetic
correlations between traits.
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including the multi-trait Bayes A model, the scalar model and the
matrix model, showed considerable advantage over single-trait
methods.
It can be found clearly that our proposed scalar model obtained the

best results with regard to the 16th QTL-MAS workshop data set. The
prediction accuracies of the scalar model for the three traits increased
by as high as 8.6%, 2.8% and 5.5%, respectively, compared with the
reported best single-trait methods.

Results from the analysis of real heterogeneous stock mice data set
As shown in Table 2, for both of trait pairs, our proposed models
always ranked top two in prediction abilities among all four methods
for each of traits, and all three joint prediction methods outperformed
the single-trait model significantly (Po0.01).
Similar as simulation analyses, our antedependence models

obtained predictive abilities significantly higher than the multi-trait
Bayes A for both of trait pairs. It is worth noting herein that the
proposed matrix model had a better performance than the scalar

model for each of trait (Po0.01) in the first trait pair, exhibiting its
potential superiority in practice in contrast to its simplified version,
the scalar model.

DISCUSSION

In WGP analyses, the inferred adjacent SNP effects should be spatially
correlated due to chromosomally proximal effects of potential QTL
(Yang and Tempelman, 2012), which is most likely in LD with the
SNPs surrounding it, even when no biological mechanism exists
among these SNPs. The antedependence model can model such
nonstationary correlated effects via incorporating antedependence
parameters between adjacent SNPs into the model. This is the
theoretical basis that the antedependence model can work better than
the traditional independence models given no additional information
about markers but genotypes.
In the current study, we firstly developed two types of multi-trait

antedepedence models for joint phenotype prediction. We hypothe-
sized that our proposed WGP methods could enhance the prediction
performance owing to considering information of correlation among
traits and adjacent SNPs simultaneously. This theoretical superiority
was further validated herein through extensive simulation and real-
data analyses, and the resulting prediction patterns under various
scenarios consistently revealed the significant performance gain of our
proposed methods compared with the corresponding counterpart
methods. Our proposed WGP methods offer a feasible alternative in
joint prediction of multiple complex traits in human genetic epide-
miology as well as livestock breeding. We have developed C programs
to implement the corresponding prediction models, which are freely
available upon request.
In our methods, we employed a matrix and a scalar antedependence

parameters, respectively, for our proposed multivariate prediction
method. The introduced antedepedence parameter matrix T consid-
ered respective effect correlation between pair of adjacent markers for
each of correlated traits, which should outperform the scalar model in
theory. However, our simulation data analyses and the analysis of the
16th QTL-MAS data set have not demonstrated obvious advantage of
the matrix model over the scalar model. This may be owing to the

Figure 4 Prediction accuracies of various models for the high-heritability trait (a) and the low-heritability trait (b) under scenarios with varied error
correlations between traits.

Figure 5 Prediction accuracies of various models for the 16th QTL-MAS
workshop data set. aMeans the best single-trait method officially reported in
the 16th QTL-MAS workshop.
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extreme case that was mimicked in our simulation scenarios as well
as the 16th QTL-MAS data set. Specifically, in our simulation, all
simulated QTL effects were assumed being sampled from the same
distribution and contributing to both traits simultaneously. In the 16th
QTL-MAS data set, each simulated QTL contributed to at least two
traits out of all three. In such case, the antedependence parameters for
each of correlated traits tend to be equal. Accordingly, the scalar
model suits the data sets with the such genetic structures better than
the matrix model and was prone to obtaining a higher prediction
accuracy.
In the simulation scenario when considering all 300 QTLs with very

small effects, the antedependence parameters are inefficient to model
the dependence between SNPs, lowering its advantage over the
traditional methods. Another aspect in our simulation is that a small
base population of 100 followed by a large number of generations was
simulated. Although this scheme was usually adopted in previous
studies (Zhang et al., 2010; Calus and Veerkamp, 2011; Yang and
Tempelman, 2012), it would generate data with extremely small
effective population size such that the simulated data could not
represent the population structure of real data.
Owing to limited simulation scale in the studies, it is not feasible to

simulate various scenarios with genetic structures consistent of all
possible built-in mechanisms for performance validation. Hence we
turned to further perform real-data analyses on two sets of complex
traits from a publicly available heterogeneous stock mice data to
explore the feasibility of our methods. The results clearly demon-
strated that the proposed multivariate antedependence model out-
performed corresponding traditional counterparts, and the matrix
model has also shown the advantage over its simplified version, the
scalar model, as we expected.
Yang and Tempelman (2012) have reported that the antedepen-

dence methods outperformed their corresponding classical counter-
parts in single-trait prediction, and the increase in prediction accuracy
contributed by the single-trait antedependence model was generally
o0.05. This increase in prediction accuracy may be not comparable to
that for low-heritability traits benefiting from joint prediction of
multiple highly correlated traits which can be usually 40.10 (Jia and
Jannink, 2012). This has been clearly reflected in our analyses. As
shown in Figures 1,2,3,4, the low-heritability trait generally benefited
more from joint prediction of multiple traits than the high-heritability
trait in various scenarios.
A different aspect in our prediction model from that by Yang and

Tempelman (2012) is regarding the expectation of the prior of the
antedependence parameter. In the study by Yang and Tempelman
(2012), a marker-specific antedependence parameter was assumed a
normal distributed prior with unknown expectation which needs to be
estimated in the model. In contrast, we directly set the prior
expectation as zero. Our consideration for this is that the sign of
the additive effect at any marker is merely determined by the way we
code its genotypes (for example, genotypes BB can be coded as 0 or 2)

and the antedependence parameter should have a sign determined by
the signs of SNPs effects therein disregarding the residual term of
Equation (2) aforementioned. Thus, as the genotypes of biallelic
markers are coded as the number of copies of one arbitrary allele in
our study, it is equally probable for the antedependence parameter to
be positive or negative, and then it is reasonable to assume its
expectation as zero.
It should be pointed out herein that although we focused on the use

of common variants in current study, rare variants can also be readily
incorporated into our proposed method by drawing idea from the
collapsing approach (Morris and Zeggini, 2010). It will be imperative
to incorporate rare variants into prediction in future for the situation
where resequence data instead of traditional SNP chips are widely used
in WGP.
Furthermore, our developed antedependence version of the

multi-trait Bayes A models can be modified to other types of Bayes
model, for example, Bayes B and Bayes Cπ (Habier et al., 2011),
which have been two popular Bayesian variable selection methods
for single-trait WGP. For example, a multi-trait antedependence
version of Bayes B can be developed based on model (2) afore-
mentioned with a mixture prior distribution of dj (j= 1,..,p) as

ðdjjp;VdjÞ ¼ BNð0;VdjÞ probability ð1� pÞ
0 probability p

�
. Then the conditional

posterior distribution of each unknown parameter can be derived
drawing idea from the single-trait antedependence-based Bayes B
(Yang and Tempelman, 2012).
Aside from predicting yet-to-be observed phenotypes, our proposed

models are also useful in QTL-mapping studies according to previous
reports on applying WGP methodology to GWAS (Peters et al., 2012;
Garrick and Fernando, 2013). By adding up genetic variance con-
tributed by SNPs in a SNP window, we can calculate the genetic
variance of consecutive SNP windows along the genome and then
consider windows contributing relatively large genetic variance to be
QTLs (Peters et al., 2012). Bootstrap analysis can be further used to
determine the significance of detected QTLs as described by Peters
et al. (2012).
We believed that it is necessary to find a way to integrate multiple

advantageous strategies for developing an optimal WGP model, for
example, joint prediction of multiple traits, the antedependence
model, incorporating dominant and epistatic effects (for example,
Wang et al., 2012; Nishio and Satoh, 2014), modeling genotype ×
environment interaction (for example, Crossa, 2012). As these
strategies are utilizing different principles, it is anticipated that the
strength contributed by each of the strategies can be accumulated if
these various strategies are integrated in a proper way. Our study can
be considered as an example of such integration, which takes
advantage of both antedependence and multivariate models for joint
prediction.

Table 2 Predictive ability of various methods for the heterogeneous stock mice data across 20 replicates

Trait pair Trait
Predictive ability of various methods

Single-trait Bayes A Multitrait Bayes A Scalar model Matrix model

1 %CD4+/CD3+ 0.609 0.616 0.620 0.625

%CD8+ 0.663 0.664 0.668 0.671

2 %CD4+ 0.358 0.372 0.375 0.375

%CD8+ 0.665 0.667 0.670 0.670
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