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Abstract: Many studies have demonstrated that berberine inhibited the cell migration and invasion
in human cancer cell lines. However, the exact molecular mechanism of berberine inhibiting the cell
migration and invasion of human melanoma A375.S2 and A375.S2/PLX (PLX4032 induced resistant
A375.S2) skin cancer cells remains unknown. In this study, we investigated the anti-metastasis
mechanisms of berberine in human melanoma cancer A375.S2 cells and A375.S2/PLX resistant cells
in vitro. Berberine at low concentrations (0, 1, 1.5 and 2 µM) induced cell morphological changes and
reduced the viable cell number and inhibited the mobility, migration, and invasion of A375.S2 cells
that were assayed by wound healing and transwell filter. The gelatin zymography assay showed
that berberine slightly inhibited MMP-9 activity in A375.S2 cells. Results from western blotting
indicated that berberine inhibited the expression of MMP-1, MMP-13, E-cadherin, N-cadherin, RhoA,
ROCK1, SOS-1, GRB2, Ras, p-ERK1/2, p-c-Jun, p-FAK, p-AKT, NF-κB, and uPA after 24 h of treatment,
but increased the PKC and PI3K in A375.S2 cells. PLX4032 is an inhibitor of the BRAFV600E mutation
and used for the treatment of cancer cells harboring activated BRAF mutations. Berberine decrease
cell number and inhibited the cell mobility in the resistant A375.S2 (A375.S2/PLX, PLX4032 generated
resistant A375.S2 cells). Based on these observations, we suggest that the potential of berberine as an
anti-metastatic agent in melanoma that deserves to be investigated in more detail, including in vivo
studies in future.
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1. Introduction

Skin cancer, including melanoma and non-melanoma skin cancer, is one of the most common types
of malignancy in the white population and the incidence rate is increasing worldwide [1]. Melanoma,
the most lethal skin cancer [2], is much more common in the white population than in other ethnic
groups [3] and more frequent in males than in females; after age 75, the incidence of melanoma in
males was almost three times that in females [4,5]. In the USA, melanoma is the fifth and seventh most
common cancer among men and women, respectively [6]. Moreover, the metastatic melanoma has been
recognized to be a highly aggressive malignancy and its morbidity has increased in the past years [7].
Current therapies for metastatic melanoma include chemotherapy and a variety of immunotherapeutic
choices [7], however, these are still unsatisfactory. Therefore, numerous studies have focused on
finding and identify new compounds from natural products for the treatment of melanoma.

Metastasis, the most important characteristic of malignant tumors, has been playing a critical
role in the treatment efficacy and quality of life of patients with metastatic tumors [8]. Numerous
pieces of evidence have shown that tumor cells can undergo migration, adhesion, and invasion via the
lymphatic system and/or the bloodstream and they can undergo infiltration through the extracellular
matrix (ECM) in order to form new tumors in other sites of the human body [9,10]. Tumor metastasis
is a critical cause of cancer-related deaths [11] and is difficult to treat. ECM acts as a mechanical
barrier to cell movement, thus, the degradation of the ECM is a vital step in the metastatic process [12].
Numerous pieces of evidence have shown that the matrix metalloproteinases (MMPs) degrade the
ECM when facilitating a tumor invasion [13,14]. Inhibition of tumor metastasis will significantly
increase the survival rate of cancer patients. Reports have shown that elevated levels of MMPs in
melanoma were involved with the rapid progression of metastatic melanoma [15,16]. Thus, one of the
treatments for metastasis melanoma could be blocking cancer cell migration and invasion.

Berberine, an isoquinoline alkaloid, can be isolated from the roots and bark of plants from
the Berberis genus (Berberidaceae family) and other medical plants [17]. Berberines have biological
activities such as anti-microbial [18], anti-inflammatory [19], antioxidant [20,21], and anti-cancer
activities [22,23]. Numerous studies have shown that berberine decreased the cell number of many
human cancer cell lines through the induction of the cell cycle arrest and apoptotic cell death [22–25].
Berberine inhibited the migration and invasion of human chondrosarcoma cells via the downregulation
of the αvβ3 integrin through the protein kinase C (PKC δ), c-Src, and AP-1 [26]. Berberine suppressed
the migration and invasion of prostate cancer cells through the suppression of epithelial–mesenchymal
transition (EMT)-related genes [27] and inhibited the invasion and metastasis of colorectal cancer cells
via the down-regulation of the COX-2/PGE2- JAK2/STAT3 signaling pathway [28]. Recently, it was
reported that berberine induced the apoptosis of cells and inhibited the migration of skin squamous
cell carcinoma A431 cells [29]. Based on these findings, it can be asserted that berberine suppressed
the migration and invasion of cancer cells through multiple mechanisms on different tumor cell types.
Thus, we investigated the molecular mechanism involved in cell metastasis in human melanoma cells
in vitro and the results indicated that berberine suppressed the migration and invasion of A375.S2
cells in vitro through the FAK, uPA and NF-κB signaling pathways.

2. Results

2.1. Berberine Induces Cell Morphological Changes and Decreases the Total Viability of A375.S2 Cells

As indicated in Figure 1A,B, berberine, at a 1–1.5 µM treatment dosage, did not show significant
cytotoxic activity for morphology changes and reduced the total viable cell number in A375.S2 cells at
24 h (0 µM: 100% ± 7.99; 1 µM: 96.45% ± 9.07; 1.5 µM: 93.91% ± 8.22; 2 µM: 86.74% ± 7.58). However,
berberine at 2 µM showed slightly induced cell morphological changes and reduced the cell number
(reduced the total viable cells by 13.26%).
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Figure 1. The berberine induced cell morphological changes and decreased the cell viability of A375.S2
cells. The cells (1 × 105 cells/well) were incubated with berberine at different concentrations (0, 1,
1.5, and 2 µM) for 24 h. The cells were examined and photographed for morphological changes (A)
or they were collected for the total percentage of the total viable cells (B) as described in Materials
and Methods. * p < 0.05, significant difference between berberine-treated groups and the control as
analyzed by one-way ANOVA analysis of variance.

2.2. Berberine Inhibits Cell Mobility in A375.S2 Cells

The results from the wound healing assay that were presented in Figure 2A,B showed that
berberine treatment at 1–2 µM inhibited the closure rate of the scratch in A375.S2 cells. The berberine
treated cells remained creviced on the scratched plate but the control (untreated cells) wounds healed
after 24 h of treatment. The edge distance was significantly higher in the high dosage (2 µM) group
after 24 h, compared to that observed at a low dose (1 µM) (Figure 2B).

2.3. Berberine Affects the Matrix Metalloproteinase Activity and Cell Migration and Invasion in A375.S2 Cells

After the A375.S2 cells were treated with berberine (1–2 µM) for 12 and 24 h, conditioned media
were collected for determining the MMP-2 or MMP-9 activity by using gelatin zymography and the
results are shown in Figure 3A. The results indicated that the berberine treatment at 1 µM concentration
for 12 h and 2 µM for 24 h slightly inhibited the MMP-9 activity. The transwell chambers were coated
with collagen for cell migration examination and coated with Matrigel for cell invasion examinations.
The results are shown in Figure 3B,C. Figure 3B indicates that berberine (1.5–2 µM) significantly
inhibited the migration of A375.S2 cells and Figure 3C indicates that berberine (1–2 µM) significantly
inhibited the invasion of A375.S2 cells and that these effects are dose-dependent (Figure 3C).

2.4. Berberine Affects Key Metastasis-Related Proteins in A375.S2 Cells

As indicated in Figure 4A–D, berberine (1–2 µM) significantly decreased MMP-13 (Figure 4A),
N-cadherin, RhoA and ROCK-1 (Figure 4B), SOS-1, GRB2, Ras, p-ERK1/2 and p-c-Jun (Figure 4C),
p-FAK, p-AKT, NF-κB, and uPA (Figure 4D). However, it increased TIMP-1 (Figure 4A), E-cadherin,
PKC (Figure 4C), and PI3K (Figure 4D) in A375.S2 cells after 24 h of treatment, but did not significantly
affect MMP-1 and MMP-2 (Figure 4A). Based on these findings, berberine may have suppressed the
cell metastasis of A375.S2 cells through multiple signaling pathways.
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Figure 2. The berberine-affected in vitro wound closure of A375.S2 cells. The cells (2 × 105 cells/well)
were kept in 12-well plates for 24 h, scratched (wounded), and then incubated with different berberine
concentrations (0, 1, 1.5, and 2 µM) for 12 and 24 h. The relative wound closures were photographed
using phase contrast microscopy (A) and the percentage of the inhibitory ability of migration was
calculated (B) as described in Materials and Methods. * p < 0.05, *** p < 0.001, significant difference
between berberine-treated groups and the control as analyzed by one-way ANOVA analysis of variance.

Figure 3. Cont.
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Figure 3. The berberine inhibited the matrix metalloproteinase (MMP) activity and suppressed the
migration and invasion of A375.S2 cells in vitro. The cells (1 × 105 cells/well) were incubated in 12-well
plates and treated with different berberine concentrations (0, 1, 1.5, and 2 µM) for 12 and 24 h. Then the
conditioned mediums were harvested for gelatin zymography assay (A) as described in Materials
and Methods. The cells (5 × 104 cells/well) were placed on transwell inserts coated with collagen for
migration or with Matrigel for invasion and were treated with different berberine concentrations (0, 1,
1.5, and 2 µM) for 24 h. The A375.S2 cells penetrated to the lower surface of the transwell membrane for
migration (B) or invasion (C) stained with crystal violet and photographed under a light microscope
at 200×. The penetrated cells were counted as described in Materials and Method. The results were
obtained from the three independent experiments. * p < 0.05, *** p < 0.001, significant difference between
berberine-treated groups and the control as analyzed by one-way ANOVA analysis of variance.

2.5. Berberine Decreases Cell Viability of A375.S2/PLX Resistant Cells

The A375.S2 cells were treated with 0, 5, 10, and 15 µM of PLX4032 (an inhibitor of the BRAFV600E

mutation) for 48 h and the cells were collected for measuring the total viable cell numbers. The results
are given in Figure 5A. The results indicated that PXL4032 decreased the total viable cell number at
5–15 µM after 48 h of treatment. The IC50 was calculated and the value is 6 µM of berberine. The 6 µM
concentration of PLX4302 was used to generate the PLX4032 resistant A375.S2 cells (A375.S2/PLX
cells). The A375.S2/PLX and A375.S2 (A375.S2/WT) cells were treated with various concentrations
of PLX4032 and the results were shown in Figure 5B. The original A375.S2 cells decreased the total
viable cells at 5–15 µM of PLX4032 but the A375.S2/PLX cells only reduced the total viable cells with
a treatment of 15 µM, but treatments of 5–10 µM did not significantly affect the total viable cells.
In order to confirm the PLX4032 resistance of the A375.S2/PLX cells and whether they were involved
in the ERK pathway, the western blotting of the associated protein expressions were examined and the
results are shown in Figure 5C, which indicates that PLX4032 has a higher inhibition of p-ERK1/2 in
A375.S2/PLX cells than in A375.S2/WT cells. PLX4032 inhibited a MEK1 expression in A375.S2/WT
and A375.S2/PLX cells. However, PLX4032 inhibited the expression of Ras in A375.S2/PLX cells but
increased it in A375.S2/WT cells. Nevertheless, PLX4032 decreased the expression of RhoA in both
cells. The A375.S2/PLX cells were treated with PLX4032 (6 µM) and berberine at 2–6 µM for 48 h and
the results are shown in Figure 5D, which indicate that berberine reduced the total viable A375.S2/PLX
cells at 2–6 µM.

2.6. Berberine Suppresses Cell Mobility in A375.S2/PLX Resistant Cells

As indicated in Figure 6A,B, berberine treatment of 2–6 µM for cell mobility inhibited the scratch
area of the wound healing assay and the results indicated that berberine significantly suppressed the
cell mobility in a dose-dependent manner. These effects indicated that berberine has a higher inhibition
of cell mobility than that of PLX4032 at 6 µM (Figure 6A,B).
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Figure 4. Berberine affected the levels of the associated proteins in the migration and invasion of
A375.S2 cells. The cells (1 × 106 cells/dish) were treated with berberine (0, 1, 1.5, and 2 µM) for
24 h. The cells were collected and the total protein was determined for sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS page) as described in the Materials and Methods. The levels
of MMP-1, MMP-2, MMP-13, and TIMP-1 (A); E-cadherin, N-cadherin, RhoA, and ROCK1 (B); SOS-1,
GRB2, Ras, p-ERK1/2, p-c-Jun, and PKC (C); p-FAK, PI3K, p-AKT, NF-κB, and uPA (D) expressions
were estimated by western blotting as described in the Materials and Methods.
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Figure 5. PLX4032 and berberine decreased the viable cell number in A375.S2 cells and PLX4032
resistant A375.S2 cells. The A375.S2 cells were treated with 0, 5, 10, and 15 µM of PLX4032 and were
harvested for cell viability (A). PLX4032 (6 µM) was used to generate the resistant A375.S2 cells and
wild-type A375.S2 cells (A375.S2/WT cells) and the PLX403 resistant A375.S2 cells (A375.S2/PLX cells)
were treated with PLX4032 at 0, 5, 10, and 15 µM and were measured for the total viable cell number
(B). Alternatively, cells were treated with PLX4032 (6 µM) and were harvested for western blotting
and protein expression of p-ERK1/2, MEK1, Ras, and RhoA were examined (C) as described in the
Materials and Methods. PLX4032 resistant A375.S2 cells treated with berberine (0, 2, 4 and 6 µM) for
48 h and were collected for measuring the total viable cell number (D) as described in the Materials
and Methods. The results were obtained from three independent experiments. * p < 0.05, ** p < 0.01,
*** p < 0.001, significant difference between berberine-treated groups and the control as analyzed by
one-way ANOVA analysis of variance.

Figure 6. Cont.
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Figure 6. Berberine affected the in vitro wound closure of A375.S2/PLX resistant cells. The cells
(2 × 105 cells/well) were kept in 12-well plates for 24 h, were scratched, and were incubated with
PLX4032 or berberine (0, 2, 4, and 6 µM) for 48 h. The relative wound closures were photographed
using phase contrast microscopy (A) and the percentage of inhibitory abilities was calculated (B) as
described in the Materials and Methods. * p < 0.05, significant difference between berberine-treated
groups and the control, as analyzed by one-way ANOVA analysis of variance.

3. Discussion

It is well documented that chemotherapy drugs contain anti-tumor activities involved in
the inhibition of the proliferation, induced cell apoptosis, or suppressed cell metastasis of tumor
cells [30–33]. Numerous pieces of evidence have shown that tumor metastasis may lead to multiple
organ failures and dyscrasia, which are the leading causes of death in patients with malignant tumors.
Therefore, one of the best strategies against cancer cells is to block the signaling pathway of the cancer
cell metastasis [33–35]. Many clinical drugs are used for patients with cancer metastasis and some
of these drugs are obtained from natural products. Berberine, a compound obtained naturally from
plants, has shown to induce cancer cell death in many human cancer cell lines. Moreover, berberine
suppresses the migration and invasion of B16F10 murine melanoma cells and A375 human melanoma
cells through a reduction in the activity of the ERK signaling pathway and the COX-2 protein levels [36].
However, there is no available information to shows that berberine affects the migration and invasion
of A375.S2 and PLX4032-resistant A375.S2 cells. PLX4302 is an inhibitor of the BRAFV600E mutation for
the treatment of cancers harboring activated BRAF mutations [37]. Thus, herein, we investigated the
effects of berberine cell migration and invasion in A375.S2 cells and PLX4032-resistant A375.S2 cells
(A375.S2/PLX) in vitro.

The results indicated that berberine slightly induced cell morphological changes and decreased
the viable number of A375.S2 cells at 1–2 µM after 24 h of treatment (Figure 1A,B). Berberine has
significantly suppressed the migration of A375.S2 cells in a dose-dependent manner (Figure 2A),
however, only at 2 µM after 12 h of treatment does cell mobility get inhibited (Figure 2B). This is in
agreement with other reports that showed that berberine suppresses cell mobility in murine melanoma
B16 cells [38] and in hepatocellular carcinoma cells [39]. Berberine inhibits the invasion of human skin
squamous cell carcinoma A431 cells [29].

For further investigation, the results of the cell migration and invasion assay indicated that
berberine suppressed the cell migration at 1.5–2 µM after 24 h of treatment (Figure 3B) and inhibited
the cell invasion at 1–2 µM after 24 h of treatment (Figure 3C) in A375.S2 cells. These findings are in
agreement with other reports that indicated that berberine suppressed the migration and invasion
of murine melanoma B16 cells [38], human colorectal cancer SW620 and LoVo cells [28], and human
prostate cancer cells in vitro [27]. Gelatin zymography was used to measure the MMP-2 and MMP-9
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gelatin activities and the results show that at 2 µM of berberine, MMP-9 activity is significantly reduced
after 24 h of treatment. Meanwhile, other investigators have shown that the MMPs activities were
markedly suppressed by berberine in a dose-dependent manner in murine melanoma B16 cells [38].
Furthermore, the agent-inhibited MMP-2 could lead to the suppression of tumor metastasis [40,41].

The proteins involved in migration and invasion were investigated by western blotting and
the results are shown in Figure 4A–D. As shown in Figure 4B, berberine increased E-cadherin and
decreased N-cadherin in A375.S2 cells. It is well known that cancer cell migration and invasion
will result in decreased E-cadherin and increased N-cadherin rates [42,43], which play an important
role in cancer cell migration and invasion [44,45]. Thus, berberine increased E-cadherin rate and
berberine decreased N-cadherin rate (Figure 4B) may be involved in the inhibition of the migration and
invasion of A375.S2 cells. Berberine decreased the RhoA (Figure 4B), p-FAK, and p-AKT (Figure 4D)
protein expressions at 1–2 µM after berberine treatment for 24 h in A375.S2 cells. The activated
PI3K/AKT signaling has shown to involve tumor cell invasion and oncogenesis [45,46], including
melanoma cells [47]. Numerous pieces of evidence have shown that RhoA plays a critical role in cell
metastasis [48–50]. Akt and focal adhesion kinase (FAK) play important roles in glioma and prostate
cell migration and invasion [51,52]. The results also showed that berberine (1–2 µM) significantly
inhibited the protein expressions, such as SOS-1, GRB2, Ras, p-ERK1/2, p-c-Jun (Figure 4C), NF-κB,
and uPA (Figure 4D) in A375.S2 cells. GRB2, SOS-1, Ras, p-ERK1/2, and p-c-Jun have been shown also
to involve cell metastasis [53,54]. However, berberine increased the expression of PKC (Figure 4C) and
PI3K (Figure 4D) in A375.S2 cells. Thus, further investigations are needed in the future.

More interesting is that the inhibition of the PI3k/Akt pathway led to the decrease in the invasion
of melanoma cells [48,55]. the results from Figure 4D also showed that berberine suppressed the
expression of p-AKT in A375.S2 cells. The PI3K/Akt pathway plays a role in the MMPs for uPA
gene regulation, cell survival, and cell invasion [56,57]. The AKT activation induced the invasion
and metastasis of cancer cells by stimulating secretions of MMPs [48,53]. Figure 4D also shows that
berberine inhibited the uPA and NF-κB protein expressions in A375.S2 cells. It was reported that the
down-regulation of uPA by berberine decreased the HCC cell invasion and migration [39]. MMPs
were up-regulation by uPA and tPA and down-regulated by TIMPs and PAI-1 [39,58]. NF-κB was
linked with tumor cell proliferation, survival, invasion, and metastasis [59]. Based on these results, we
suggest that the berberine-inhibited cell migration, and invasion are involved with NF-κB in A375.S2
cells in vitro.

PLX4032, also known as vemurafenib, is an inhibitor that binds to the ATP-binding site of mutated
BRAF kinase, inhibiting ERK signaling only in tumor cells expressing BRAFV600E mutations [60].
The cells develop a resistance to PLX4032 usually within one-year of therapy [61]. Therefore,
we generated PLX4032 (inhibitor of the BRAFV600E mutation) resistant A375.S2 cells (A375.S2/PLX
cells), which are shown in Figure 5A,B. The A375.S2/PLX cells were treated with berberine at 2, 4,
and 6 µM, leading to the significantly reduced total cell number. Furthermore, we also investigated
the cell mobility by using the wound healing assay and the results showed that berberine significantly
suppressed the cell mobility of the A375.S2/PLX cells (Figure 6A,B). Based on these results, berberine
suppressed the cell migration in A375.S2/PLX cells.

In conclusion, our results indicated that berberine significantly suppressed the mobility, migration,
and invasion of A375.S2 cells involved in the inhibition of metastasis-associated proteins such as FAK,
RhoA, ROCK1, or p-AKT, NF-κB, and uPA, which lead to the inhibition of MMP-1 and MMP-13 in vitro.
Overall, the possible signal pathway for berberine-suppressed cell mobility, migration, and invasion of
A375.S2 cells and by the FAK, uPA and NF-κB signaling pathways. Furthermore, we also found that
berberine suppressed the mobility of PLX4032 resistant A375.S2 cells (A375.S2/PLX cells). Berberine
can be considered to have potential as a chemotherapeutic agent in melanoma, which will have to be
proven in further in-depth studies, including investigations on in vivo efficacy.
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4. Materials and Methods

4.1. Test Chemicals, Reagents and Culture Medium

Berberine, dimethyl sulfoxide (DMSO), Tris-HCl, trypan blue, trypsin, propidium iodide (PI),
gelatin, Coomassie blue R-250, and PLX4032 were purchased from Sigma Chemical Co. (St. Louis,
MO, USA). Fetal bovine serum (FBS), Minimum Essential Medium (MEM) culture medium,
and penicillin-streptomycin were purchased from Invitrogen (Carlsbad, CA, USA). Primary antibody
anti-MMP-1, -MMP-2, and -MMP-13 were obtained from Santa Cruz Biotechnology (Santa Cruz, CA,
USA) and anti-TIMP-1, -E-cadherin, -N-cadherin, -RhoA, -ROCK-1, -SOS-1, -GRB2, -Ras, -p-ERK1/2,
-p-c-Jun, -PKC, -p-FAK, -PI3K, -p-AKT, NF-κB, -uPA, and the peroxidase conjugated secondary
antibodies were purchased from Cell Signaling Technology, Inc. (Beverly, MA, USA). Berberine
was dissolved in DMSO as a carrier solvent and control cultures were 0.5% DMSO. Berberine was
further diluted in a culture medium to the appropriate final concentrations prior to use.

4.2. Cell Line and Culture

The human melanoma A375.S2 cell line with a BRAFV600E mutation was obtained from the Food
Industry Research and Development Institute (Hsinchu, Taiwan). The A375.S2 cells were cultured in
the MEM medium supplemented with 10% FBS, 2 mM L-glutamine, 10 g/L non-essential amino acid,
100 µg/mL streptomycin, and 100 units/mL penicillin in a humidified atmosphere of 5% CO2 at 37 ◦C
and at 70% confluence. The cells displayed a normal morphology as previously described [62,63].

4.3. Cell Morphological Examination and Viability Assay

The A375.S2 cells (1 × 105 cells/well) were seeded onto 12-well plates overnight with a MEM
culture medium and they were incubated with berberine at final concentrations (0, 1, 1.5, and 2 µM) in
triplicate for 24 h. After treatment, the cells were examined and photographed under contrast-phase
microscopy at 200×. The cells were harvested, washed with PBS, and were stained with PI (5 µg/mL)
for measuring the total percentage of cell viability by using flow cytometry (Becton-Dickinson, San Jose,
CA, USA) as described previously [62,63].

The A375.S2 cells (1 × 105 cells/well) were treated with various concentrations (5, 10, or 15 µM)
of PLX4032, an inhibitor of the BRAFV600E mutation, for 48 h and the cells were harvested to measure
the total viable cell number as described previously [62,63]. To calculate the IC50 of the PLX4032, 6 µM
of A375.S2 cells were used to generate the PLX4032-resistant A375.S2 cells, as described previously
with modifications [64]. The resistant A375.S2 cells were incubated with various concentrations (0, 5,
10, or 15 µM) of PLX4032 for 48 h to measure the total viable cell number. The resistant A375.S2 cells
were treated with various concentrations (2, 4, and 6 µM) of berberine for 48 h and were harvested for
measuring the total viable cell number as described previously [62,63].

4.4. In-Vitro Scratch Wound Healing Assay

Cell mobility characteristics were analyzed by a wound healing assay, as described
previously [62,63]. Briefly, A375.S2 or A375.S2/PLX cells (2 × 105 cells/well) were placed in
12-well plates for 24 h and grown until reaching a confluent monolayer. The culture media were
replaced with serum-free MEM to wash the cell monolayers. Cell monolayers were scratched
(wound) using a sterile 200 µL-pipette tip and to remove the cell debris by PBS washing. A375.S2
or A375.S2/PLX were incubated with various concentrations of berberine (0, 1, 1.5, and 2 µM, or
0, 2, 4, 6 µM, respectively) for different time-periods (0, 12, and 24 h). The migrating cells in the
denuded zone were monitored and photographed under phase contrast microscopy. The scratch
experiments were done 3 times. We quantitated the relative wound size by using the Image J
version 1.49o software. The inhibitory ability of migration is as follows: (% of control) = ((wound
areaberberine 12 h or 24 h/wound areaberberine 0 h)/(wound areacontrol 12 h or 24 h/wound areacontrol 0 h)) ×
100%, as described previously [65,66].
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4.5. Gelatin Zymography Assay

The A375.S2 cells (2 × 105 cells/well) were maintained in 12-well plates for 24 h and a serum-free
MEM medium containing berberine (0, 1, 1.5, and 2 µM) was individually added to each plate and
cultured for 12 and 24 h. The conditioned medium was collected and the total proteins from each
treatment were quantitated to load them onto 10% polyacrylamide gels. They were then copolymerized
with 0.2% gelatin and then the gel was incubated in a zymogen developing buffer (Sigma-Aldrich,
St. Louis, Missouri, USA) containing 50 mM Tris (pH 7.5), 200 mM NaCl, 5 mM CaCl2, 1 µM ZnCl2,
and 0.02% Brij-35. The gel was kept overnight at 37 ◦C and soaked twice in 2.5% Triton X-100 in dH2O
at 25 ◦C for 30 min. The bands of MMP-2 and -9 corresponded to the activity, which was stained with
0.2% Coomassie blue in 10% acetic acid and 50% methanol. After staining, the gel was photographed
and the band of gelatinolytic activity was determined using the NIH Image J software, version 1.47
(National Institutes of Health, Bethesda, MA, USA), as described previously [65,67].

4.6. Transwell Assay for Cell Migration and Invasion Examinations

Collagens and the Matrigel cell migration and invasion assay system were used to measure
the migration and invasion of cell in vitro, as described previously [63,65]. For the cell migration
assay, A375.S2 cells (5 × 104 cells/well) in serum-free MEM with berberine (0, 1, 1.5 and 2 µM) were
placed in the upper chamber (8 µm pore size; Millipore, Temecula, CA, USA) and coated with 50 µL
collagen in each transwell insert overnight, and 800 µL of MEM with 10% FBS was placed in the
lower chamber and incubated for 24 h. After incubation, the cells adhering to the upper surface of the
membrane were removed and all the migrated cells which adhered to the lower surface were fixed with
4% formaldehyde in PBS, treated with methanol, and stained with 2% crystal violet. After staining,
all the samples were examined and photographed under light microscopy to count the total cells and
calculate the percentage of inhibition based on the cells on each picture, as described previously [63,65].
The invasion assay was performed in almost the same way with a cell migration assay, except matrigel
(matrigel:serum-free medium 1:10) was on the transwell membrane, as described previously [63,65].

4.7. Western Blotting Analysis for Cell Metastasis-Associated Protein Expressions

The A375.S2 cells were placed in 10-cm culture dishes at a density of 1 × 106 cells/dish and
they were incubated with berberine (0, 1, 1.5, and 2 µM) for 24 h. After treatment, the cells were
harvested and re-suspended in a lysis buffer of 50 mM, Tris-HCl pH 7.5, 400 mM NaCl, 2 mM EGTA,
1 mM EDTA, 1 mM DTT, and a protease inhibitor cocktail (Roche, Mannheim, Germany). The cell
lysates were centrifuged at 10,000× g at 4 ◦C for 10 min. We quantitated the total protein concentration
of the supernatants by using a Bradford protein assay kit. A total of 30 µg of total proteins were
separated by 12% SDS-polyacrylamide gel electrophoresis. They were then transferred onto a PVDF
membrane (Millipore, Bedford, MA, USA). The membrane was blocked with 5% non-fat milk which
was in the TBS-T buffer (10 mM Tris–HCl, 150 mM NaCl, and 0.05% Tween-20, pH 7.8) for 1 h at
room temperature. The membranes were washed with the TBS-T buffer and were incubated with
monoclonal antibodies such as anti-MMP-1, -MMP-2, -MMP-13, -TIMP-1, -E-cadherin, -N-cadherin,
-RhoA, -ROCK1, -SOS-1, -GRB2, -Ras, -p-ERK1/2, p-c-Jung, -PKC, -p-FAK, -PI3K, -p-AKT, -NF-κB,
and -uPA. After washing, the membranes were incubated with diluted corresponding HRP-conjugated
secondary antibodies (diluted 1:5000; Santa Cruz Biotechnology), developed with ECL (Amersham,
Piscataway, NJ), and they were detected directly with a Biospectrum Imaging System (UVP, Inc.,
Upland, CA, USA) [65,68].

After the PLX4032 treatment, the A375.S2 and PLX4032-resistant A375.S2 cells were harvested for
examining the cell migration and invasion expression associated proteins such as p-ERK1/2, MEK1,
Ras, and RhoA, as described in the western blotting section.
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4.8. Statistical Analysis

The results are presented as mean ± SD. The data were statistically analyzed with one-way
ANOVA analysis of variance. * p < 0.05, ** p < 0.01, *** p < 0.001 are determined as significant between
the control and berberine treated groups.
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