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Abstract: Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative
properties and is currently being investigated for its efficacy in the treatment of certain viruses
(malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to
exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via
the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A
and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone
cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the
generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7,
and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests
Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and
osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in
cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico
binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and
survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A
may have great effects on bone health overall and may disrupt skeletal development, homeostasis,
and repair.
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1. Introduction

Appropriate preclinical and clinical screening for pharmacological therapies is neces-
sary to inform the patient populations of interest which may benefit from these therapies
but could incur risks associated with exposure to their health [1–3]. The United States Food
and Drug Administration and the Center for Drug Evaluation and Research is the clearing
house for this information garnered from a variety of sources (academic, pharmaceutical
companies, NIH) using label approaches that inform specific de novo effects and those
associated with existing comorbidities [1,2,4–6]. Note many drugs authorized for emer-
gency usage, currently in clinical trials, or used in off-label contexts may not have adequate
risk/benefit assessment for those patients who are being treated. This is especially poignant
today as the current COVID crisis has altered our focus on emerging disease and has driven
an increase in emergency authorizations and off-label use of many drugs as tools to contain
emerging viruses but can also adversely affect vulnerable populations [7–18].

Marine natural products remain a highly important source for emerging drugs, especially
in the treatments of cancers and viral infections [19–26]. One such potential drug is manzamine-
A, a marine sponge derived alkaloid that emerged in the field of infectious disease as a
promising control for malaria [27–35]. The understanding of manzamine and derived analogs
utility in medicine is nascent, but is proposed to include treatment for malaria [27–33], her-
pes [29,36–38], HIV [29,32,39–44], cancer [6,10,13,35,37–39,44,45], as well as generally having
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anti-bacterial, antifungal, and anti-inflammatory activities [15,17,19,20,24,32,34,36–38,43,46–55].
Thus, this emerging drug may show great potential in the treatment of many diseases.

One mechanism of action by which manzamine-A acts is as a novel small molecule
inhibitor targeting cells that express a critical homeobox gene SIX1 [45]. SIX1 expression
has been linked to organogenesis, DNA specificity, protein–protein interactions, and prolif-
eration and survival of cells [45–85]. Thus, from a cellular development and maintenance
perspective the use of manzamine-A and related alkaloid analogs may be of concern.
Strengthening this argument are data from the murine knockout model that present with
multiple anomalies including those related to the musculoskeletal system [61,66]. SIX1
has also been shown to segregate in birth defects related to bone development leading to
excess bone formation [86]. Importantly, if manzamine-A use is suspected of affecting bone
health, additional patient populations may be implicated including those susceptible to
bone loss diseases. The US-CDC reports the age-adjusted prevalence of osteoporosis has
increased in the last decade 9.5% in 2008 to 12.6% in 2018 [87]. Furthermore, the prevalence
of osteoporosis leads to a significant increased risk of related bone fractures leading to
morbidity and mortality and even death (33% of hip fractures in patients over 50 die within
a year) [88–92]. Thus, a better understanding of “if and how” manzamine-A interacts with
the cell population responsible for bone development and remodeling, the osteoblast, and
the predicted target Six-1 is now necessary.

Here, we have taken that first step to characterize if manzamine-A affects osteoblasts,
the cells responsible for mineralizing the skeleton, using in vitro exposures and assays.
Using both the pre-osteoblast and osteoblast we hypothesized that manzamine-A would
affect cell viability and function of these important cells. Further, we hypothesized that as
Six1 is a predicted mRNA target of the emerging drug manzamine-A, this target would
have altered expression in our osteoblast lineage cells.

2. Results

To determine if Six1 mRNA is expressed in pre-osteoblasts and osteoblasts, agarose
gel electrophoresis compared presence of Six1. β-actin was used as an endogenous mRNA
control and we utilized cells of a different lineage (monocyte/macrophage) cells, raw 264.7
cells as control cells for study purposes. Six1 was found to be expressed in pre-osteoblasts
and particularly enriched expression in osteoblasts as shown in Figure 1. These data further
supported our focus on the osteoblast as a potential target of the manzamine-A drug.
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Figure 1. Osteoblast highly expresses Six1 mRNA. Representative (of n = 3) agarose gel demon-
strating great expression of Six1 target in mature differentiated osteoblasts. OC = Osteoclast;
POC = Macrophage; OB = Osteoblasts; POB = Pre-Osteoblasts.

We next determined IC50 values of manzamine-A in pre-osteoblasts after 24-, 48-, and
72-h of treatment using standard MTS viability assay, Figure 2. The estimated IC50 values
were 3.6447 µmol at 24 h, 2.0358 µmol at 48 h, and 5.4699 µmol at 72 h. These assays were
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repeated in mature osteoblasts after differentiation, Figure 2. Resulting estimated IC50
values were 4.3678 µmol at 24 h, 4.161 µmol at 48 h, and 3.6573 µmol at 72 h. To interrogate
additional cellular effects of manzamine A on the osteoblast cell lineage doses of 2.5 µmol
and 5 µmol were chosen for further experimentation.
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Figure 2. Manzamine treatment alters osteoblast lineage cell viability. MTS assay was used to
determine IC50 values for downstream experimental studies. Note alteration to viability at all
post-treatment timepoints. (n = 3 replicates per treatment).

Caspase 3/7 assay was utilized to determine how manzamine A affected programmed
cell death, apoptosis, in our osteoblast cell lines. In our pre-osteoblasts, there was a
statistically significant increase in apoptosis at 24 h, 48 h, and 72 h in both the 2.5 µmol and
5 µmol doses groups, Figure 3. This effect was mirrored in our mature osteoblast cells at
24 and 48 h where statistically significant increases in apoptosis were observed, Figure 3.
However, at 72 h, there was a statistically significant decrease in cellular apoptosis in the
5 µmol manzamine dosed group. We interpret this as the result of most cellular apoptosis
having already robustly occurred in this dosed group. This is supported by our observation
of the cells in wells at that time point (Supplemental Figure S1).
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Figure 3. Manzamine treatment drives apoptosis in osteoblast lineage cells. Note increases in
apoptosis for most comparisons with the exception of 72 h mature osteoblasts. n = 3 replicates per
treatment. * p < 0.05, ** p < 0.01, *** p < 0.001. (RFU = Relative Fluorescent Unit).

To determine the effects of manzamine A on osteoblast lineage function a quantitative
alkaline phosphatase assay was used. Our data suggest great and statistically significant
decreases in alkaline phosphatase by enzymatic reaction detection in our pre-osteoblasts
after 72 h. This effect was not observed at the 7-day timepoint, Figure 4. We attribute the lack
of change at 7-days due to the length of the assay in which cells were likely able to renew
or stabilize after the dose treatment. Experimentation was repeated in our differentiated
osteoblast blast and significant decreases in alkaline phosphatase were observed at both 72 h
and at 7 days for both delivered doses. These data support a scenario where manzamine-A
is likely to disrupt the function of the osteoblast to produce bone matrix.
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Figure 4. Manzamine decreases osteoblast function. Quantitative alkaline phosphatase activity
was decreased by manzamine treatments. n = 3 replicates per treatment. ** p < 0.01, *** p < 0.001.
(OD = Optical Density).

We sought to interrogate how manzamine-A treatment would alter Six1 mRNA expres-
sion in our cells of the osteoblast lineage. Our data demonstrated marked and significant
decreases in mRNA expression after 24 h in our pre-osteoblasts and after 24 and 48 h in
our differentiated osteoblasts for both the doses utilized here, Figure 5. These support the
interaction between manzamine-A and Six1 in resulting cell function.
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Figure 5. Manzamine treatment results in decreased Six1 mRNA expression. mRNA expression
changes represented as fold change. Note significant decreases especially for the mature osteoblast
cells. n = 3 replicates per treatment. * p < 0.05, *** p < 0.001. (OD = Optical Density).

Finally, we sought to apply in silico binding experiments to predict manzamine A
activity as an inhibitor of cell viability. Protein kinase is an important signaling protein in
many biological pathways including cell proliferation and apoptosis. Most of the protein
kinase inhibitors bind competitively at the highly conserved ATP-binding domain [93–95].
Protein kinase inhibitors have been shown to be active against multiple protein kinases due
to the conservation nature of the ATP-binding domain. Manzamine A has been previously
shown as an inhibitor of three protein kinases, i.e., GSK3b, CDK5, and RSK1 [96,97]. It
is safe to assume that manzamine A may have activity against more protein kinases due
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to its reported activities for multiple targets and diseases. In this study, manzamine A is
docked at the ATP-competitive domain of seven protein kinases (TGF-β, Iκb, JAK2, PI3K,
AKT, PKC, and FAK) involved in cell proliferation, survival, and apoptosis pathways.
The binding affinities of manzamine A to these proteins were compared with ATP. The
results showed that manzamine A has a higher affinity than ATP for Iκb, JAK2, AKT, PKC,
and FAK, suggesting its potential as an inhibitor for these proteins (Figure 6 and Table 1).
Inhibition of these proteins will result in the downregulation of cell proliferation and
survival proteins, and promote expression of caspase 3/7 leading to apoptosis. Manzamine
A was also docked to Bcl-2 protein, an important regulator of apoptosis. Inhibition of Bcl-2
will lead to higher expression of caspase 3/7 and apoptosis. Manzamine A showed good
binding affinity to Bcl-2 (−10.1 kcal/mol). This indicated manzamine A potential as a Bcl-2
inhibitor although it may be less active than the known Bcl-2 inhibitor venotoclax [98]
(binding affinity = −12.2 kcal/mol).
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(B) JAK2; (C) AKT; (D) PKC; (E) FAK; and (F) Bcl-2. Manzamine A, ATP, and ventoclax are shown as
blue, orange, and pink structures, respectively.

Table 1. Binding affinity (kcal/mol) and coordinates.

TGF-b Ikb JAK2 PI3K AKT PKC FAK Bcl-2

PDB ID 6B8Y 4KIK 6WTO 4FA6 3MVH 1XJD 3BZ3 6O0K
x-centre 5.788 49.323 −21.148 44.555 24.812 56.783 10.234 −14.226
y-centre 9.372 30.567 −14.051 13.306 5.644 8.908 2.763 1.146
z-centre 5.017 −56.867 8.259 31.313 18.343 2.494 5.109 −10.800

Manzamine A 10.3 −8.2 −10.8 −6.6 −9.2 −10.3 −9 −10.1
ATP −8.2 −7.7 −8 −7 −7.8 −7.3 −7.7 n.a.

Venetoclax n.a. n.a. n.a. n.a. n.a. n.a. n.a. −12.2

n.a.—not applicable.

3. Discussion

This is the first step into understanding how manzamine-A may affect organ systems
that are not the intended target of this emerging drug. Further these experiments provide a
platform by which other cell types, and more importantly other emerging natural products
can be studied for potential health effects. Overall, our data paints a picture of effects
that manzamine-A would have after short term treatment on a bone cell line. Namely,
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decreases in osteoblast function should be expected and further that bone as an organ is
a potential target of these drugs. This implication takes on many forms that necessitate
further study as manzamine-A has shown great promise in targeting of disease processes
such as cancers. Population indications for manzamine A are widespread as indicated
above. Thus, individuals at risk of bone effects due to manzamine A use could include
the fetus and or offspring of a dosed expectant mother, an adolescent or young adult in a
positive curve for the building of bone density, and more directly those patients at risk of
bone wasting diseases such as osteopenia or osteoporosis, the elderly including women
after menopause. Other natural products have been shown to target bone related cells,
specifically altering bone remodeling via osteoclast activity. Interestingly in this context
several drugs have been purported to potentially be useful as a therapeutic where there is a
bone wasting disease [99–101]. Here, our data suggests manzamine-A will also target bone
as an organ but will likely result in further bone loss in stark contrast to Thiaplakortone B
or Hymenialdisine for example.

Limitations here include the approach. These initial data were collected using an
in vitro modeling system only. Future research will necessitate in vivo dosing of manza-
mine A likely initially in experimental models to determine the widespread and localized
effects in may have on organ systems including bone. Further, a single target was chosen
to confirm our bio-informatic conclusion that Six1 was targeted by manzamine-A. This
hypothesis proved true, but it is likely that manzamine A has pleiotropic effects including
other Six1 associated mRNA pathway targets (Gro, Mdfi, Dach, and Eya1) and pathways
associated with bone development and health (WNT, NOTCH, PI3K/AKT). Further, al-
though limited in scope, in silico binding experiment has provided a glimpse of possible
targets associated with these pathways and supported his hypothesis. Future research will
be needed to focus on exploring these and additional molecular targets of the drug to get
a clear picture of potential effects in multicellular systems. Furthermore, if manzamines
continue to prove to have undesirable side effects such as bone loss, approaches to mitigate
these effects will be explored [102]. The next logical target are other bone cells (progenitor
cells, osteoclast, osteocytes) as well as re-interrogating the effects of manzamine A on bone
remodeling and homeostasis [103] Overall, this initial study did show dramatic effects of
manzamine A on the osteoblast, where viability was altered, apoptosis was increased, and
function of the cell was diminished.

4. Materials and Methods

MC3T3-E1 cells (Subclone 4 CRL-2593) were obtained from ATCC (Manassas, VA,
USA) and maintained as recommended to produce pre-osteoblast cells for studies. Briefly,
cells were maintained in a 75 cm2 flask using Alpha Eagle Minimum Essential Medium
(Alpha-MEM, Lonza, Walkersville Inc., Walkersville, MD, USA, BE02–002F) with 10% Fe-
tal Bovine Serum (FBS, Atlanta Biologicals, Atlanta, GA, USA, S11150H) and 1% Peni-
cillin/Streptomycin (Lonza, 10k/10k 17–602E) until 85% confluent when they were moved
to a 175 cm2 flask after trypsin-EDTA (0.1%, Gibco/Fisher Scientific, Hampton, NH, USA,
15400–054) dissociation. Cells (Pre-osteoblasts) were subcultured as necessary throughout
the experimentation. To induce osteoblast differentiation 0.25 mM ascorbic acid (Fisher
Scientific, Hampton, NH, USA, A61–25), 0.1 µm dexamethasone (Fisher Scientific, Hamp-
ton, NH, USA, AC230300010), and 10 mM β-glycerophosphate (Fisher Scientific, Hampton,
NH, USA, L03425) were added to standard Alpha-MEM media to produce osteogenic
media (OM, Osteoblasts). Control cells for PCR study of Six1 mRNA expression were
inclusive of Raw 264.7 cells (ATCC, Manassas, VA, USA, TIB-71) maintained as macrophage
precursors or differentiated to mature osteoclast phenotype. These cells were maintained in
a 75 cm2 flask using Dulbecco’s Modified Eagle’s Medium (DMEM, Lonza, Basel, Switzer-
land, 12604F) with 10% FBS and 1% Penicillin/Streptomycin until 85% confluent, when
they were moved to a 175 cm2 flask after cell scraper dissociation. Cells were sub-cultured
as necessary throughout the experimentation. To induce mature osteoclast phenotype
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murine RANK Ligand 50 ng/mL (Peprotech, Secaucus, NJ, USA, 315–11) was added to the
standard DMEM media (RANKL, Osteoclasts).

Manzamine-A was produced by co-author Dr. Mark Hamann’s laboratory at Medical
University of South Carolina following previously published protocols. Briefly, lipophilic
alkaloid extracts were previously prepared from the Indonesian sponge Acanthostrongy-
lophora (collected from Manado Bay, Northern Sulawesi, Indonesia, in 2003). Crude material
was separated using vacuum liquid chromatography, and manzamine was purified by
crystallization. Purified manzamine was then transformed into its hydrochloride salt and
recrystallized to reach high purity (>99%) and optimized aqueous solubility as described
previously [41,44,45].

Pre-osteoblasts, mature osteoblasts, macrophages, and osteoclasts, were seeded in
triplicate at a density of 300,000 cells per well in triplicate in 6 well culture plates and
treated with control un-supplemented media, and appropriate differentiation media as
defined above. After 24 h in isolated culture, RNA was isolated using the OMEGA bio-tek
E.Z.N.A. Total RNA kit 1 (Omega Bio-tek, Norcross, GA, USA, R6834-02) according to
manufacturer’s protocol. Quality and quantity of RNA was assessed using a Synergy Hi
Microplate reader and a Take3 Microvolume Plate (BioTek, Winooski, VT, USA). Compli-
mentary DNA synthesis was performed using Quanta qScript cDNA Synthesis reagents
following manufacturers protocol (Quanta Biosciences, Beverly, MA, USA, 95047-025).
Presence of neurotransmitters and GPCRs was determined via PCR using cDNA, designed
primers from Integrated DNA Technologies (Coralville, IA, USA,) (Table 1), Platinum Taq
DNA Polymerase (Fisher Scientific, Hampton, NH, USA, 100021273), and separation on
1.5% agarose gels employing primers for Six1 (GCTGTCACC GGGCCTATTTA/Reverse AT-
GAGCAAGCCAACCCTGTT) β-Actin (Forward GCAGGAGTACGATGAGTCCG/Reverse
ACGCAGCTCAGTAACAGTCC) as a control. Annealing temperature was optimized to
53C. Each assay was repeated three independent times.

Cell viability was measured using a CellTiter 96® AQueous One Solution Cell Prolifera-
tion Assay (MTS, Promega, Madison, WI, USA). The conversion of MTS tetrazolium into
Formazan is directly proportional to the number of viable cells in each well. Osteoblast
lineage cells were seeded in 96 well plates at a density of 4000 cells/well and treated with
Manzamine at serial concentrations (0.5–40 µmol) compared to a control group (0 µmol)
without exposure to Manzamine and then assayed at 24, 48, and 72 h (triplicate replicates).
Inhibitory Concentration (IC50) values were determined using AAT BioQuest Graph and
used for all downstream studies.

Cellular apoptosis levels were measured using Apo-ONE Homogenous Caspase
3/7 Assay (Promega, Madison, WI, USA). This assay measures the amount of Caspase 3
and Caspase 7 activity to quantify apoptosis levels. Cells were seeded in 96 well plates
at a density of 4000 cells/well and treated with Manzamine at 2.5 µmol and 5 µmol
concentrations compared to a control group without exposure to Manzamine then assayed
at 24, 48, and 72 h (triplicate replicates) On assay, cells were incubated with 100 µL/well
substrate/buffer solution (1:100). Contents were mixed for 30 s at 300 rpm and incubated
at room temperature for one hour. Fluorescence was measured using a 96-well plate reader
(Biotek, Winooski, VT, USA) with excitation at 485 and emission at 530 nm.

Functional levels of pre-osteoblasts and osteoblasts were measured using a SIGMAFAST
p-nitrophenyl phosphate alkaline phosphatase assay from Sigma-Aldrich (St. Louis, MO,
USA). This assay measures the quantification of the reaction of the enzyme, alkaline phos-
phatase, an important factor that leads to mineralization of bone. Cells were seeded in
96 well plates at a density of 4000 cells/well and treated with Manzamine at 2.5 umol and
5 umol concentrations compared to a control group without exposure to Manzamine then
assayed at 24, 48, and 72 h (triplicate replicates). On assay medium was removed from
cells, and cell lysis was performed using Triton ×100 at 0.01% (Sigma). After 30 min of
incubation at 4 ◦C, deionized water and a p-Nitrophenyl phosphate solution were added
to the lysis buffer. Three control wells containing no cells were also treated and served
as blank controls to mathematically subtract the effects of the lysis buffer and water on
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final optical densities. Plates were incubated at room temperature in the dark for 30 min. The
absorbance at 405 nm was recorded with a 96-well plate reader (Biotek, Winooski, VT, USA).
ALP activity was then calculated using the following formula: ((optical density—the mean
optical density of the control wells) × total volume × dilution)/(18.45 × sample volume).

To quantify expression the specific mRNA target SIX1, cDNA was subjected to quanti-
tative PCR using Applied Biosystems TaqMan Gene Expression Master Mix and targeted
TaqMan gene expression assay (Mm00808212_m1) and normalized to control endogenous
Gapdh activity (Mm99999915_g1). Briefly cells were cultured in 6 well plates with a seeding
density of 300,000 cells/well. Pre-osteoblasts and osteoblasts were treated with 2.5 umol
and 5 µmol doses of Manzamine compared to a control group without exposure to Man-
zamine. Cells were then harvested at 24 and 48 h for RTQPCR experiments (triplicate
replicates). RNA was isolated from both cell types using the RNA Isolation protocol from
the E.Z.N.A. Total RNA Kit from Omega. After RNA Isolation, the RNA was transcribed
into complementary cDNA using the cDNA Synthesis protocol from qScript cDNA Synthe-
sis Kit from QuantaBio. cDNA is then used as the template strand in a quantitative PCR
reaction using a TaqMan Fast Advanced Master Mix. Data were normalized to GAPDH
RNA expression by ∆CT. Quantitative data were compared for gene expression changes due
to treatment with manzamine by ∆∆CT methodology. Previously published statistical anal-
ysis methodology was used to determine differences for gene expression after manzamine
related the target of interest [104]. Differences were considered significant if p ≤ 0.05.

All statistical analyses were done by comparing the Manzamine dosed groups to the
control groups using a standard t test or non-parametric Mann–Whitney U after assessing
normality with a Shapiro–Wilk test and homogeneity of variance with a Levene’s test using
Welch’s correction for variance when needed. Significance was determined if p values were
less than 0.05.

The structures of manzamine A, ATP, and venetoclax were optimized using the MM2
energy-minimized function in the Chem3D Ultra version 16.0. The crystal structures of the
receptor proteins (Table 1) were obtained from the Protein Data Bank [105,106]. AutoDock-
Tools version 1.5.6 were used to prepare the receptor proteins and ligands for the molecular
docking experiment. The grid box parameters used were: grid box spacing = 1.0 Å; x-
dimension = y-dimension = z-dimension = 20. AutoDock Vina program was used to
perform the docking and calculate the binding affinity [107,108]. The results were pro-
cessed and analyzed using the BIOVIA Discovery Studio Visualizer version 17.2.0 (Dassault
Systèmes, San Diego, CA, USA). The binding affinities are summarized in Table 1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20100647/s1, Figure S1: Phase Images of Cells Treated with
Manzamine.
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Abbreviations

ALP Alkaline Phosphatase
◦C Degrees Celsius
COVID Corona Virus Disease
Dach Dachshund Homolog 1
DNA Deoxyribonucleic acid
Eya1 Eyes absent homolog 1
Gro Groucho
HIV Human Immunodeficiency Virus
IC50 Inhibitory concentration 50%
Mdfi MyoD Family Inhibitor
mRNA Message ribonucleic acid
MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium
NIH United States National Institutes of Health
Notch Notch Receptor
PCR Polymerase Chain Reaction
qrtPCR Quantitative Real Time Polymerase Chain Reaction
PI3K/AKT Phosphoinositide 3-kinases/Protein kinase B
RNA Ribonucleic Acid
Six1 Sine Oculis Homeobox
US-CDC United State Center for Disease Control
WNT Wingless Intergrated
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