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We seek to use dimensionality reduction to simplify the difficult task of controlling a lower
limb prosthesis. Though many techniques for dimensionality reduction have been
described, it is not clear which is the most appropriate for human gait data. In this
study, we first compare how Principal Component Analysis (PCA) and an autoencoder on
poses (Pose-AE) transform human kinematics data during flat ground and stair walking.
Second, we compare the performance of PCA, Pose-AE and a new autoencoder trained
on full human movement trajectories (Move-AE) in order to capture the time varying
properties of gait. We compare these methods for both movement classification and
identifying the individual. These are key capabilities for identifying useful data
representations for prosthetic control. We first find that Pose-AE outperforms PCA on
dimensionality reduction by achieving a higher Variance Accounted For (VAF) across flat
ground walking data, stairs data, and undirected natural movements. We then find in our
second task that Move-AE significantly outperforms both PCA and Pose-AE onmovement
classification and individual identification tasks. This suggests the autoencoder is more
suitable than PCA for dimensionality reduction of human gait, and can be used to encode
useful representations of entire movements to facilitate prosthetic control tasks.
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dimensionality, nonlinear

1 INTRODUCTION

Models of human gait are the foundation upon which lower limb prosthesis controllers are built.
Because gait is highly complex and multidimensional, these models take advantage of simplifying
assumptions to narrow the problem space. Early above-knee prostheses relied upon events during
stance and swing phases to trigger locking and unlocking of a mechanical knee, such as the knee
hyperextensionmoment at toe-off Mauch (1968). As prosthetic technology has advanced, so have the
underlying models. Variable damping knees use on-board sensors to detect speed and phase,
adjusting knee and ankle joint control parameters to mimic human gait Highsmith et al. (2010).
Today, powered prostheses that generate work during gait are gaining in popularity in research
circles Azocar et al. (2020). However, the challenge of controlling prostheses has been recently
brought again to attention Iandolo et al. (2019) Tucker et al. (2015), and only highlighted by the
untapped potential of powered devices to restore mobility. We assert that generating useful
representations of human movement is necessary to unlock the potential of such devices.

Gait models can be used to generate reference trajectories of kinematics or torque, or inform a set
of control parameters for powered prostheses. Generating safe and reliable trajectories and
parameters, given the complexity of human gait, poses a challenge. To do so, simplifications are
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made. At a high level, activities such as level ground walking, stair
navigation, and ramp navigation, can each be called an individual
“mode” of movement. At a lower level, control is achieved with
respect to phases of gait. For instance, Simon et al. (2014) split the
gait cycle of each mode into finite states delineated by gait phases,
in which each state corresponds to a set of impedance parameters,
totaling 140 tunable parameters. However, adding additional
modes creates more tuning parameters, which poses an
additional challenge. More recent approaches have reduced the
number of tuning parameters by creating unified gait models that
span across modes. Quintero et al. (2018) has developed a gait
model that generates knee and ankle reference trajectories with
respect to speed, phase, and incline. This significantly reduces the
solution space while maintaining expressiveness of the model
output. However, it remains invariable to idiosyncratic gait
characteristics, which Quintero et al. (2018) also identifies as
the largest source of variability.

Techniques to simplify gait can be used to address these
challenges. One such technique is to reduce the dimensionality
of gait by learning its “principal components” from real world
data. Dimensionality reduction techniques like Principal
Component Analysis (PCA) have been used to identify a
variety of pathological gaits Slijepcevic et al. (2018)
Matsushima et al. (2017) Chen et al. (2020) Deluzio et al.
(1997) and detect differences in kinetics with transfemoral
amputation Soares et al. (2016). Unlike standard PCA,
nonlinear dimensionality reduction techniques like
autoencoders are able to fit a nonlinear function to nonlinear
data, though it is unclear which technique is suited for
gait—which is a highly structured, periodic behavior. We have
previously explored how PCA compares to an autoencoder for
dimensionality reduction of hand kinematics, as it pertains to
priorities for prosthetic control Portnova-Fahreeva et al. (2020).
In this study, we will present a similar analysis using lower limb
kinematics collected during gait activities. We will also compare
performance between dimensionality reduction techniques on
tasks relevant for prosthetic control - movement classification
and individual identification.

Movement classification is a broad, albeit powerful, way to
simplify gait. For many lower limb prostheses, selecting the
desired movement class, like flat ground walking and stair
walking, is typically performed via user input, such as
bouncing on the heel three times Ottobock (2015). Requiring
manual input from the user side steps the challenge of selecting
the desired movement class using only sensor inputs. Well
performing dimensionality reduction techniques may simplify
this challenge, enabling a classifier to automate selection of a
movement class, and thus minimizing the control burden placed
on the user. However, within a single movement class, gait may be
highly variable from one individual to another, either due to
pathology, amputation, or idiosyncrasy. These variations are
assumed to be chosen to optimize over some set of
parameters, like stability Herssens et al. (2020) or metabolic
cost Summerside et al. (2018) and so are important to
preserve during dimensionality reduction.

Gait models and associated prosthesis control algorithms are
also designed to be highly reliable. Because small, rare errors in

the model or controller can have catastrophic consequences,
simpler solutions are favored. Machine learning algorithms are
capable of taking on large, high dimensional problems, but are
prone to errors on unseen data and suffer from a lack of
interpretability. However, significant interest in machine
learning methods over the last decade have resulted in the
creation of novel algorithms that offer unique potential for
modeling gait. We have previously demonstrated the viability
of using machine learning to predict joint kinematics for lower
limb prosthesis control Rai et al. (2020) Rai and Rombokas
(2019). In this study, we use autoencoders, which are a class
of self-supervised networks with flexibility to handle virtually any
type of data. We will employ two autoencoders, one trained to
reconstruct a single pose from gait (Pose-AE), and a recurrent
autoencoder trained to reconstruct an entire movement
(Move-AE).

In this study, we seek to better understand how gait data can be
simplified using dimensionality reduction. In the first part of this
study, we compare the dimensionality reduction performance of
PCA on poses and an autoencoder on poses taken from lower
limb gait data. In the second part, we will compare performance
on movement and individual classification tasks of PCA on poses,
an autoencoder on poses, and a recurrent autoencoder on
movements. We expect that autoencoders will outperform
PCA in all cases, as demonstrated on hand kinematics in our
prior work Portnova-Fahreeva et al. (2020).

2 MATERIALS AND METHODS

2.1 Data Collection
Gait data was collected in a previous study Rai and Rombokas
(2019). Participants wore the Xsens Awinda suit (Xsens
Technologies, Enschede, Netherlands), a wearable motion
capture suit consisting of 17 body-worn sensors. Xsens
Analyse software processes raw sensor data to provide joint
kinematics in a 3D environment. All angles are in a 1 × 3
Euler representation of the joint angle vector (x, y, z) in
degrees, calculated using the Euler sequence ZXY using the
International Society of Biomechanics standard joint angle
coordinate system Wu et al. (2002). Recruitment and human
subject protocols were performed in accordance with the
University of Washington Institutional Review Board approval
and each subject provided informed consent. De-identified data
can be made available, via a data use agreement, upon request to
the authors.

From this dataset, we are examining 10 participants who
performed flat ground walking and 14 participants who
performed stair ascent and descent. All participants in all
groups were unique. Flat ground data consists of participants
walking at a self-selected speed down a long public corridor. Stair
data consists of participants repeatedly descending a wide public
13-step staircase, turning around at the landing, and ascending
the same staircase, also at a self-selected speed.

We are also using the Virginia Tech Natural Motion Dataset
Geissinger and Asbeck (2020a), also collected using an Xsens
system. It contains 40 h of natural, unscripted movement from 17
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participants, including 13 participants on a college campus and
four participants working in a home improvement store. This
dataset is representative of movement in daily life, as compared to
constrained activities like steady state forward gait.

2.2 Data Processing
Xsens features a real-time engine that processes raw sensor data
for each frame and algorithmically fits a human body model to
estimate anthropomorphic joint and segment data. A post
processing engine includes information from the past, present,
and future to get an optimal estimate of the position and
orientation of each segment. This “HD” processing raises the
data quality by extracting more information from larger time
windows and modeling for skin artifacts, etc. but also takes
significantly longer time. We used HD processed data as
training data for all three datasets.

Each dataset was standardized according to the aggregated
statistics of all three datasets. Three lower limb joints on each side
of the body (hip, knee, ankle) were chosen for analysis. Each joint
can be represented in frontal, transverse, and sagittal planes.
Frontal and transverse plane motion was dropped for the knees,
due to its propensity to reflect sensor noise over meaningful
physiological movement. Because the natural motion dataset
contains long periods of inactivity, such as sitting at a desk, it
was filtered by pelvic velocity such that only moments punctuated
by movement of the pelvis would be included. The subjects of
each dataset were then allocated into either train or test sets for
analysis. For a comparison study of different techniques,
achieving high performing, generalizable results are not our
primary aim. Rather, we would like to highlight the attributes
of how these techniques interact with the data without
optimization. For this reason, we only consider the training set
throughout the rest of this study (Table 1).

2.3 Data Analysis
Data analysis was performed in Python 3.7 and the machine
learning was implemented using Tensorflow 2.0 using a single
GPU. Visualization of lower limb poses was achieved using an
open source humanoid model in Unity (Unity Technologies, San
Francisco, CA, United States).

2.3.1 Principal Component Analysis
PCA was performed for each dataset using the respective
covariance matrix. PCA achieves dimensionality reduction by
projecting the original data by the space defined by its principal
components (PC), each of which are vectors aligned to maximally
capture remaining variation in the data. A limited number of
principal components often explain the majority of variation in

the data, resulting in a lower dimensional space than the original
data. This space will be referred to as the latent space.

2.3.2 Pose Autoencoder
The autoencoder is one variant of the encoder-decoder
architecture. Notably, encoder-decoder architectures have been
used to power breakthroughs in natural language processing
Devlin et al. (2019), but have been applied to computer vision
Hossain et al. (2019), time series analysis Lim and Zohren (2021),
and human movement Pettee et al. (2019). Pettee et al. (2019)
used such techniques to produce manifolds of human dancing,
from which samples of novel dance choreography may be
decoded. Geissinger and Asbeck (2020b) utilized similar
principles to infer complete joint information from sparse
sensor input on the natural motion dataset considered here.

Critically, the autoencoder contains a bottleneck through
which it is forced to learn features of the data. The activations
of the bottleneck layer represent the data in the latent space.
Nonlinear activation functions in each layer can capture
nonlinear relationships in the data, though often (but not
always) at the cost of interpretability.

As illustrated in Figure 1, inputs to Pose-AE were of size 1 ×
14 and consisted of hip, knee, and ankle joint angles, as described
in the Data Processing section. For each time series of joint angles,
inputs were sampled every 0.166 s. This 1 × 14 vector is then
passed through the encoder, after which it can be represented by a
1 × 2 vector in the latent space. The decoder then attempts to
reconstruct the original 1 × 14 vector from the 1 × 2 latent vector.
The reconstruction error between the decoded 1 × 14 vector and
the input 1 × 14 vector backpropagate through the network
layers, forcing the network to learn how to best represent the 1 ×
14 input vector as a 1 × 2 latent vector. In other words, Pose-AE
was trained to reconstruct 14 dimensional “snapshots” of lower
limbs from only two dimensions.

Hyperparameter optimization was performed using a single
random participant from the flat ground training dataset, with a
training and validation split of 50/50. Tuning on a single subject
was done as an alternative to k-fold hyperparameter tuning,
which becomes combinatorially expensive with three activities.
Considering the aim of the study is to compare techniques, not
seek maximal performance, the authors decided to err on the side
of underfitting, to ensure the most fair comparison across
techniques. Hyperparameter choices were found to be
insensitive to the chosen subject. We also tested several
network widths and depths and found the best results with a
three layer block for both the encoder and decoder (Figure 1).
Batch normalization was implemented in the encoder to mitigate
overfitting. Each configuration was evaluated by its

TABLE 1 | Details of the training dataset used in this study. Additional individuals were held out for a future testing dataset. Sampled duration reflects the combined length of
the recordings from which samples were uniformly extracted.

Dataset n Male/Female Age (yrs) Height (cm) Samples Recording Duration

Flat Ground 8 4/4 26.2 ± 2.7 174 ± 10.9 38,196 1 h 38 min
Stair Walking 11 8/3 24.7 ± 3.5 173 ± 11.2 54,755 2 h 29 min
Natural Movements 13 14/3 20–58 179 ± 7.3 34,779 1 h 36 min
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reconstruction loss. Adaptive Moment Estimation was used to
optimize learning during training. All Pose-AE models were
trained using full batch gradient descent for 8,000 iterations,
which was heuristically determined to achieve model
convergence before showing evidence of overfitting.

Anecdotally, we discovered very little sensitivity of
hyperparameters by subject. T.

2.3.3 Movement Autoencoder
Unlike Pose-AE, Move-AE reduces entire movements. The input
to Move-AE was a one second window of all 14 joint kinematics,
thus a sequence length of 60 timesteps, given the original 60 Hz
recording rate. Though this time series data is higher
dimensional, the signal exhibits both autocorrelation and
periodicity, making the problem more tractable. Indeed, the
fact remains that if one was asked to draw a canonical joint
trajectory during flat ground gait of any length, only two pieces of
information are required to adequately represent it: cadence and
phase. Recurrent layers like the Long Short Term Memory
(LSTM) Hochreiter and Schmidhuber (1997) are capable of
extracting key information from time series data, and
Bidirectional LSTMs Schuster and Paliwal (1997) have been
employed here (Figure 1). A point in the latent space now
represents one second of movement, rather than a snapshot of
a pose.We chose one second of movement as a sufficient length of
time to capture the context of a given pose. This is in contrast to
the pose autoencoder and PCA, which would be unable to
determine if one was walking forward or backward because
they cannot learn the temporal dependencies within movements.

Inputs to Move-AE consisted of the same 14 joints and planes
as Pose-AE, but now extend to include 1 s of movement at 60 Hz.
These inputs are similarly sampled every 0.166 s, regardless of gait

phase, meaning there is overlapping data between multiple
inputs. The input vector is now shaped 60 × 14 (60 timesteps,
14 joints and planes). As before, the 60 × 14 input vector passes
through the encoder, after which it is represented as a 1 × 2 latent
vector. The decoder reconstructs the entire 60 × 14 input from
this 1 × 2 latent vector. Move-AE learns to represent entire
movement trajectories of the lower limbs as a 1 × 2 vector.

Hyperparameter optimization was performed as previously
described. The best performing architecture was found to have
two bidirectional LSTM (biLSTM) layers for both the encoder
and decoder and time distributed fully connected layers before
and after. Making a fully connected layer “time distributed”
allows it to accept sequential data by passing each timestep
through individually. Time distributed fully connected layers
of width 64 are used to generate the input sequence to the
encoder biLSTM block, and generate the output sequence
from the decoder biLSTM block. An intermediate fully
connected layer was included after the encoder biLSTM block
to facilitate dimensionality reduction to two dimensions in the
latent layer. All models were trained for 8,000 iterations as
previously described, except we used mini batch gradient
descent with a batch size of 32 to decrease training time with
larger inputs.

2.3.4 Variance Metrics
As described in our previous work Portnova-Fahreeva et al.
(2020), Variance Accounted For (VAF) is a measure of how
well a model reconstructs an input from the latent space. A VAF
of 100% indicates the reconstructed output is identical to the
input. VAF was evaluated for inputs reconstructed by PCA and
autoencoder for each dataset. The equation is presented again
here for clarity (Equation 1).

FIGURE 1 | Architecture for the Pose-AE network and Move-AE network. Both networks exhibit the classic autoencoder bottleneck shape. Whereas Pose-AE
takes single poses as input, Move-AE makes use of stacked recurrent bidirectional LSTM layers to accept entire movement trajectories as input. Both networks embed
each input as a single point in a two dimensional latent space.
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VAF(%) � 1 − var(y − ŷ)
var(y)( ) p 100 (1)

We compare how variance is distributed between each dimension
of the latent space. Principal components were ranked by variance
explained and normalized to the sum of previous principal
components, thus converting the variance of each PC into a ratio
of the total variance. The autoencoder was trained using various
bottleneck widths. Similarly, the variance of activations in the
bottleneck were normalized to the sum of all variances in the
bottleneck layer. As per previous results Portnova-Fahreeva et al.
(2020), dimensional variance is expected to be more uniformly
distributed in the autoencoder, which does not have the constraint
of PCA’s orthonormality, but is capable of sharing variance across
multiple latent dimensions. We also report the Root Mean Square
Error (RMSE) between the original input and the reconstructed
input. Note how RMSE differs fromVAF, in that it directly measures
error in reconstruction, whereas VAF measures what proportion of
variance has been captured.

2.3.5 Classification Tasks
We compare the performance of all three dimensionality reduction
methods on two classification tasks: movement classification and
individual identification. For both tasks, we use a Support Vector
Machine to classify within the latent space, performed using the
scikit-learn Pedregosa et al. (2011) implementation, in turn based on
the formulation presented here Chang and Lin (2011). We use a
radial basis function kernel to improve classification accuracy, given
the low-dimensional latent space. All parameters were fixed for all
tasks and latent spaces.

The movement classifier sought to determine whether a given
point in the latent space represented flat ground walking or stairs
navigation. The natural movement dataset was excluded due to the
presence of both activities within the single dataset. The individual
classifier sought to identify the individual fromwhich a given input in
the flat groundwalking dataset originated. The error was calculated as
the number of erroneously classified inputs divided by the total
number of inputs. In both cases, the training dataset was used, and
training was repeated 10 times for each model to capture a better
range of outcomes. The Kolmogorov-Smirnov (KS) test was
employed to test if Pose-AE and Move-AE classification errors
were drawn from different distributions. The KS test is well suited
when the sets under comparison exhibit different variances.

The classification results indicate how separable different
movements and individuals are in the latent space. High
separability will result in high classification accuracy, indicating
that the dimensionality reduction technique has preserved high
amount of information about the input. This test also allows a
direct comparison to be made across techniques as diverse as
PCA, autoencoders, and recurrent time-sensitive autoencoders.

3 RESULTS

3.1 Dimensionality Reduction
Pose-AE exhibited better pose reconstruction than PCA for flat
ground and stair walking, but neither Pose-AE nor PCA was able

to adequately reconstruct natural poses from a two dimensional
latent space (RMSE 0.63 vs 0.55, 0.80 vs 0.71, 1.05 vs 1.02)
(Figure 2). For flat ground and stair walking, visual inspection of
randomly chosen reconstructed poses by each method illustrate
how even small improvements in RMSE may result in
qualitatively improved pose reconstruction, especially in
regards to sagittal plane. However, both methods perform
poorly on the natural movement dataset. An RMSE >1
indicates neither method is an improvement from simply
reconstructing the mean pose.

Similar to previous findings Portnova-Fahreeva et al. (2020),
Pose-AE captures greater variance in the data than PCA during
dimensionality reduction, especially at low dimensions
(Figure 3). Dimensional variance is more evenly distributed
with Pose-AE than PCA. Though neither method were suited
to reconstruct natural movement poses, Pose-AE retained an
evenly distributed dimensional variance - indicating the
capability to share dimensional variance across dimensions is
inherent to autoencoders, regardless of dataset.

3.2 Movement Separability
Both autoencoder models produced latent spaces more suited for
movement classification than PCA (error 21.8% PCA; 11.7 ± 3.4%
Pose-AE; 3.3 ± 2.0% Move-AE). Move-AE exhibited significantly
different movement classification performance than Pose-AE (KS
test, p < 0.0001). The latent spaces of each method’s best
performing model are visualized in Figure 4. Unlike PCA,
Pose-AE was sensitive to differences in flat ground walking
and stair walking, thus embedding them with little overlap in
the latent space. Though Move-AE was trained to compress its
inputs by a much larger ratio (420:1 for Move-AE vs 7:1 for Pose-
AE and PCA), it was able to embed whole movements in different
regions of the latent space without explicit labels. We observed
many variations in how the data were embedded in the latent
space between each of the 10 runs, especially for Move-AE, hence
the increased variability in classification performance.

3.3 Individual Identification
Similar to movement classification, Move-AE outperforms Pose-
AE (KS test, p < 0.0001), which in turn outperforms PCA on
classification of individuals (error 62.0% PCA; 48.9 ± 2.6% Pose-
AE; 28.9 ± 9.3% Move-AE). All three methods produce cyclical
representations of gait within their latent spaces, but Move-AE
also cleanly separates between many individual gaits, again
without providing an explicit label (Figure 5).

4 DISCUSSION

Understanding the high dimensionality of human gait remains a
significant challenge but may yield an equally significant payoff.
Creating a useful low dimensional representation of gait may
serve to benefit both gait analysis and control of a device. Many
techniques for dimensionality reduction exist, though PCA has
remained popular for its ease of implementation and
interpretability. However, our results indicate that
autoencoders are better suited for reducing human movement
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FIGURE 2 | (A) For each dataset, a randomly chosen sample was reconstructed using PCA and Pose-AE. Pose-AE produced qualitatively improved poses over
PCA, though neither was able to reconstruct poses from natural movements dataset, instead electing to reconstruct amean standing pose. (B)RMSE of joint angles was
calculated for each dataset and method. Pose-AE shows a modest improvement over PCA.

FIGURE 3 | (A) Pose-AE captured more variation in the data than PCA for all three datasets. (B)Dimensional variance is more evenly distributed with Pose-AE than
PCA. The effect is most pronounced with higher dimension latent spaces. The largest dimension by variance has been highlighted blue to facilitate comparison across
PCA and Pose-AE.
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on both performance measures of reconstruction and Variance
Accounted For. Relationships with human gait features, and
biological data in general, is generally nonlinear. The
nonlinear activation function within neural networks enables
them to capture such relationships, whereas PCA cannot.
Nonlinear PCA methods like Kernel PCA may be better suited
than standard PCA for such tasks Mika et al. (1998).

We employed three datasets of increasing complexity. Flat
ground walking is the least complex, in that it only contains
cyclic steady-state gait. Stair walking is more complex, as it
contains upstairs and downstairs segments, and the transitions
in between. Natural movements are most complex, in that they
contain both cyclic movement and non-cyclic movements, with
a variety of actions being performed. As data becomes more
complex, the advantage of autoencoders over PCA is
diminished (Figure 2). This may be due to the tradeoff
between quantity and variety of movements within each
dataset, thus the autoencoder is impoverished of sufficient
examples of more complex movements from which to learn.
Thus, care should be taken to carefully curate the activities
within smaller datasets to achieve good dimensionality

reduction. For instance, composition of the training data
should be deliberately balanced to match the desired
performance on each example. Movements that appear
rarely will not affect the gradient sufficiently to achieve
adequate reconstruction, whereas movements that appear
too often will dominate the gradient at the expense of others.

Incorporating temporal context in the input to Move-AE
dramatically enhances its capability to discriminate between
movements and individual gait profiles. This is understandable
considering how given a full second of gait, or about one full gait
cycle, whatever differences that exist between individuals or
movements will be present within every input. This capability
is not afforded to standard PCA, which can only operate on
n-dimensional vectors, rather than mxn-dimensional matrices.
Interestingly, producing Move-AE also had some unintended
consequences. For instance, while performing the individual
identification task, it became apparent that half of subject 7’s
flat ground data was persistently embedded separate from all
others in the latent space. Upon visual inspection of the data, it
was apparent there was a minor sensor calibration or data
processing error that was small enough to escape detection

FIGURE 4 | The three panes display the best performing latent space of their respective method. The latent space is a visualization of the activations of the two
coding units in the bottleneck, or the first two principal components. The bottom-left pane shows the results of a movement classifier SVM trained on the latent spaces for
eachmethod. Error bars denote the varying performance from each of 10 runs for both autoencoders. The Move-AE latent space outperformed Pose-AE and PCA latent
spaces on classifying between flat ground and stair walking. Recall that in the Move-AE latent space, each point represents an entire movement. Flat ground
walking is embedded in a cyclical structure that is well separated from stair walking.
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until that moment (offending data was removed and all trials
repeated without it).

We show that it is possible to reliably classify movements and
some individuals using the Move-AE architecture. However,
without retraining the network on an equivalent dataset of
actual prosthesis users, it is unknown how effective such a
strategy may be in practice. Nevertheless, automating the
selection of modes, or perhaps gait parameters, reduces the
control burden on the users of mode-based prostheses, who
must perform unnatural motions with their prosthesis to select
the right mode for the terrain. We also show that Move-AE is
sensitive to individual gaits. These variations, arising from the
dynamic cost landscape of walking, are important to preserve.
This also portends that such a network will be able to capture the
dynamics of pathological or compensatory gait, embedding them
within discrete latent structures. However, organization of
individuals in the latent space is not necessarily meaningful -
sampling halfway between two individuals in the latent space may
not produce a pose or movement that is halfway between them in
euclidean space.

It should be noted that the aim of the classification task
presented here is not intended to maximize classification
performance of movements. There are other, better suited

methods to achieve high classification accuracy, when labelled
data is available. Rather, we designed the task to compare the
relative capacity of each dimensionality reduction method to
preserve valuable information like movement class or individual
gait. Future work is needed to determine how such methods
perform on unseen movements and individuals. Autoencoders in
particular tend to “de-noise” unseen data such that it better
resembles the data on which they were trained Vincent et al.
(2008).

Although dimensionality reduction techniques as described
here are powerful tools to simplify and analyze gait data, they are
not sufficient to achieve prosthetic control alone. An autoencoder
on movement data only serves to make sensor data more
palatable—it does not provide its own inference about the
data. For instance, the Move-AE architecture self-supervises to
embed movements in the latent space, but does not classify
without an additional classifier like an SVM. Our results show
that such learned embeddings can automatically separate
movements in the absence of any goal but reconstruction.
Future work is needed to move the application of these tools
from offline analysis to online integration with a controller. In a
practical, online scenario, it is still unknown the quantity, variety,
and richness of data required from an individual walker to train a

FIGURE 5 | The three panes display the best performing latent space of their respective method. The plotted data is colored by one of eight individual subjects. The
classification error for the best performing model is included in the top-right of each plot. The bottom-left pane shows the results of an individual-specific classifier SVM
trained on the latent spaces for each method. Note that the Move-AE latent space here is a well-performing outlier, though visual inspection of the other latent spaces
confirm the general behavior of separately embedding individuals.
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personalized Move-AE architecture to satisfaction towards a
given task, like movement classification. Indeed, this
discussion focuses on facilitation of “high-level” prosthetic
control, or mode selection, rather than “low-level” control
over moment to moment commands to the actuator which
remains critically important. Furthermore, our results may still
be replicable using raw inertial measurement unit data from a few
strategically placed sensors on the lower limbs, rather than the full
wearable motion capture system used here, in line with the work
by Geissinger and Asbeck (2020b).

We have demonstrated that autoencoders can generate
structured, interpretable latent spaces. This class of self-supervised
networks are able to learn without hand-crafted labels, making them
suitable to tackle complex problems like human movement. For
instance, latent representations of gait form cyclic structures
organized by phase, without human intervention to segment the
gait data. Though not presented here, the authors found that
distance to the center of the cyclic structure corresponds directly
with cadence—faster cadences form tighter rings, slower cadences
form larger ones. Contrary to the popular notion that neural
networks are a black box, autoencoders can produce structured
latent spaces, and thus could be incorporated into prosthetic
controllers, either to simplify incoming sensor data, or to
generate movement commands via sampling in the latent space.

Interpretation of latent spaces is fast becoming an important
topic of research as neural networks become more prevalent. It
should be noted that sampling from these latent spaces may
enable generation of individual-specific synthetic gait cycles. For
instance, sampling points from a Gaussian distribution centered
on the region where mid-swing is embedded in the latent space
may produce multiple variations of a mid-swing trajectory in the
decoder, as learned from training data. Further research is needed
to determine how best to create a latent space that lends itself to
sampling - as stated previously, distances within an autoencoder’s
latent space are not necessarily meaningful. Sampling meaningful
movements from the latent space is a non-trivial problem, in part
due to the difficulty in describing the latent space’s geometry, or
manifold. Application of adversarial or variational autoencoders,
which enforce additional distributional constraints on the latent
space, may be key to building sample-suitable latent spaces.

Useful representations of gait are a necessary ingredient for
leveraging the power of machine learning for prosthetic control.

This study shows how autoencoders may create such a
representation purely from data, and crucially, are capable of
handling temporal data.
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