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and its phylogenetic implications for the classification of the bagrid genera
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ABSTRACT
The complete sequence of the mitochondrial genome (mitogenome) of Tachysurus nudiceps (family
Bagridae; order Siluriformes) was determined using next-generation sequencing. The composition of its
mitogenome is the same as that observed in most other vertebrates and consists of 37 genes, an
L-strand replication origin and a control region. As in previous studies, our phylogenetic analyses
revealed that many of the bagrid genera are not monophyletic, emphasizing the necessity for review-
ing and revising the taxonomy of this family at the genus level.
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Tachysurus nudiceps (Sauvage, 1883) of the family Bagridae is
a freshwater catfish endemic to Japan. This catfish is listed as
a ‘vulnerable’ or ‘near threatened’ species by local govern-
ments with jurisdiction within its natural distribution range,
specifically in western Japan (Association of Wildlife Research
and Envision 2007; Takano et al. 2016). Thus, detailed distri-
bution surveys of this species are desirable, and the targeted
eDNA method is known to be effective for such a distribution
survey (Bylemans et al. 2019). However, there is little genetic
information for this species, and no species-specific primers
have been developed for eDNA surveys. In this study, we
determined the entire mitochondrial DNA (mtDNA) sequence
of this species, with the main aim of designing specific pri-
mers in the future.

The T. nudiceps specimen was collected from Kamo River,
Kyoto, Japan (35.0305N, 135.7709 E) and deposited at the
Lake Biwa Museum [https://www.biwahaku.jp/english/ con-
tact: Shigefumi Kanao, kanao-shigefumi@biwahaku.jp] under
the voucher number LBM-1210059075. The T. nudiceps total
DNA was extracted from the liver tissue using a
‘Mitochondrial DNA isolation kit’ (BioVision, CA, USA) and
sequenced on the DNBSEQ-G400 platform using a 200-bp
paired-end procedure. From the resultant raw data, low-qual-
ity nucleotide sites (< Q30) were deleted using the ‘sickle’
software (Joshi and Fass 2011), and the whole mtDNA was
assembled from the remaining data using NOVO Plasty 4.3
(Dierckxsens et al. 2017) with the Pelteobagrus tokiensis
mtDNA (AB054127) used as the reference. Gene annotation
was performed using the MITOS WebServer (Bernt et al.

2013) and inaccurate gene boundaries were corrected by vis-
ual observation.

The T. nudiceps mtDNA sequenced (DDBJ/EMBL/GenBank
accession number: LC664019) is 16,529bp in length and con-
tains the typical mitogenome components of vertebrates, that
is, 37 genes (13 protein-coding genes [PCGs] and two riboso-
mal and 22 transfer RNA genes) and two prominent non-cod-
ing regions, namely light-strand replication origin (OL) and
control region (CR). The arrangement of these components is
the same as that observed typically in vertebrates (Boore
1999). The nucleotide composition is 31.1, 25.9, 15.2, and
27.8% for A, T, G, and C, respectively. Similar to some other
animal mitogenomes, in the T. nudiceps mtDNA, a non-canon-
ical GTG start codon (Desjardins and Morais 1991) was
observed in the CO1 gene. In addition, incomplete stop
codons, T and TA, which can form a complete TAA stop codon
by post-transcriptional polyadenylation (Anderson et al. 1981),
are found in six PCGs (CO2-3, Cytb, and ND2-4).

We performed phylogenetic analyses using 13 PCGs
(11,376 bp) of the 41 bagrid species for whom the complete
mitogenome data were available. In the analyses, we applied a
partitioning strategy (Nylander et al. 2004) for the 13 PCG
dataset. The best-fit partitioning scheme and optimal substitu-
tion models for the selected partitions (see legend of Figure 1)
were estimated by ModelFinder (Kalyaanamoorthy et al. 2017)
implemented in IQ-tree version 1.6.12 (Nguyen et al. 2015)
with Bayesian information criterion (Schwarz 1978). Maximum-
likelihood (ML) and Bayesian inference (BI) tree reconstructions
were performed using IQ-tree and MrBayes v3.2.7 (Ronquist
et al. 2012), respectively. The ML and BI analyses results
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showed the same tree topology (Figure 1), and this topology
was very similar to that reported by Liu et al. (2019). It is
known that the genus-level taxonomy of the family Bagridae
is controversial (Liu et al. 2019). Following this, only two gen-
era in our tree, Horabagrus and Mystus, formed their own
clade, and the monophyly of each genus Hemibagrus,
Pelteobagrus, Pseudobagrus, and Tachysurus, was not sup-
ported. For example, the sister species of T. nudiceps is Pel.
tokiensis (ML Bootstrap [MLBP] and Bayesian Post Probability
[BPP]¼ 92 and 1.0, respectively) rather than the other
Tachysurus species. Our results emphasize the necessity of revi-
sing the genus-level classification of this catfish family.
Furthermore, several authors have proposed the species
belonging to the genera Pelteobagrus, Pseudobagrus, and
Tachysurus into one genus (Ng and Freyhof 2007; Liu et al.
2019). Our results support this proposition. However, prior to
making the taxonomic modifications, further phylogenetic
analyses based on the mitogenomic data of more bagrid taxa,
especially of the type species of each problematic genus,
should be carried out.
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Figure 1. Phylogenetic tree of bagrid catfishes based on mitochondrial protein-coding gene sequences. The ML tree of 41 bagrids reconstructed from the 13 PCG
sequences with the best-fit partitioning scheme is shown. �indicates Tachysurus nudiceps of which mtDNA was sequenced in this study. The partitioning scheme
and optimal substitution models for the selected partitions were estimated by IQ-tree (partition 1 ¼ ATP6þ CytbþND1-5 with substitution model GTRþ FþGþ I,
partition 2 ¼ ATP8þ CO1-3 with GTRþ FþGþ I, and partition 3 ¼ ND6 with HKYþ FþIþG4). The numbers at the nodes indicate nonparametric ML Bootstrap val-
ues (left) calibrated by 1,000 pseudo replicates and Bayesian Post Probabilities (right) calibrated by four independent MCMC runs for 10 million generations (sam-
pling frequency is one per 1,000 generations) without first one million samples (i.e. 10% burn-in). Two Pangasianodon species (family Pangasiidae) were used as the
outgroup. The scientific names were followed to FishBase (Froese and Pauly 2021).
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