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Despite improved methods of diagnosis and the development of different

treatments, mortality from lung cancer remains surprisingly high. Non-small

cell lung cancer (NSCLC) accounts for the large majority of lung cancer cases.

Therefore, it is important to review current methods of diagnosis and

treatments of NSCLC in the clinic and preclinic. In this review, we describe,

as a guide for clinicians, current diagnostic methods and therapies (such as

chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy,

immunotherapy, and combination therapy) for NSCLC.

KEYWORDS

NSCLC, diagnosis, chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic
therapy, immunotherapy
1 Introduction

Lung cancer, as a common malignant cancer, presents a serious threat to human life.

Lung cancers can be divided into NSCLC and small cell lung cancer (SCLC), based on

differences in histology and origin (1). NSCLC predominates, accounting for almost 85%,

of lung cancer cases. NSCLC is further subdivided into two main subtypes: lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). The two types

have different gene expression profiles, especially of NECTIN1, a cadherin biomarker (2).

In addition, LUSC proliferates faster than LUAD (3).

The causes of lung cancer are diverse, but smoking is considered to be the primary

reason. In some lung cancer patients with no smoking history, the disease can be attributed

to exposure to radon (222Rn), usually from building materials (4). The incidence of lung

cancer is also related to genetics and demographic characteristics (5). The link with
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demographic characteristics may be attributable to differences in

health care systems in different countries. For example, differences

in the physical examination of patients may affect the stage at

which lung cancer is diagnosed (the development of NSCLC can

be divided into four stages: I, II, III, and IV) (6). The main reason

for the high mortality rate among lung cancer patients is that only

15% of patients are diagnosed at an early stage (7), and in most

patients (70%) the disease is not diagnosed until it is at an

advanced stage, perhaps because symptoms are relatively slight

in the early stages, and patients may ignore them.

It appears that NSCLC does not metastasize in the early stages

and, therefore, surgery could extend the life of patients provided

the disease is diagnosed at this stage (8). However, surgery will not

benefit those patients, the majority, in whom the disease is

diagnosed at an advanced stage. Therefore, the low rate of

diagnosis of NSCLC in the early stages remains a problem.

The use of positron emission tomography (PET) could

increase the proportion of patients in whom lung cancer is

diagnosed in the early stages and thereby reduce lung cancer

mortality. The problem is how to increase the number of

patients who undergo PET. Common symptoms of lung

cancer, such as coughing, chest pain, and wheezing, are often

ignored by patients, and hemoptysis, although more likely to be

worrying to patients, is experienced by only 20% of lung cancer

patients (9). As a result, many patients miss out on the

opportunity for early diagnosis and effective treatment.

Treatments for lung cancer include chemotherapy,

chemoradiotherapy, targeted therapy, antiangiogenic therapy,

immunotherapy, and combination therapy. Treatment of stage

II–IV disease also involves adjuvant therapy and neoadjuvant

therapy, in addition to the therapies mentioned above. In some

cases, these therapies can be used to confirm the success or

otherwise of surgery or combined with surgery to give better

results. Besides, surgery is the main treatment for stage I disease.

In this review, we describe the biological features of lung cancer,

diagnostic methods, and drugs or other compounds currently used

in chemotherapy, chemoradiotherapy, targeted therapy,

antiangiogenic therapy, immunotherapy, and combination

therapy (Figure 1). We hope that this review will act as guidance

for the clinical treatment of lung cancer.
2 The biological features of
lung cancer

Lung cancer is a heterogeneous cancer, which means that the

tumor contains different subpopulations of cells. Heterogeneity

is correlated with chemoresistance and the probability of

metastasis (10). Diagnostic methods, therapeutic methods, and

the identification of novel biomarkers would also benefit from

the further study of lung cancer biology. It is therefore important

to summarize the biological features of lung cancer.
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2.1 Oncogene mutations in NSCLC
patients

Oncogene mutations are found in most NSCLC patients and,

therefore, targeted drugs are associated with fewer side effects,

higher response rates (RRs), and longer progression-free survival

(PFS) than cytotoxic drugs. A mutation in the gene coding for

epidermal growth factor receptor (EGFR) is common in NSCLC

patients (found in 10%–30% of patients), and downstream

signaling pathways such as MAPK/ERK, PI3K/AKT and Bax/

Bcl-2 are also potential targets (11). Almost 90% of EGFR

mutations in NSCLC patients are exon 19 deletions or L858R

substitutions in exon 21. In addition, mutation of the T790M

gene occurs in 50%–60% of NSCLC patients with the EGFR

mutation, and this mutation is associated with acquired

resistance (12). Acquired resistance to the EGFR tyrosine

kinase inhibitor (TKI) in NSCLC patients is correlated with

overexpression of osteopontin (OPN), upregulation of integrin

aVb3, and activation of downstream signaling pathways such as

FAK/AKT and ERK (13). Activation of the PI3K/AKT/mTOR

signaling pathway is also associated with acquired resistance to

EGFR TKIs in NSCLC patients (14). The PI3K/AKT/mTOR

signaling pathway is linked to the proliferation and invasion of

cancer cells, affecting the likelihood of success of chemotherapy.

Rearranged during transfection (RET) rearrangements are

found in 1%–2% of NSCLC patients, and the downstream

signaling pathways of RET, such as PI3K/AKT, JAK-STAT,

and RAS/MAPK, are associated with cell proliferation,

invasion, and migration (15, 16). MET mutations could result

in the abnormal expression of MET axis, and the MET/HGF

(hepatocyte growth factor) signal pathway play an important

role in the MET axis, and this signal pathway leads to tumor cell

migration, invasion, and metastasis (17) and are associated with

resistance to treatment with EGFR and vascular endothelial

growth factor receptor (VEGFR) inhibitor. Mutations in exon

14 are the most common MET mutations found in NSCLC

patients (18). The majority ofMET exon 14 mutations are point

mutations, but indels, insertions, and deletions are also

found (19).

Rearrangement of the anaplastic lymphoma kinase gene

(ALK) has been identified in 5%–6% of younger NSCLC

patients (20). Overexpression of ALK in A549 cells can induce

epithelial–mesenchymal transition (EMT), and increase

migration and invasion, phenomena that are correlated with

the upregulation of signal transducer and activator of

transcriptions 3 (STAT3) (21). Many NSCLC patients with an

ALK mutation develop drug resistance after taking drugs for a

few years. In the case of ALK inhibitors, the most common

mutation associated with acquired resistance is F1174L (22). In

addition, some studies have confirmed that drug resistance in

NSCLC is associated with signal transducer and activator of

transcriptions (STATs), especially the STAT3/ZEB1 signaling
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pathway (23). These findings are a reminder that combination

therapies targeting both ALK and STAT3 could perhaps

overcome the resistance associated with the use of

ALK inhibitors.

Mutations in the gene encoding human epidermal growth

factor receptor 2 (HER2) is the mutation of exon 20, and these

mutations are found in 2%–4% of NSCLC patients, especially

women, besides, the patients with HER2mutations easily appear

brain metastases (24). Activation of HER2 induces the

phosphorylation of tyrosine residues, leading to the activation

of downstream signaling pathways such as MEK/ERK and PI3K/

AKT, which in turn increases the migration and proliferation of

lung cancer cells (25). Around 4% of NSCLC patients have a

mutation in the B-Raf proto-oncogene (BRAF), but the V600E

mutation is present in only half of such patients, who as a result

are resistant to BRAF inhibitors (the V600E mutation is

associated with a better response to BRAF-targeted therapy)

(26). BRAFV600E mutation is usually accompanied by MAPK

signaling pathway activation, and, therefore, combination

therapy with two different drugs, one targeting BRAF and the

other targeting MEK (27), may give better results.

c-Ros oncogene 1 (ROS1) rearrangement is found in around

1%–2% of NSCLC patients (28). There are several different

ROS1 rearrangements, including CD74-ROS1, SLC34A2-ROS1,

YWHAE-ROS1, TFG-ROS1, and CEP85L-ROS1, but CD74-ROS1

(44%) is the most common ROS1 rearrangement found in

NSCLC patients (29). ROS1 is a kind of tyrosine kinase; its

ligand is neural epidermal growth factor-like 2 neural EGFL-like

2 (30). Just as the other oncogene we mentioned above, such as

HER2, BRAF, when ROS1 is activated by its ligands,

downstream signaling pathways such as the PI3K/AKT/

mTOR, JAK/STAT, and MAPK/ERK signaling pathways are

also activated, leading to the proliferation of lung cancer cells

and tumor invasion (31).
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Among NSCLC patients tested, 13% were found to have the

Kirsten rat sarcoma viral oncogene (KRAS) p.G12C mutation

(32). KRAS mutations, like mutations of other oncogenes, are

associated with drug resistance and poorer outcomes in

NSCLC (33).

KRAS mutations are also known to be present in 90% of

smokers. KRAS is related to inflammation, and KRAS mutation

is found in the most smokers, therefore, it may be some sort of

inflammatory reaction in lung cells by smoking (34). The drug

resistance induced by KRAS mutations is usually intrinsic.

However, KRAS mutations are heterogeneous, i.e., there is

more than one type, and different KRAS mutations lead to

activation of different downstream signaling pathways. KRAS

mutations do not result in changes in the phosphorylation of the

AKT signaling pathway (35).

Fusion of the neurotrophic tropomyosin receptor kinase

(NTRK) gene is a relatively rare oncogene mutation, which

occurs in less than 1% of NSCLC patients. The detection of

NTRK fusions relies on RNA-based next-generation sequencing

(NGS) (36). The downstream signaling pathways include the

MEK/ERK and PI3K/AKT signaling pathways. As mentioned

above, these signaling pathways are related to cancer cell

proliferation and migration, and the PI3K/AKT signaling

pathway is also involved in apoptosis, which is induced by

chemotherapy (36). In early-stage NSCLC with NTRK gene

fusions (Figure 2), patients have a high RR to TKIs (37).

Moreover, the immune checkpoint development also

benefits NSCLC patients. If the mutation in patients does not

concern the mutations above, then the programmed death ligand

1 (PD-L1) mutation maybe a better choice, but there are still

some limits, for example, the mutation of PD-L1 at least appears

50% mutation in the lung cancer patients (38). The combination

of programmed death 1 (PD-1) and PD-L1 would decrease

immune response; therefore, the tumor cells will escape the
FIGURE 1

The main causes and symptoms of lung cancer, as well as methods of diagnosis and therapies. The causes of lung cancer include smoking,
radon, genetics, and demographic characteristics. The symptoms of lung cancer including hemoptysis, coughing, chest pain, and wheezing.
Therapies include chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy, immunotherapy, and combination therapy.
Diagnostic methods include computed tomography (CT), positron emission tomography (PET), magnetic resonance imaging (MRI), tissue
biopsy, liquid biopsy, polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and next-
generation sequencing (NGS).
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surveillance of immune cells such as T cells. There are also some

studies reported that the EGFR mutation in NSCLC could

increase the expression of PD-L1 protein, and TKIs could

reduce the amount of PD-L1 protein, the signaling pathways

referring to this phenomenon are PI3K-AKT, STAT3, NF-kB,
and MEK-ERK signaling pathways (39). Furthermore, ALK and

KRAS mutations could improve the expression of PD-L1;

therefore, if the patients are harboring PD-L1 and EGFR or

ALK or KRAS at the same time, patients will have a higher RR

when the interaction between PD-1 and PD-L1 is blocked (40).

However, there is still no study that can verify the results for

NSCLC patients harboring several mutations at the same time.

The high PD-L1 expression is also associated with smoking, and

PD-L1 usually appears in the early stage of NSCLC, and could

become a biomarker in the diagnosis of lung cancer (41).

Apart from the targets mentioned above, there are also some

signaling pathways abnormally expressed in NSCLC that could

become new biomarkers in diagnosis and therapy, but these

signaling pathways still stand in the preclinical stage.
2.2 long non-coding RNAs, microRNAs,
and abnormal proteins in NSCLC

The long non-coding RNAs (lncRNAs) and microRNAs

(miRNAs) are non-coding RNAs existing in the cells, and

these non-coding RNAs are correlated with tumor progression

and tumor features, for example, its proliferation, migration,

invasion, resistance, and recurrence. In NSCLC, these non-

coding RNAs also show a more important role, and some

results in preclinical studies could give rise to new biomarkers

or targets in the diagnosis and treatment of NSCLC.
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2.2.1 lncRNAs and NSCLC
lncRNA H19 and miRNA-21 overexpress in the NSCLC

tumor, and these could become biomarkers in the diagnosis and

treatment of NSCLC (42). Circular RNAs (circRNAs)

hsa_circ_0058357 overexpress in NSCLC, and the abnormal

expression of hsa_circ_0058357 is associated with migration,

proliferation, and apoptosis through increasing AVL9

accompanied by the inhibition of miR-24-3p (43). LncRNA

SNHG14 is a cancer-promoting lncRNA, and it is upregulated

in the lung cancer tissue; lncRNA SNHG14 could promote the

migration, proliferation, and invasion of NSCLC cells; and

lncRNA SNHG14 could inhibit the miR-206 expression;

therefore, the downstream targets of miR-206 such as G6PD

are upregulated (44). lncRNA ABHD11-AS1 is overexpressed in

NSCLC, and it could upgrade the Warburg effect and

proliferation of NSCLC. There is m6 A methyltransferase-like

3 (METTL3) in the upstream of lncRNA ABHD11-AS1, which

could promote the expression of ABHD11-AS1, and the

prognosis for NSCLC patients will get worse (45). lncRNA

DUXAP8, an oncogenic lncRNA, could induce the

proliferation, EMT, and aerobic glycolysis in lung cancer cells.

Its effects will be studied further. Moreover, the overexpression

of lncRNA DUXAP8 in NSCLC patients is correlated with the

poor prognosis. The mechanisms here are diverse including

transcriptional, post-transcriptional, and epigenetic regulation

(46). The overexpression of lncRNA CCDC144NL-AS1 in

NSCLC patients could promote the proliferation, migration,

and invasion of NSCLC cells (H1299, A549, NCI-H650, and

HCC827 cells). Mechanically, lncRNA CCDC144NL-AS1 could

directly bind to miR-490-3p (47). There are also some other

examples showing that lncRNA could be a biomarker in NSCLC,

one is LncRNA HOTAIR that could promote the proliferation,
FIGURE 2

Oncogene mutations in NSCLC patients. Various oncogene mutations are found in NSCLC patients: 10%–30% of NSCLC patients exhibit EGFR
mutations, 1%–2% have RET rearrangements, 5% have a MET mutation, 5%–6% have an ALK rearrangement, 2%–4% have a HER2 mutation, 4%
have a BRAF mutation, 1%–2% have ROS1 rearrangements, 13% have the KRAS p.G12C mutation, and 1% have NTRK gene fusions.
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invasion, and migration in NSCLC cells by regulating the CCL22

signaling pathway (48). lncRNA UFC1 could promote the

progression of NSCLC by downregulating the expression of

PTEN through zeste homolog 2 (EZH2) (49). LncRNA

WTAPP1 could promote the invasion and migration of

NSCLC cells by suppressing the expression of lncRNA

HAND2-AS1 (50).

In addition, there are also some lncRNAs that play an

inhibitor role in the progression of NSCLC. LncRNA NBR2 is

downregulated in NSCLC patients, and the overexpression of

lncRNA NBR2 could inhibit the migration of lung cancer cells

(SPC-A1 cells) and the Notch signaling pathways are also

suppressed, and the EMT-related genes are also reduced (51).

lncRNA LINC00261 is downregulated in the lung cancer tissues,

and the overexpression of lncRNA LINC00261 in A549 and

SPC-A1 cells would inhibit metastasis in vitro and in vivo

through regulating the miR-1269a/FOXO1 signaling pathway

(52). There is a novel lncRNA BRCAT54 that is overexpressed in

the lung cancer tissue, but this lncRNA benefits the patients, and

its knockdown could promote the migration, proliferation, and

apoptosis inhibition of lung cancer cells, which concern the

regulation of JAK-STAT and calcium-related signaling

pathways (53).

2.2.2 microRNAs and NSCLC
The microRNA functions in NSCLC are different. Some

microRNAs show promotion in the progression of lung cancer,

and others show inhibition in the progression of lung cancer.

Radiotherapy is useful for most NSCLC patients in the early

stage, but radiotherapy is usually accompanied by acquired

resistance. Acquired resistance has been proven to be correlated

with the overexpression of miR-410 in NSCLC. Mechanically, miR-

410 could induce EMT and target the PTEN/PI3K/mTOR signaling

pathway (54). miR-10b aberrantly expresses in multiple malignant

cancers, such as breast cancer, esophageal cancer, pancreatic cancer,

and lung cancer, and it is related to proliferation and invasion (55).

miRNA-21 is overexpressed in NSCLC and is related to the poor

survival and prognosis of patients, especially with miRNA-21 being

correlated with the radiation resistance of NSCLC. Therefore, the

inhibition of miRNA-21 in NSCLC cells (A549 cells) could suppress

proliferation and improve sensitivity to radiation through

increasing apoptosis (56). miR-142-3p, on the one hand, could

improve the sensitivity of NSCLC by downregulating the high-

mobility group box-1 (HMGB1) protein and inhibiting autophagy.

On the other hand, it could also play as an oncogene, and its

overexpression is correlated with the poor outcome of NSCLC

patients in clinical treatment, and promotes the migration and

proliferation of NSCLC cells by downregulating TGFbR1 (57).

In the NSCLC tissues, miR-936 is at a low expression, and

the overexpression of miR-936 could block the cell cycle, and

inhibit the proliferation and invasion of NSCLC cells. At the

same time, the downstream target E2F transcription factor 2
Frontiers in Oncology 05
(E2F2) that could promote the invasion of NSCLC is

downregulated (58). The overexpression of miR-221–3p could

decrease the resistance of paclitaxel by inducing apoptosis

accompanied by the inhibition of MDM2/p53 signaling

pathway (59). miR-340 is at a lower expression of NSCLC

tissues, and its overexpression could inhibit the migration and

invasion of NSCLC cells through targeting RAB27B. In addition,

the overexpression of miR-340 could suppress proliferation and

induce apoptosis through regulating p27 (60). The level of

miRNA-597 in the NSCLC tissues is lower than the normal

tissue, and the downregulated miRNA-597 is related to the stage

and poor prognosis of NSCLC patients. The overexpression of

miRNA-597 could inhibit progression by regulating CDK2 (61).

miR-4732-5p expression is inhibited in NSCLC; its

downregulation is related to metastasis, late stage, and poor

outcome of NSCLC patients. Its overexpression could suppress

the proliferation, migration, and invasion of NSCLC cells (A549,

HCC827, H23, and H1975 cells) by regulating TSPAN13 (also

known as NET-6 and TM4SF13) that has been proven to inhibit

proliferation and invasion in breast cancer (62, 63).

2.2.3 Abnormal proteins and NSCLC
There are also some proteins that overexpress in the NSCLC

patients, which could become new targets in clinical trials.

Fibulin2 (FBLN2) is decreased in the lung cancer cell lines,

and the overexpression of FBLN2 would inhibit the activation of

MAPK/ERK and AKT/mTOR signaling pathways, accompanied

by the decreased migration and invasion of cells (64). This

means that FBLN2 could be a potential biomarker for

detecting NSCLC in the clinic. The abnormal expression of

nuclear factor kappa B (NF-kb) is correlated with

chemoresistance and radio-resistance in lung cancer therapy,

and the inhibition of NF-kb signaling pathway will decrease the

resistance given by chemotherapy and radiotherapy (65). NF-kb
is related to multi-signaling pathways such as apoptosis,

angiogenesis, and inflammation; therefore, NF-kb is a

relatively difficult oncogenic mutation compared with other

oncogene mutations such as EGFR and KRAS (66). Nuclear

factor erythroid 2-related factor 2 (Nrf2) is increased and Keap1

in cytoplasmic is decreased, and these changes in Nrf2 and

Keap1 are correlated with the poor outcome of NSCLC patients,

and increased Nrf2 may contribute to chemoresistance when

using platinum-related chemotherapy (67). Almost 25% of

patients with NSCLC appear to have brain metastases, and

there are several aberrant proteins arising in this process.

NFATc1 and NFATc3 are listed in these biomarkers, and the

expression of these two proteins is decreased in patients with

brain metastases, at the same time, the downstream targets such

as IL-11 (correlated with JAK-STAT3 signaling pathways),

CDH5 (correlated with metastasis), and CCL2 (correlated with

proliferation and apoptosis) are also regulated by NFATc1 and

NFATc3 (68). Tripartite motif (TRIM) protein is a type of
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protein correlated with multiple malignant cancers including

lung cancer, and takes part in various signaling pathways

regulation including p53, NF-kB, and PI3K/AKT. In NSCLC,

TRIM could play as an oncogene or suppressor. As disintegrins

and metalloproteinases with thrombospondin motifs

(ADAMTS8) are downregulated in NSCLC cells (H460 and

A549 cells), the overexpression of ADAMTS8 could inhibit

proliferation and induce apoptosis of lung cancer cells.

Mechanically, the vascular endothelial growth factor A

(VEGFA) and CD31 are suppressed (69). Neurexophilin 4

(NXPH4) is overexpressed in NSCLC tissues, and its

knockdown could suppress the proliferation and migration of

NSCLC cells (A549, H226, H2106, and HCC827 cell line), and

trigger cell cycle arrest in phase S1. EZH2 was in the upstream of

NXPH4, and could activate the expression of NXPH4; then, the

activated NXPH4 could downregulate the expression of

CDKN2A, and the downregulated CDKN2A could regulate

the cyclinD-CDK4/6-pRB-E2F signaling pathway resulting in

the cell cycle activation and the promotion of proliferation and

migration of lung cancer cells (70).
2.3 CSCs and lung cancer

Cancer stem cells (CSCs) are considered to be the root of

cancer, and evidence confirm that CSCs are related to

chemoresistance and recurrence and the survival of lung

cancer patients. Therefore, there are many compounds

targeting CSCs in preclinical or clinical trials. There are also

other strategies that inhibit the stemness of cancer cells. More

specifically, targeting signaling pathways such as Wnt, hippo,

and notch could inhibit the stemness of cancer cells or the

biomarkers correlated with CSCs (71). CSCs also exist in

NSCLC, and lung cancers also have the feature of stemness;

therefore, these facts confirm that targeting CSCs in NSCLC is

crucial (72, 73).

Lung cancer stem cells (LCSCs) with high chemo-resistance

were obtained from the NSCLC patients; the subpopulation of

LCSCs show self-renewal, resistance, invasion, and tumorigenic

potential in the in vitro experiments, and the CDKN1A, ITGA6,

and SNAI1that were selected by different expression levels between

LCSCs and the adherent-cultured cells could become biomarkers

for indicating the different stages of lung cancer in patients (74). The

LCSC biomarkers in humans include CD133+, CD90+, CD44+,

CD87+, ABCG2, SP, and ALDH (75). Forkhead box C1 (FOXC1) is

correlated with the CSC features, and is elevated in NSCLC. The

knockdown of FOXC1 could decrease the subpopulation of

CD133+ cells, and the associated genes, such as NANOG, ABCG2,

SOX2, and Oct4, are also downregulated, and the chemo-sensitivity

for cisplatin, docetaxel, and gefitinib is also increased (76). m6A

demethylase ALKBH5 is upregulated in LCSCs, and its knockdown
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could contribute to the E-cadherin upregulation and stem markers

such as NANOG and Oct4 are downregulated. Mechanically, there

is a positive relationship between ALKBH5 and p53, and the

knockdown of p53 would make ALKBH5 downregulate, and the

tumor formation ability and invasion are also suppressed (77).

Nerve injury-induced protein 1 (Ninj1) is upregulated in NSCLC

cells and tissues; the subpopulation of Ninj1high LCSCs exhibits the

CSC-related features such as the increase of ALDH+ subpopulation,

sphere-forming ability, and stemness markers; and the downstream

signaling pathway Wnt/b-Catenin is also activated by Frizzled2-

LRP6 assembly (78). Histamine N-methyltransferase (HNMT) is

overexpressed in NSCLC tissues as found in clinical trials, and is

related to a poor prognosis for patients. Moreover, HNMT has a

positive relationship with HER2 that could improve the features of

CSCs. The knockdown of HNMT could decrease the tumorsphere

formation ability, and reduce the expression of CSC markers such

as NANOG, CD133, OCT4, and KLF4 through the Nrf2/HO-1/

HER2 signaling pathway increasing the accumulation of reactive

oxygen species (ROS) (79). The stemness markers ALDH and

CD133 are well-verified in LCSCs; p53 is a cancer suppressor, the

mutation which is found in 47% of NSCLC cases, and the

knockdown of the three genes could reduce the CSC

characteristics and prolong the survival of NSCLC patients (80).

This study is a reminder that the stemness markers may have some

therapeutic effect in NSCLC patients. Heat shock protein 90 (hsp90)

inhibitors show better results in clinical use, but in therapy, there is

resistance that maybe correlated with CSCs in lung cancer.

However, there is a new Hsp90 inhibitor named NCT-80 that

could reverse CSCs resulting to resistance by regulating STAT3/

Wnt/b-catenin signaling pathways (81). RNF168, a E3 ubiquitin

ligase, is downregulated in lung adenocarcinoma, but upregulated in

squamous cell carcinoma; the overexpression of RNF168 could

inhibit the CSC features (such as sphere-formation ability, stemness

markers ALDH) of NSCLC cells. Mechanically, the RNF168 could

ubiquitylate RhoC and cause its degradation (82). Non-muscle

myosin heavy chain 9 (MYH9) is upregulated in lung cancer, and

correlated with the worst prognosis in NSCLC patients, and the

overexpression of MYH9 in lung cancer cells could improve the

expression of stemness markers (such as SOX2, OCT4, Nanog,

CD133, and CD44) and sphere-formation ability by regulating the

mTOR signaling pathway (83). The Orai3 channel is a calcium

channel related to the chemoresistance of lung cancer, and the

overexpression of Orai3 could improve metastasis in NSCLC.

LCSCs, derived from NSCLC cells with cisplatin resistance, has a

higher expression of Orai3, and the silence of Orai3 could worsen

metastasis, accompanied by a sensitivity to cisplatin. Moreover,

stemness markers such as Sox2 reduced through regulating the

PI3K/AKT signaling pathway (84).

Overall, there are still many stemness markers of NSCLC

studied in the preclinical and clinical trials, and the development

of small molecular markers could become the new targets or

diagnostic markers for the different stages of lung cancer.
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3 The diagnosis of lung cancer

Except for the symptom of coughing appearing in the early

stage of lung cancer, most lung cancer patients are asymptomatic

in the early stage; therefore, early diagnosis and treatment could

be missed. The development of technology in diagnosis could

save majority of patients and could prolong their lives.

Diagnostic methods mainly include image test, biopsy test, and

biomarker test.
3.1 Image test
Image tests, such as computed tomography (CT), PET scan,

and magnetic resonance imaging (MRI) scan, play an important

role in the diagnosis of lung cancer. CT is the most common

diagnostic means in lung cancer, which could determine tumor

size (≥ 6 mm) and the number of nodules in lung cancer

patients. It also could test the metastases, especially the

mediastinal lymph nodes in the lung cancer patients (85–87).

CT could also detect if the nodules are benign or malignant, but

for further determination, biopsy is still needed (88). PET has

more sensitivity and specificity than CT because the PET scan

uses fluorine-18 fluorodeoxyglucose (F-18 FDG) as the

biomarkers. It could locate in the malignant lesions with

aberrant glucose metabolism (89). PET could also test if the

lesions are benign or malignant, and it also differentiates the

different types and staging (especially the distant metastases) of

lung cancer by the uptake degree of FDG (90, 91). MRI scan has

been used in NSCLC patients with brain and bone metastases

because the dye used in MRI scan is not suitable for tissues that

can move. With the development of high-performance gradient

systems, phased-array receiver coil, and optimized imaging

sequences, MRI could also detect nodules in lung tissues; the

lowest size of nodules that can be detected is 3 mm (92).
3.1.2 Biopsy test
Furthermore, the identification of lung cancer also needs

biopsy (93), which could be tissue or liquid biopsy. Tissue biopsy

is a type of invasive mean, and liquid biopsy is a non- invasive

mean. Tissue biopsy is the gold standard to test lung cancer in

the clinic. The determination of different histological types of

lung cancer relies on tissue biopsy (94). Tissue biopsy could also

test the mutations in lung cancer, but lung biopsy usually has

complications (95). With the limitations of liquid biopsy, its

application is restricted. In liquid biopsy, the sample used is the

peripheral blood of the NSCLC patients, and the common

testing indicators are circulating tumor DNA (ctDNA),

circulating tumor cells (CTCS), and exosomes (96). In

addition, it could also detect miRNA, circRNAs, circulating

tumor vascular endothelial cells (CTECs), and tumor-educated

blood platelets (TEPs) (97). Compared with tissue biopsy, liquid

biopsy is more sensitive, effective, practical, and acceptable, and

it could provide different mutations in the tumor (98).
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3.1.3 Biomarker test
Regarding the development of targeted therapy in NSCLC, if

patients are diagnosed with NSCLC, then they are advised to

take molecular testing to verify possible mutations. The methods

are diverse. For example, polymerase chain reaction (PCR) could

identify signal gene mutation, mostly used in determining the

mutation of EGFR in the clinic (99). Fluorescence in situ

hybridization (FISH) was approved by the food and drug

administration (FDA) to test ALK rearrangements by fixing

the tissue in formalin and embedding in paraffin (20). FISH

could also diagnose the aberrant expression of ROS1, RET,

HER2, and MET (100). Immunohistochemistry (IHC) analysis

is suitable for testing the mutations of PD-L1 (approved by

FDA), ROS1, EGFR, BRAF-V600E, and RET (101). Moreover,

IHC could be used in testing the mutation of ALK (approved by

FDA) (102). NGS is suitable for almost all of mutations

appearing in the NSCLC, such as EGFR, RET, MET, ALK,

HER2, BRAF, ROS1, KRAS, and NTRK, also including some

new biomarkers such as PIK3CA (103). The NGS efficiency is

high, the needed sample is small, and the cost is relatively low;

therefore, there are more applications of NGS in the clinic.

The development of diagnostic methods in lung cancer

(Table 1) could help most patients diagnosed in the early

stage; therefore, the treatments for lung cancer could work.
4 Treatments for lung cancer

4.1 Chemotherapy and
chemoradiotherapy

4.1.1 Chemotherapy
Before targeted therapy, chemotherapy dominated the clinical

treatment for lung cancer. After the gene types of NSCLC have

been identified in the clinic, chemotherapy was gradually replaced

by targeted therapy, but chemotherapy also concerns cisplatin

combination therapy. Currently, chemotherapy in NSCLC mostly

involves cisplatin and carboplatin plus gemcitabine, taxanes, and

pemetrexed plus some targeted therapy drugs such as VEGFR

inhibitor (bevacizumab) or EGFR inhibitor (erlotinib) (104). The

mechanism of chemotherapy is diverse. Cisplatin, carboplatin,

and gemcitabine could disturb the DNA repair system, create

DNA damage, and induce apoptosis in the cancer cell (105, 106).

Taxanes could interfere with microtubule dynamics, trigger cell

cycle arrest, and induce apoptosis (107, 108). Pemetrexed, an

antifolate drug, could cause cell cycle arrest in the S phase (109).

The limitations of chemotherapy in lung cancer treatment

mainly involve intrinsic resistance even though the compounds

could have some effects at the first early treatment, but the tumor

can acquire resistance rapidly (110). This disturbs the process of

chemotherapy in the lung cancer treatment. There are various

mechanisms of resistance in lung cancer. CSCs are correlated

with the resistance of chemotherapy and radiation therapy as
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some compounds directly targeting CSCs could reduce the

resistance in lung cancer therapy and improve the outcome of

chemotherapy and radiosensitivity. The compounds target

CSCs, mostly targeting the representative signaling pathways

in the CSCs, such as Notch, MYC. RO4929097 (an inhibitor of

Notch signaling pathway, g-secretase inhibitor) combined with

erlotinib could improve the efficiency of erlotinib in advanced

NSCLC with chemoresistance and the PFS was up to 5 years

(NCT01193881 (first posted: 2 September 2010), NCT01193868

(first posted: 2 September 2010)). In preclinical research,

sulforaphane could inhibit the properties of LCSCs, such as

sphere-forming ability, biomarkers of LCSCs, which could

combine with cisplatin and doxorubicin to reduce the

chemoresistance of NSCLC (111). Additionally, there are also

some signaling pathways related to the resistance of lung cancer,

which could provide a combined strategy for chemotherapy to

overcome the resistance further. For example, Acetyl-11-keto-b-
boswellic acid (AKBA) could improve the sensitivity of cisplatin

in NSCLC through targeting P21, which maybe correlated with

the increase of apoptosis and the inhibition of autophagy (112).

This study reminds us that AKBA could become a new

combination therapy in the clinic, even though it is still in

preclinical research. The regulation of cell death such as

autophagy, apoptosis, and ferroptosis could provide a new

perspective to reducing resistance in chemotherapy (71).

Moreover, chemotherapy and radiotherapy have a function

in neoadjuvant or adjuvant therapy in stage III NSCLC patients.

Chemotherapy could help ensure that surgery goes well and

could also serve as supplement after surgery (113). For example,

patients with nodal metastases after surgery could benefit from

adjuvant cisplatin-based therapy, and induction therapy could

serve as a precondition for surgery (114, 115).

4.1.2 Chemoradiotherapy
Radiotherapy is usually used in the local control of different

stages of lung cancer, especially stage III unresectable NSCLC,

which accounts for 30% in NSCLC patients (104). Moreover

because of the development of four-dimensional computed

tomography (4DCT), stereotactic body radiotherapy (SBRT),
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and intensity-modulated radiotherapy (IMRT), the side effects of

radiotherapy are reduced (116). However, even though

radiotherapy is the standard therapy for stage III NSCLC

patients, the survival rate of patients has not improved. After

the application of sequential radiotherapy to patients, the overall

survival (OS) improved, but elderly patients still have not

benefited from it. Therefore, combination therapy with

radiotherapy may be of benefit to diverse patients with

different states of health (117).

The mechanism of radiotherapy is mainly the damage of DNA,

and damaged DNA could induce immune responses in the lung

cancer; therefore, the combination therapy of radiotherapy and

immunotherapy could produce a better result in the treatment of

lung cancer (118). This combination has been verified by clinical

trials. For example, in a phase III trial (NCT02125461 (first posted:

29 April 2014)), the conventional chemoradiotherapy (platinum-

based chemotherapy and radiotherapy) plus durvalumab (an

immune checkpoint inhibitor of PD-L1) could significantly

prolong OS (up to 4 years) in stage III NSCLC patients

compared with chemoradiotherapy alone, and the PFS of patients

was also up to 3 years (119).

Chemoradiotherapy (CRT) mostly adjusts to the limited-

stage SCLC. In addition, CRT also offers benefit for the

lung cancer without metastasis. The chemotherapy in

chemoradiotherapy generally includes cisplatin–etoposide

(120) and carboplatin plus etoposide (121).
4.2 Targeted therapy

The lung cancer is driven by mutation of multiple

oncogenes, the targetable alterations in the clinic provide

probability for targeted therapy (122). In order to conduct

targeted therapy in lung cancer patients, the molecular

mutations in the tumor must be confirmed by diagnostic

assays (123). The development of NGS provides a method to

test the mutations appearing in lung cancer patients, which

could help them get precision and personalized treatment in the

clinic (124).
TABLE 1 Diagnostic methods in lung cancer.

Diagnostic method Details

Image test CT Determines the size (≥ 6 mm) and number of nodules

PET scan With more sensitivity and specificity than CT, using F-18 FDG

MRI Used in NSCLC patients with brain and bone metastases, the lowest size of nodules could be 3 mm

Biopsy test Tissue biopsy Invasive mean, could test mutations

Liquid biopsy Non-invasive mean, testing indicators: ctDNA, CTCS, miRNA, circRNAs, CTECs, TEPs, and exosomes

Biomarker test PCR Determines the mutation of EGFR

FISH Tests the mutation of ALK, ROS1, RET, HER2, and MET

IHC Tests the mutation of PD-L1, ROS1, EGFR, BRAF-V600E, ALK, and RET

NGS Tests the mutation of EGFR, RET, MET, ALK, HER2, BRAF, ROS1, KRAS, PIK3CA, and NTRK
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4.2.1 Drugs approved by FDA
The targets that have drugs approved by FDA include EGFR

(gefitinib (brand name: Iressa, company: ASTRAZENECA,

London, the UK), erlotinib (brand name: Tarceva, company:

OSI PHARMS, Ardsley, the USA), afatinib (brand name:

Gilotrif, company: BOEHRINGER INGELHEIM, southwest

Washington, the USA), dacomitinib (brand name: Vizimpro,

company: PFIZER, New York City, the USA) and osimertinib

(brand name: Tagrisso, company: ASTRAZENECA,London, the

UK)),ALK (crizotinib (brand name: Xalkori, company: PF PRISM

CV, Netherlands), alectinib (brand name: Alecensa, company:

HOFFMANN-LA ROCHE, Basel, Switzerland), brigatinib (brand

name: Alunbrig, company: TAKEDA PHARMS USA, Lexington,

the USA), ceritinib (brand name: Zykadia, company: NOVARTIS,

Basel, Switzerland), and lorlatinib (brand name: Lorbrena,

location and company: PFIZER, New York City, the USA),

ROS1 (crizotinib (brand name: Xalkori, company: PF PRISM

CV, Netherlands), lorlatinib (brand name: Lorbrena, company:

PFIZER, New York City, the USA), entrectinib (brand name:

Rozlytrek, company: GENENTECH INC, Pennsylvania, the US)

and brigatinib (brand name: Alunbrig, company: TAKEDA

PHARMS USA, the USA), RET (pralsetinib (brand name:

Gavreto, company: GENENTECH INC, Pennsylvania, the US)

and selpercatinib (brand name: Retevmo, company: LOXO

ONCOLOGY INC, Massachusetts, the USA)) (123, 125–127).

Some targets such asHER2, KRAS, BRAF, NTRK, andMET in the

clinical trials benefit from the development of genomic profiling

(128). The drugs target HER2 mainly including TKIs (pyrotinib

and tucatinib), mono-antibody (trastuzumab), and antibody–drug

conjugates (trastuzumab deruxtecan) (129, 130), target KRAS

contain adagrasib (MRTX849) and sotorasib (AMG510) (122),

target BRAF (dabrafenib plus trametinib) (NCT04452877 (first

posted: 1 July 2020)), target NTRK (larotrectinib and entrectinib)

(NCT02576431 (first posted: 15 October 2015), NCT02568267 (first

posted: 5 October 2015)), and target MET (crizotinib)

(NCT04084717 (first posted: 10 September 2019)). The drugs

approved by FDA significantly improved the OS of patients,

such as gefitinib that improved the median PFS (mPFS) by

almost 10.8 months, erlotinib increased mPFS by nearly 14

months, afatinib improved PFS by approximately 48 months,

and dacomitinib increased mPFS up to 14.7 months (131–133).

The mPFS of patients after taking osimertinib increased 18

months (134). The mPFS of patients with ALK-positive or ROS-

1-positive NSCLCwas increased 8.2 months after taking crizotinib

and the OS was up to 114 months after taking lorlatinib (135,

136). The mPFS of ALK-positive metastatic NSCLC patients

improved by 34.8 months after taking alectinib, and 7.8 months

for ceritinib (135, 137). Brigatinib for NSCLC patients with ALK-

positive, ROS-1-positive, or EGFR mutation-positive could also

improve PFS by almost 11.0 months (138). Pralsetinib and

selpercatinib for NSCLC patients with metastatic RET fusion-

positive could also improve mPFS by almost 17.1 months and 16.5

months, respectively (139).
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4.2.2 Drugs still in preclinical and clinical trials
There are some drugs that are still in clinical trials, but also

show significant effects on prolonging the OS of NSCLC

patients. These drugs could give more hope to patients. For

example, pyrotinib for advanced NSCLC with HER2 mutation

was proved to prolong the PFS of patients for 6.9 months and the

median OS for 14.4 months in clinical trial (NCT02834936 (first

posted: 15 July 2016)). Moreover, the new biomarkers found in

the preclinical stage also provide targets for the treatment of lung

cancer, for example, the mutations of the PIK3CA gene (140)

and overexpression of VEGF in lung cancer driven by

smoking (141).

Even though targeted therapy could produce high RR and

improve the OS of patients, the special targets, such as EGFR,

ALK, and ROS1, only account for a very small part (<20%) in the

lung cancer patients (142). Hence, there is an urgency to develop

more nonspecific therapies so they can be used to treat more

lung cancer patients. The high cost of targeted therapy in the

clinical treatment of lung cancer still limits its usage (143).

Additionally, there are also some questions such as chemo-

resistance in clinical therapy with the wide use of targeted drugs.

The mechanism of acquired resistance in NSCLC after treatment

with EGFR TKIs for several months mainly includes the

hepatocyte growth-factor receptor amplification. Currently,

deoxypodophyllotoxin (DPT) has been reported to reduce the

resistance of HCC827GR cells by targeting EGFR and the

hepatocyte growth-factor receptor, and induce apoptosis. This

study could provide a combination therapy for the use of EGFR

TKIs to reduce acquired resistance in the clinic (144).

Furthermore, there are other therapies combined with targeted

drugs that are in clinical trial.

The combination of erlotinib (an EGFR inhibitor) and

bevacizumab (a monoclonal antibody targeting VEGF) could

prolong the PFS of NSCLC patients (NCT02759614 (first posted:

3 May 2016)) (145). This reveals the probability of VEGF and

EGFR double inhibition in the untreated metastatic EGFR-

mutated NSCLC. Apatinib (a VEGFR inhibitor) plus gefitinib

(a first-generation EGFR TKI) could prolong the mPFS for 19.2

months in advanced NSCLC with EGFR mutation, but this

combination therapy also has some side effects and the quality

of life (QoL) did not change (NCT02824458 (first posted: 6 July

2016) (146). The use of osimertinib (a third generation of EGFR

TKI) is usually accompanied by chemo-resistance in the

terminal treatment of advanced EGFR-mutated NSCLC

patients; the reason maybe because the second-site mutations

appear in the EGFR. Therefore, osimertinib plus dacomitinib (a

pan-HER inhibitor) could reduce drug resistance appearing in

therapy, in a phase I/II trial (NCT03810807 (first posted: 22

January 2019)) (147). Moreover, the combination of osimertinib

and navitoclax (an inhibitor of BCL-2 that could increase

apoptosis and reduce chemo-resistance) was feasible in

patients with EGFR-mutated NSCLC in a phase IB trial

(NCT02520778 (first posted: 13 August 2015)) (148). The
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inhibitors targeting KRAS mostly through targeting KRAS p.

G12c, for example, AMG510 and MRTX849 are still in the

clinical study (149). AMG15 was used to treat patients with

advanced metastatic NSCLC patients with KRAS p. G12c

mutation in a phase 3 study (NCT04303780, first posted: 11

March 2020). MRTX849 showed better results in NSCLC

patients, but had more side effects compared with AMG510.

However, for clinical studies such as NCT04613596 (first posted:

3 November 2020), NCT04685135 (first posted: 28 December

2020), and NCT04330664 (first posted: 1 April 2020) results are

yet to be obtained. AMG510 had already been approved by FDA.

ARS-1620, an inhibitor of KRAS p. G12c is still in the preclinical

stage but shows better anti-cancer ability in NSCLC through

targeting his95 amino acid on KRAS p. G12c (150).

However, there are also some combination therapies that did

not reach the expected results. For example, the combination of

binimetinib (a MEK inhibitor), cisplatin, and pemetrexed did

not improve anti-tumor activity compared with the

chemotherapy of cisplatin and pemetrexed in advanced

NSCLC with KRAS mutation (151). In a phase II study

(NCT03133546 (first posted: 28 April 2017)), the combination

of osimertinib (an EGFR TKI) and bevacizumab (a monoclonal

antibody targeting VEGF) did not prolong the PFS in patients

with advanced NSCLC with EGFR and T790M mutations;

instead, the side effects increased (152). However, these trials

also provide a guidance for clinical therapy (Table 2).
4.3 Antiangiogenic therapy

The abnormal growth of tumor is always accompanied by

angiogenesis to supply nutrition for the cancer (153). Molecular

markers such as hypoxia-inducible factor (HIF), vascular

endothelial growth factor (VEGF), and VEGF receptor

(VEGFR) play an important role in this process, and the most

used targets are VEGF and VEGFR in cancer therapy (154). In

addition, VEGF in the tumor microenvironment (TME) could

inhibit the immune reaction of the immune cells. Therefore,

VEGF inhibitors could also increase the capacity of immune cells

(155). This reminds us that antiangiogenic therapy could

combine with immunotherapy to benefit cancer patients. In

clinical therapy, using antiangiogenic strategy usually involves

two ways, namely, using the antibody to block the reaction

between VEGF and VEGFR and using TKIs to inhibit the

VEGFR and corresponding signaling pathways (156).

Bevacizumab (brand names: Avastin, Mvasi, Zirabev,

company: GENENTECH, AMGEN INC, PFIZER INC), a

monoclonal antibody targeting VEGF, has been approved by

FDA and could play a role in the NSCLC treatment. The most

widely explored use of bevacizumab is in combination therapy.

Bevacizumab could increase the PFS (up for 4.4 months) and

median OS compared with chemotherapy, but there is no

difference of OS between the two therapies (NCT00318136
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(first posted: 26 April 2006), NCT00806923 (first posted: 11

December 2008)) , and the combination therapy of

antiangiogenic therapy plus chemotherapy (bevacizumab plus

cisplatin and gemcitabine) could prolong the median OS more

than 13 months (157). Bevacizumab and atezolizumab are

confirmed to be a potential therapy for the non-squamous

NSCLC patients with higher PD-L1 expression (≥50%) but

without EGFR/ALK/ROS1 mutations, in a phase II study

(NCT03836066 (first posted: 11 February 2019)) (158). In a

phase III trial (NCT02366143 (first posted: 19 February 2015)),

bevacizumab combined with immunotherapy atezolizumab and

chemotherapy (carboplatin and paclitaxel) could act as the first-

line treatment in NSCLC patients with KRAS and STK11

mutations and/or STK11, KEAP1, TP53 mutations and/or high

PD-L1 expression (≥50%) (159), and the PFS of patients was up

to 29 months and the OS of patients was prolonged by almost 53

months. Moreover, the biosimilars of bevacizumab, such as

FKB238 and LY01008 have also shown the same efficiency and

safety in non-squamous NSCLC patients, and the patients’ PFS

and OS were almost 30 months after taking these drugs. These

trials were in the phase III (NCT02810457 (first posted: 23 June

2016), NCT03533127 (first posted: 22 May 2018)) (160, 161).

VEGFR includes VEGFR1, VEGFR2, and VEGFR3. Even

though VEGFR1 and VEGFR2 correlated with angiogenesis, the

affinity between VEGFR1 and VEGF is relatively weak. In

addition, VEGFR3 regulates lymphangiogenesis (162, 163).

Therefore, the target used in anti-angiogenesis in the clinic is

usually VEGFR2. Apatinib, a VEGFR2 TKI, has been confirmed

to significantly increase the PFS in advanced NSCLC patients

with EGFR mutation combined with gefitinib, but the QoL did

not change (NCT02824458 (first posted: 6 July 2016)) (146). In a

phase IB clinical trial (NCT04670107 (first posted: 17 December

2020)), anlotinib, a multitarget receptor of TKI, plus PD-1

inhibitor camrelizumab showed some efficiency in advanced

NSCLC patients who are resistant to the first-line therapy (164).
4.4 Immunotherapy

Immunotherapy in NSCLC usually uses some antibodies to

block the recognize between the antigens in immunocytes and

ligands in tumor cells (165). Immune checkpoint inhibitors

(ICIs) are usually used in advanced and metastatic NSCLC

(166). The most widely used targets in NSCLC include

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),

programmed death receptor 1 (PD-1), and programmed

death-ligand 1 (PD-L1) (167).

The corresponding monoclonal antibodies that are well-

developed include anti-CTLA-4 antibody (ipilimumab (brand

names: Yervoy, company: BRISTOL MYERS SQUIBB)), anti-

PD-1 antibodies (pembrolizumab (brand names: Keytruda,

company: MERCK SHARP DOHME), and nivolumab (brand

names: Opdivo, company: BRISTOL MYERS SQUIBB)), and
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TABLE 2 Drugs used in chemotherapy and targeted therapy.

Therapy Compounds Application Phase NCT number Improved survival time

Chemotherapy RO4929097 plus erlotinib Advanced NSCLC Phase I,
phase II

NCT01193881NCT01193868 PFS: 5 years

Chemotherapy Sulforaphane plus Cisplatin
and doxorubicin

NSCLC Preclinical

Chemotherapy AKBA plus cisplatin NSCLC Preclinical

Chemoradiotherapy
plus
immunotherapy

conventional
chemoradiotherapy
(platinum-based
chemotherapy and
radiotherapy) plus
durvalumab

Stage III NSCLC Phase III NCT02125461 PFS: 3 years, OS: 4 years

Targeted therapy Gefitinib, erlotinib, afatinib,
and dacomitinib

NSCLC with EGFR
mutation (exon 19
deletions, exon 21
substitution mutations)

Approved mPFS: 10.8 months (gefitinib) (131), mPFS:
10-14 months (erlotinib) (132), PFS: 48
months (afatinib), and mPFS: 14.7 months
(dacomitinib) (133)

Targeted therapy Osimertinib Metastatic NSCLC with
EGFR mutation (T790M
mutation)

Approved mPFS: 18 months (134)

Targeted therapy Crizotinib, lorlatinib ALK-positive or ROS-1-
positive NSCLC

Approved mPFS: 8.2 months (crizotinib) (135), OS:
114.0 months (lorlatinib) (136)

Targeted therapy Alectinib, ceritinib ALK-positive metastatic
NSCLC

Approved mPFS: 34.8 months (alectinib) (137), mPFS:
7.8 months (ceritinib) (135)

Targeted therapy Brigatinib NSCLC with ALK-
positive, ROS-1-positive,
or EGFR mutation-
positive

Approved PFS: 11.0 months (138)

Targeted therapy Dabrafenib plus trametinib BRAF V600E Mutant
metastatic NSCLC

Phase II NCT04452877 Completion date: 28 December 2023

Targeted therapy Larotrectinib metastatic NSCLC
harboring an NTRK
fusion without acquired
mutation for resistance

Phase II NCT02576431 Completion date: 29 August 2025

Targeted therapy Entrectinib Metastatic ROS-1-positive
NSCLC

Approved

Targeted therapy Entrectinib NSCLC harboring an
NTRK1/2/3, ROS-1, or
ALK gene fusion

Phase II NCT02568267 Completion date: 1 April 2025

Targeted therapy Crizotinib ROS-1 or MET mutated
NSCLC

Phase II NCT04084717 Completion date: June 2025

Targeted therapy Pralsetinib, selpercatinib metastatic RET fusion-
positive NSCLC

Approved mPFS: 17.1 months (pralsetinib), mPFS,16.5
months (selpercatinib) (139)

Targeted therapy Pyrotinib Advanced NSCLC with
HER2 mutation

Phase II NCT02834936 PFS: 6.9 months, median OS: 14.4 months

Targeted therapy Tucatinib HER2-expressing NSCLC Phase II NCT05091528 Completion date: April 2023

Targeted therapy Trastuzumab NSCLC Phase II NCT00758134 No results posted

Targeted therapy Trastuzumab deruxtecan HER2-mutated metastatic
NSCLC

Phase II NCT04644237 Completion date: September 2023

Targeted therapy Adagrasib NSCLC harboring the
KRASG12C mutation

Phase III NCT04685135 Completion date: July 2024

Targeted therapy Sotorasib Stage IV NSCLC with
KRAS p.G12C mutation

Phase II NCT04933695 Completion date: 21 February 2028

Targeted therapy DPT plus gefitinib NSCLC Preclinical

Targeted therapy
plus antiangiogenic
therapy

Erlotinib plus bevacizumab Untreated metastatic
EGFR-mutated NSCLC

Phase III NCT02759614 No results posted

(Continued)
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anti-PD-L1 antibodies (atezolizumab (brand names: Tecentriq,

company: GENENTECH INC), durvalumab (brand names:

Imfinzi, company: ASTRAZENECA UK LTD), and avelumab

(brand names: Bavencio, company: EMD SERONO INC)) (168).

Recently, immunotherapy in NSCLC has been further developed

and plays an even more important role in NSCLC. The drugs

approved by FDA in immunotherapy could improve the survival

of patients. For example, ipilimumab could improve the patients’

PFS up to 0.84 years, and these are patients normally with PD-L1

overexpression and no EFGR or ALK mutation (169). Patients

with metastatic NSCLC with high PD-L1 expression (≥50%) and

without EGF) or ALK mutation could improve mPFS for 10.3

months and median OS for 15.5 months after taking

pembrolizumab and atezolizumab (170, 171). Patients with

metastatic NSCLC with EGFR- or ALK-positive mutation could

acquire a better mPFS (4.2 months) and median OS (14.4

months) (172). Avelumab could improve the PFS almost 907

days in patients with PD-L1 positive and after failure of a

platinum-based doublet (NCT02395172 (first posted: 20 March

2015)). Durvalumab was proved to increase the PFS up to 907

days and OS up to 1,420 days after chemotherapy and

radiotherapy failed for patients with unresectable stage III

NSCLC in a phase III trial (NCT02395172 (first posted: 20

March 2015)). Sugemalimab, an anti-PD-L1 monoclonal

antibody, was used in stage IV NSCLC (NCT03789604 (first

posted: 28 December 2018)) (173). In a phase III trial,

sugemalimab had the same OS and better PFS compared with

durvalumab (174). Toripalimab, an anti-PD-1 antibody, was

reported to play a role in the limited-stage small cell lung cancer,

which has no reaction to the current chemotherapy

(NCT04418648 (first posted: 5 June 2020)). In a phase II study

(NCT04304248 (first posted: 11 March 2020)), toripalimab

combined with platinum-based doublet chemotherapy could

produce higher MPR/pCR rates in stage III NSCLC (175).

Other immunotherapies for NSCLC usually takes

combination therapy and not limited to the monoclonal

antibody alone. The combination therapy including

immunotherapy plus chemotherapy (chemo-immunotherapy),

immunotherapy plus radiotherapy, chemo-immunotherapy and

radiotherapy. In a phase III trial (NCT02492568 (first posted: 8

July 2015), NCT02444741 (first posted: 14 May 2015)),

pembrolizumab (an anti-PD-1 antibody) with radiotherapy
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could significantly increase the outcome of metastatic NSCLC

patients (176). In a phase III trial (NCT02477826 (first posted: 23

June 2015)), nivolumab (an anti-PD-1 antibody) plus

ipilimumab has a long-term efficacy in patients who have

advanced NSCLC (177), but this combination could not

prolong the OS in extensive-disease SCLC patients, in a phase

III trial (NCT02538666 (first posted: 2 September 2015)) (178).

Furthermore, nivolumab plus ipilimumab combined with

chemotherapy such as platinum doublet (179) or two cycles of

chemotherapy (180) could extend the OS of patients in advanced

stages compared with chemotherapy alone. Durvalumab, an

anti-PD-L1 antibody, also combined with other monoclonal

antibodies, chemotherapy or radiotherapy, has a better

outcome compared with durvalumab alone. The most

common combination is durvalumab and tremelimumab (an

anti-CTLA-4 antibody) plus radiotherapy or chemotherapy. In a

phase II study (NCT03373760 (first posted: 14 December 2017)),

the combination of durvalumab and tremelimumab has some

activity in patients with advanced NSCLC with resistance to PD-

(L)1 therapy, and the OS of patients was 7 months (181).

Durvalumab and tremelimumab plus chemotherapy such as

platinum had no marked improvement on the OS of patients

with advanced NSCLC (182). Furthermore, durvalumab and/or

tremelimumab plus radiotherapy improves the efficacy and

tolerance of NSCLC patients who are not suited for

chemotherapy (NCT05000710 (first posted: 11August 2021)).

Therefore, the optimum combination with durvalumab still

needs more research to explore. However, current research

also provides an option for the patients. Camrelizumab is an

investigational PD-L1 inhibitor. The combination therapy

involving camrelizumab has also been a research interest. In a

phase III trial (NCT03668496 (first posted: 12 September 2018)),

camrelizumab plus chemotherapy such as carboplatin and

paclitaxel could dramatically extend the PFS (9.1 months) and

median OS (18.2 months) in patients with advanced NSCLC

(183). The same result was also found in another phase III trial

(NCT03134872 (first posted: 1 May 2017)). The combination of

camrelizumab and chemotherapy including carboplatin and

pemetrexed could also ameliorate the mPFS (11 months) of

NSCLC patients without EGFR and ALK mutations (184). More

interestingly, in a phase Ib/II study (NCT03268057 (first posted:

31 August 2017)), pepinemab that mainly treats Alzheimer’s
TABLE 2 Continued

Therapy Compounds Application Phase NCT number Improved survival time

Targeted therapy
plus antiangiogenic
therapy

Gefitinib plus apatinib Advanced NSCLC with
EGFR mutation

Phase III NCT02824458 mPFS: 19.2 months

Targeted therapy Osimertinib plus dacomitinib Advanced EGFR mutant
lung cancer

Phase I/II NCT03810807 Completion date: January 2023

Targeted therapy Osimertinib and navitoclax EGFR-mutated NSCLC Phase IB NCT02520778 Completion date: 30 July 2022
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disease and Huntington’s disease in combination with avelumab

(an anti-PD-L1 antibody) was proved well-tolerated in NSCLC

patients (185). Even though the patients’ mPFS was only 8.4

weeks in this trial (Table 3), this clinical study provides a new

option for the treatment of NSCLC (Figure 3).
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Lung cancer is already becoming a worldwide threat to

human life. NSCLC is a major type of lung cancer. In this

review, we described the causes, biological features, (especially
TABLE 3 Drugs used in antiangiogenic therapy and immunotherapy.

Therapy Compounds Application Phase NCT
number

Improved
survival time

Antiangiogenic therapy Bevacizumab Unresectable, locally advanced or recurrent non-
squamous NSCLC

Approved PFS: 4.4 months (186)

Antiangiogenic therapy
plus chemotherapy

Bevacizumab plus carboplatin and
paclitaxel

Unresectable, locally advanced, recurrent or
metastatic non-squamous NSCLC

Phase II NCT00318136 No results posted

Antiangiogenic therapy
plus chemotherapy

Bevacizumab plus cisplatin and
gemcitabine

Locally advanced, metastatic, or recurrent non-
squamous NSCLC

Phase III NCT00806923 median OS>13 months

Antiangiogenic therapy
plus Immunotherapy

Bevacizumab and atezolizumab Non-squamous NSCLC patients with higher
PD-L1 expression (≥50%) but without EGFR/
ALK/ROS1 mutations

Phase II NCT03836066 Completion date: 30
January 2024

Antiangiogenic therapy
plus immunotherapy and
chemotherapy

Bevacizumab combined with
atezolizumab and chemotherapy
(carboplatin and paclitaxel)

NSCLC patients with KRAS and STK11
mutations and/or STK11, KEAP1, TP53
mutations and/or high PD-L1 expression

Phase III NCT02366143 PFS: 29 months, OS:
53 months

Antiangiogenic therapy FKB238, LY01008 Non-squamous NSCLC Phase III NCT02810457,
NCT03533127

PFS: 30 months, OS:
30 months

Antiangiogenic therapy
plus Immunotherapy

Anlotinib plus camrelizumab Advanced NSCLC patients who are resistant to
the first-line therapy

Phase IB NCT04670107 No results posted

Immunotherapy Ipilimumab Metastatic NSCLC with PD-L1 overexpression
and no EFGR or ALK mutation

Approved PFS: 0.84 years (169)

Immunotherapy Pembrolizumab, atezolizumab Metastatic NSCLC with high PD-L1 expression
(≥50%) and without EGF) or ALK mutation

Approved mPFS: 10.3 months
(170), median OS: 15.5
months (171)

Immunotherapy Nivolumab Metastatic NSCLC with EGFR- or ALK-positive
mutation

Approved mPFS: 4.2 months,
median OS: 14.4
months (172)

Immunotherapy Durvalumab Unresectable stage III NSCLC after failed
chemotherapy and radiotherapy

Phase III NCT02395172 PFS: 907 days, OS:
1,420 days

Immunotherapy Avelumab PD-L1 positive, NSCLC after a failed platinum-
based doublet

Phase III NCT02395172 PFS: 907 days

Immunotherapy Sugemalimab Stage IV NSCLC Phase III NCT03789604 Completion date: 31
August 2024

Immunotherapy Toripalimab Limit-stage small cell lung cancer that has no
reaction to the current chemotherapy

Phase III NCT04418648 Completion date: 31
May 2024

Immunotherapy plus
chemotherapy

Toripalimab plus platinum-based
doublet chemotherapy

Stage III NSCLC Phase II NCT04304248 Completion date: 30
July 2026

Immunotherapy plus
radiotherapy

Pembrolizumab plus radiotherapy Metastatic NSCLC patients Phase III NCT02492568,
NCT02444741

Completion date: 17
September 2022

Immunotherapy Nivolumab plus ipilimumab Stage IV NSCLC Phase III NCT02477826 Completion date: 30
August 2024

Immunotherapy Durvalumab plus tremelimumab Advanced NSCLC with resistance of PD-(L)1
therapy

Phase II NCT03373760 OS: 7 months

Immunotherapy plus
radiotherapy

Durvalumab and/or tremelimumab
plus radiotherapy

Metastatic or locally advanced NSCLC Phase II NCT05000710 Completion date:
December 2026

Immunotherapy plus
chemotherapy

Camrelizumab plus chemotherapy
such as carboplatin and paclitaxel

Stage IV squamous NSCLC Phase III NCT03668496 PFS: 9.1 months,
median OS: 18.2
months

Immunotherapy plus
chemotherapy

Camrelizumab and chemotherapy
including carboplatin and
pemetrexed

NSCLC patients without EGFR and ALK
mutations

Phase III NCT03134872 mPFS: 11 months

Immunotherapy Avelumab plus pepinemab Advanced NSCLC Phase Ib/
II

NCT03268057 mPFS: 8.4 weeks
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the mutations (EGFR mutation, T790M mutation, RET

rearrangements, MET mutation, ALK rearrangement, HER2

mutation, BRAF mutation, ROS1 rearrangement, KRAS

mutation, NTRK fusions, and PD-L1 mutation)), abnormal

signaling pathways (MAPK/ERK, Bax/Bcl-2, FAK/AKT, ERK,

PI3K/AKT/mTOR, JAK-STAT, RAS/MAPK, MDM2/p53,

PTEN/PI3K/mTOR, MAPK/ERK, and NF-kb signaling

pathways), diagnostic methods (such as CT, PET scan, MRI

scan, tissue biopsy, liquid biopsy, PCR, FISH, IHC, and NGS),

and therapies for lung cancer, such as chemotherapy,

chemoradiotherapy, targeted therapy, antiangiogenic therapy,

immunotherapy, and some combination therapy. More

specifically, we reviewed current drugs used in the clinic,

including chemotherapy (RO4929097 plus erlotinib,

sulforaphane plus cisplatin and doxorubicin, AKBA plus

cisplatin), targeted therapy (gefitinib, erlotinib, afatinib,

dacomitinib, osimertinib, crizotinib, lorlatinib, alectinib,

ceritinib, brigatinib, dabrafenib plus trametinib, larotrectinib,

entrectinib, pralsetinib, selpercatinib, pyrotinib, tucatinib,

trastuzumab, trastuzumab deruxtecan, adagrasib, sotorasib,

DPT plus gefitinib, osimertinib plus dacomitinib, osimertinib,

and navitoclax), antiangiogenic therapy (bevacizumab, FKB238,

LY01008), immunotherapy (ipilimumab, pembrolizumab,

a tezo l i zumab , n ivo lumab , durva lumab , ave lumab ,

sugemalimab, toripalimab, nivolumab plus ipilimumab,

durvalumab plus tremelimumab, avelumab plus pepinemab),

combination therapy, such as chemoradiotherapy plus

immunotherapy (conventional chemoradiotherapy (platinum-

based chemotherapy add radiotherapy) plus durvalumab,

toripalimab plus platinum-based doublet chemotherapy,

camrelizumab plus chemotherapy such as carboplatin and
Frontiers in Oncology 14
paclitaxel, camrelizumab and chemotherapy including

carboplatin and pemetrexed), targeted therapy plus

antiangiogenic therapy (erlotinib plus bevacizumab, gefitinib

plus apatinib), antiangiogenic therapy plus chemotherapy

(bevacizumab plus carboplatin and paclitaxel, bevacizumab

plus cisplatin and gemcitabine), antiangiogenic therapy

plus immunotherapy (bevacizumab and atezolizumab,

anlotinib plus camrelizumab), antiangiogenic therapy plus

immunotherapy and chemotherapy (bevacizumab combined

with atezolizumab and chemotherapy (carboplatin and

paclitaxel)) , and immunotherapy plus radiotherapy

(pembrolizumab plus radiotherapy, durvalumab and/or

tremelimumab plus radiotherapy). These diagnostic methods

may also undergo further development accompanied by the

application of deep learning artificial intelligence (AI) (187).

From the drugs used in clinical treatment, we could find that

combination therapy and targeted therapy or immunotherapy

play an even more important role in the treatment of lung

cancer. In addition, with increasing understanding of the

pathogenesis of lung cancer and the development of

sequencing, the novel targets in lung cancer could be found,

and take a role in clinical drug development. Moreover,

combination therapy with multi-types of treatment will benefit

more patients with lung cancer.
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Comparison of neoadjuvant cisplat in-based chemotherapy versus
radiochemotherapy followed by resection for stage III (N2) NSCLC. Eur J
Cardio-thoracic Surg (2005) 27(6):1092–8. doi: 10.1016/j.ejcts.2005.02.035

116. Vinod SK, Hau E. Radiotherapy treatment for lung cancer: Current status
and future directions. Respirol (Carlton Vic). (2020) 25 Suppl 2:61–71. doi: 10.1111/
resp.13870

117. Rallis KS, Lai Yau TH, Sideris M. Chemoradiotherapy in cancer treatment:
Rationale and clinical applications. Anticancer Res (2021) 41(1):1–7. doi: 10.21873/
anticanres.14746

118. Miyasaka Y, Sato H, Okano N, Kubo N, Kawamura H, Ohno T. A
promising treatment strategy for lung cancer: A combination of radiotherapy
frontiersin.org

https://doi.org/10.3390/cancers13246228
https://doi.org/10.1038/s41419-019-1898-1
https://doi.org/10.1155/2018/5416923
https://doi.org/10.1186/s13046-018-0894-0
https://doi.org/10.3389/fonc.2022.858694
https://doi.org/10.1186/s13046-022-02323-3
https://doi.org/10.3390/ijms23031663
https://doi.org/10.1038/s41598-022-05176-0
https://doi.org/10.1038/s41598-022-05176-0
https://doi.org/10.7150/thno.63788
https://doi.org/10.1002/tox.23428
https://doi.org/10.1038/s41420-021-00681-z
https://doi.org/10.3390/cancers13102314
https://doi.org/10.6004/jnccn.2021.0013
https://doi.org/10.1056/NEJMoa1102873
https://doi.org/10.1378/chest.89.4.237S
https://doi.org/10.2147/JIR.S304431
https://doi.org/10.1155/2014/852681
https://doi.org/10.1111/j.1440-1843.2006.01012.x
https://doi.org/10.21037/atm.2018.01.25
https://doi.org/10.3978/j.issn.2072-1439.2014.08.43
https://doi.org/10.3978/j.issn.2072-1439.2014.08.43
https://doi.org/10.1016/j.mayocp.2019.01.013
https://doi.org/10.1111/resp.13823
https://doi.org/10.1007/s00432-020-03267-x
https://doi.org/10.1007/s00432-020-03267-x
https://doi.org/10.2217/lmt-2016-0006
https://doi.org/10.1186/s12943-021-01462-z
https://doi.org/10.1615/CritRevOncog.v20.i5-6.90
https://doi.org/10.3892/mco.2021.2447
https://doi.org/10.1007/s00292-020-00831-7
https://doi.org/10.1097/PAP.0000000000000206
https://doi.org/10.1016/j.jtho.2016.07.012
https://doi.org/10.1016/j.jtho.2016.07.012
https://doi.org/10.3390/biology10090864
https://doi.org/10.3390/biology10090864
https://doi.org/10.1634/theoncologist.13-S1-5
https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1093/annonc/mdj941
https://doi.org/10.1158/1078-0432.CCR-10-2353
https://doi.org/10.3892/ijo.27.1.247
https://doi.org/10.3892/ijo.27.1.247
https://doi.org/10.1634/theoncologist.10-4-282
https://doi.org/10.1634/theoncologist.10-4-282
https://doi.org/10.1007/978-3-319-24223-1_10
https://doi.org/10.1016/j.bcp.2018.12.010
https://doi.org/10.1007/s10565-020-09541-5
https://doi.org/10.3978/j.issn.2072-1439.2014.04.26
https://doi.org/10.3978/j.issn.2072-1439.2014.04.26
https://doi.org/10.1093/jjco/hyx147
https://doi.org/10.1016/j.ejcts.2005.02.035
https://doi.org/10.1111/resp.13870
https://doi.org/10.1111/resp.13870
https://doi.org/10.21873/anticanres.14746
https://doi.org/10.21873/anticanres.14746
https://doi.org/10.3389/fonc.2022.945102
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guo et al. 10.3389/fonc.2022.945102
and immunotherapy. Cancers (Basel) (2021) 14(1):203. doi: 10.3390/
cancers14010203

119. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al.
Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC.
New Engl J Med (2018) 379(24):2342–50. doi: 10.1056/NEJMoa1809697

120. Faivre-Finn C, Snee M, Ashcroft L, Appel W, Barlesi F, Bhatnagar A, et al.
Concurrent once-daily versus twice-daily chemoradiotherapy in patients with
limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3,
randomised, superiority trial. Lancet Oncol (2017) 18(8):1116–25. doi: 10.1016/
S1470-2045(17)30318-2

121. Peters S, Pujol JL, Dafni U, Dómine M, Popat S, Reck M, et al.
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