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Abstract: In signal analysis and processing, underwater target recognition (UTR) is one of the most
important technologies. Simply and quickly identify target types using conventional methods in
underwater acoustic conditions is quite a challenging task. The problem can be conveniently handled
by a deep learning network (DLN), which yields better classification results than conventional
methods. In this paper, a novel deep learning method with a hybrid routing network is considered,
which can abstract the features of time-domain signals. The used network comprises multiple routing
structures and several options for the auxiliary branch, which promotes impressive effects as a
result of exchanging the learned features of different branches. The experiment shows that the used
network possesses more advantages in the underwater signal classification task.

Keywords: deep learning; convolutional neural network; signal classification; underwater acoustic
environment

1. Introduction

In the complicated and volatile ocean, underwater acoustic target recognition is consid-
ered as the most challenging task, and the objective conditions of the marine environment
seriously interfere with the recognition accuracy, which mainly includes transmission at-
tenuation, multi-path effects, and ocean environmental noise. Underwater signals contain
various forms, such as ships, marine organisms, oceanic turbulence and internal waves,
etc. The instruments detect very faint sound waves, and there are various target acoustic
features in the collected signals that are quite similar to the auditory system of humans
used to recognize different spectrogram characteristics. In external circumstances, objective
factors dramatically affect the ability to audibly interpret the signals, and it is difficult to
precisely classify acoustic signals even by well-trained people.

In underwater sound signal identification, one of the most valuable subject areas is
ship-type recognition. Signal classification technologies based on ship features have been
gaining significantly increased interest over the years, resulting in a demand for an increase
in complexity and precision of the corresponding state-of-the-art algorithms. There are
various factors that present a significant obstacle to underwater acoustic signal recognition.
The vast majority of methods include two steps: characteristic extraction and a recognition
algorithm. There are many types of extraction method, such as the short Fourier transform
(STFT) [1], low frequency analysis and recording (LOFAR) [2], Mel-frequency cepstral
coefficient (MFCC) [3], and the detection of envelope modulation on noise (DEMON) [4].

The extracted characteristic programs that reflect underwater acoustic signals can be
improved to some extent, and the losses of raw data are unavoidable in the processing,
which leads to high computational complexity. The classifier techniques need to correspond
with signal characteristic dimensions and spectrum features, which create difficulties for the
designed algorithm. The characteristic selecting modes more or less result in the missing
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details of the raw signal; this determines how effective underwater acoustic identification
algorithms will be for particular sound data. The recognition classifiers span traditional
machine learning [5–7], the statistic approximation method [8], and matched field [9],
which depend on critical prior knowledge and professional feature design, resulting in a
dilemma in higher classification precision and greater operational efficiency.

Remarkable achievements have been obtained in the deep learning field, such as
image vision, natural language processing, and voice identification [10–12]. DLNs have
a distinct advantage in the classification and identification tasks, which benefits from the
multilayer network architecture’s ability to extract nonlinear features. Signal recognition
algorithms based on DLN have made considerable progress. There are more and more
deep learning methods used in underwater acoustic signal recognition. The deep neural
network (DNN) uses modified time–frequency characteristics as input, which more clearly
expresses the outstanding center feature of ship samples. There are impressive classification
results in the ship signal dataset, and it is due to the fact that the identification anchors
based on the objective function are gained in the space distance [13]. The two dimensions
of a convolutional neural network (CNN) excavates the ship signal characteristics in the
spatial-temporal spectrum domain, which can weaken spectral fluctuation and prevent
local minima [14]. An end-to-end learning network, called the auditory perception inspired
deep CNN (ADCNN), is an efficient network architecture in signal feature extraction, and
the method transform signals from the temporal domain to the frequency domain. The
deep representation of raw signal can be separated; this method achieves satisfactory
performances in underwater acoustic target classification [15]. The original signal data
are input into the depthwise separable CNN (DSCNN) in the temporal domain. The
desired identification effects suggest that the model inherits from the function of intra-class
concentration, which isolates inter-class characteristics at the same time [16]. The deep-
belief network utilizes the pre-processing approach of standard Boltzmann machine, the
hidden middle layer of the clustering method, and the training optimization of parameter
updating [17]. The underwater acoustic signal classifier adopts the convolutional recurrent
neural network (CRNN), and the recurrent neural network (RNN), combined with a
CNN, to acquire the different natures of sound characteristics, which further enhances the
recognition effects by data augmentation [18].

Currently, CNN and RNN are only employed with a direct hierarchical overlay or a
simple combined connection between them, which has not been optimized in terms of the
network structure design. The underwater acoustic signals are seriously affected by the
harsh underwater environment; therefore, it is important to mitigate these factors in the
deep network design. The contributions of this paper are as follows:

1. The hybrid routing network structure invests a simplistic format for the complex
routing logic network. After several network units are overlaid structurally, the used
network can generate multiple routing modes, which enhances the performance of
extracted signal features.

2. The network unit is arranged by the different branches. When the main branch
remains unchanged, the auxiliary branch adopts three optional orientations, and the
classification ability of the used network is furthered by exchanging advanced signal
features in different branches. It enriches the extraction categories of signal features.

3. The hybrid routing network was tested on real underwater ship signals. In the
experiment, various multi-routing units were confirmed to illustrate the effectiveness
of the used network, and there is also a comparative display of the different routing
modes and the selection of auxiliary branches.

The remainder of this paper is organized as described below. The signal model is
given in Section 2 along with the basic network structure. Section 3 explains the hybrid
routing network structure form, and illustrates the multiple routing form and the optional
auxiliary branches. Section 4 introduces the ship signal dataset, and the classification
performance of the hybrid routing network provides experimental verification. Finally,
Section 5 provides a summary of the paper.
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2. Signals and Basic Network
2.1. Signal Description

In Figure 1, the original ship signals are one dimension of continuous data in the
time domain, which is measured by signal length and sampling rate. In practice, however,
the sound level felt by the human auditory system (HAS) is nonlinearly related with the
frequency. Mel-frequency is inspired by HAS, which is more aligned with human ear
requirements. Linear behaviors of mel-frequency are mainly below 1000 Hz, and there is a
logarithm increase above 1000 Hz. It is tough to understand the difference between two
very approximated frequencies expressed by the mel-frequency for HAS. Each frequency
region is concerned only with the energy value, and the energies are added together in the
region, which makes the regions more consistently recognizable by the human auditory
system. In the same way, the filter energy builds up in the working scope, making the
mel-spectrogram more separable than standard. During the ship signal processing, the
mel-spectrum can be acquired by the energy spectrum in the filter output. The formula [19]
is as follows

Mel(i) ==
h(i+1)

∑
β=h(i−1)

Gi(β)× |T(β)|2 (1)

Gi(β) is the filter output, i = 1, 2, · · · , I, the filter number is I. The fast Fourier
transform (FFT) point number is β, β = 1, 2, · · · , E, and the total FFT frequency point is
E. In the energy spectrum, the βth point energy is |T(β)|2. The weight uses each filter
output of the frequency range, and the energy spectrum of the corresponding frequencies
is superimposed, which is only added up in the filter range. For a signal sequence, h(·)
have I outputs. The several I output mel-filters are overlapped in time, which generate the
mel-scale acoustic spectrum Mel(·) in Figure 2. Mel-spectrum data are fed into the used
network to yield better classification results.

Figure 1. The underwater acoustic ship signal.

Figure 2. The mel-spectrum of the underwater acoustic ship signal.

2.2. Basic Network Structure

For general machine learning algorithms, the quality of features has a vital impact
on generalization performance. The features extracted by the manual design need to be
backed up by professional knowledge for each kind of dataset; therefore, it is not easy
to design good features manually. DLN isolates the proper features by itself, and there
is no demand to design the special features for all sorts of datasets. Through multi-layer
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processing, DLN gradually converts the initial low-level features into high-level features,
and completes the complex classification of the learning task by the trained network. These
layers contain the information of the input data and the features flowing from one layer
to another. At the upper layer, there are more features defined by the lower layer, which
stands for the abstraction space output of each layer. The benefit of DLN comes from the
fact that the deep structure is equal to a kind of factorization. Most randomly selected
functions cannot actually be conducted, and many of them can be virtually expressed
by the deep structure rather than the shallow structure. The existence of the network
structure, which can be presented by depth, means that there is some corresponding
structure of the potential representable functions to the source dataset. If there is no
structure, it is impossible for the trained network model to be well generalized on a similar
dataset. One-dimensional convolution is suited to natural language processing [20], while
two-dimensional convolution and three-dimensional convolution have more extensive
applications in computer vision [21]. Two-dimensional convolution is shown in Figure 3a.
The image data are composed of two-dimensional data of 16× 16, and 3 represents the
depth of image data. The middle yellow cube represents the range of convolution operation
on the raw image, where the convolution kernel is 3× 3× 3. After traversing the complete
image data, the results are obtained by the image data of 14× 14× 1 on the right. The
deeply separable convolution form divides the traditional convolution operation into
two steps, shown in Figure 3b. The first is the deep convolution process. The input is
convoluted by the 3× 3× 1 convolution kernel without changing the depth of image data,
which corresponds to the image data of 14× 14× 1. These image data are stacked together
to create the image data of 14× 14× 3. The second step is the point-by-point convolution,
and the 1× 1 convolution kernel traverses every point of the 14× 14× 3 image data to
retrieve the 14× 14× 1 convolution consequence.

(a)

(b)

Figure 3. Traditional conventional and separable convolutional forms. (a) Traditional convolution.
(b) Separable convolution.

The deep learning network typically molds a large number of stacked network layers
to improve the learning ability and achieve higher classification results. The multi-layer
network makes it easy to implement the deep network model. When the trained network
model is generalized to a similar dataset, some network hyperparameters need to be
adjusted, leading to the scalability problem of sparse network structure, which hinders the
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application in the UTR task. To ameliorate the problem, the balanced structure is considered
by the form of the multi-route sparse network structure, which is combined with the short-
connection network method [22]—it is equivalent to shortening the depth of the network,
as shown in Figure 4a, which does not affect the extracting ability of the network. The
formalism removes the limitation that a layer output can only be constituted as the next
layer input, and allows the output of a layer to be the farther separation and extraction as
the input of the next multiple layers. The short-connection network components organize
a new structure as shown in Figure 4b.

(a)

(b)

Figure 4. Multi-route sparse network architecture. (a) Short-connection network structure. (b) Equiv-
alent multi-route network structure.

3. Hybrid Routing Network Architecture

For gaining abundant classification features, the most general style of multi-route
sparse network architecture is the intricate structure of the sparse fragmented network,
which can extract the diversiform signal data; it is a valid model to improve the classification
performance, whereas the sparse fragmented architecture has a poor adaptability to the
signal dataset, especially in the various number of signals. Specifically, to benefit from the
architecture, the new network is created, and named as the hybrid routing network—it
further strengthens the ability to acquire the deep relating information of signals, and is a
suitable method to handle the various input signal data.

The basic composition of the hybrid routing network is shown in Figure 5. The hybrid
routing network can achieve the effect of the sparse fragmented network to extract a variety
of signal features, and it is dissimilar to the sparse fragmented network to reduce the
training parallelism degree, such as ResNeXT [23] and Nasnet automatically generated by
AutoML [24]. The sparse fragmented network tends to adopt the complex structure, where
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there are multifarious small convolutions and pooling operations in the layer structure,
which leads to the complexity of the network structure, reduces the efficiency of the model,
and slows down the training speed. The hybrid routing network can solve these problems
by keeping the unchanged structure in the branches. In order to realize the capacity and
efficiency of the ideal model, the key is how to maintain a large number of branches
with the same width. In this manner, there are neither dense convolutions nor too many
Add operations.

Figure 5. The hybrid routing network structure.

The input layer is fed by the original signal data. The gate recurrent unit (GRU), two-
dimensional convolution (Conv_1), and MaxPooling pre-process the signal data. There
are 512 cells in GRU, and the convolution kernels are 3× 3 in other two pre-processing
layers. The overall network structure is constructed by superimposing the multi-routing
units (red solid wireframe). At the beginning of each unit, the network input is divided
into different branches. The main branch l0 consists of seven basic layers, including group
convolution (GConv) with the convolution kernel of 1× 1, three dropouts, ReLU activation
function (ReLU), depthwise convolution (DepthConv_1) with the convolution kernel of
2× 2, two-dimensional convolution (Conv_2) with the convolution kernel of 1× 1. The
three branches that can be selected on the auxiliary path correspond to l1,l2,l3, respectively
(red dotted wire frame). The auxiliary branch l1 consists of five basic layers, including
DepthConv_2 that has the 3× 3 convolution kernel, two dropouts, Conv_2, and ReLU.
The auxiliary branch l2 includes the average pooling (AveragePooling), and the auxiliary
branch l3 is a directly connecting link. The track restructure (TrackRestr) is the feature
exchange operation between the different branches, and the concatenate layer (Concat)



Sensors 2021, 21, 7799 7 of 14

splices the extracting data from the different branches for continuing to learn in the next
network unit. The structure is realized through the superposition of the multi-routing units.
The corresponding formula is as follows:

L =
J

∑
j=1

[l0 +
U

∑
u=1

ζ(lu)] (2)

where j represents the superimposed units, j = 1, 2, · · · , J, and J represents the maximum
number of superimposed units. l0 represents the main branch, ζ(·) represents a selection
function to the auxiliary branch, u represents the alternative mode of different auxiliary
branches, u = 1, · · · , U, and U represents the total number of auxiliary branches. The j
layer can choose any optional auxiliary branch required from 1 to U. L represents the final
network structure.

The different branches exchange the signal features are shown in Figure 6. Branches
(black solid wire frame) represent the multi-routing path from 1 to pth. Packets are
the signal features, and tracks (purple solid wire frame) are the selected range for the
features exchange of each branch at a certain percentage. It is provided to the next unit
for further learning by rotating and changing a certain proportion of features between
different branches, which can avoid the limitations of different branches to pledge the rich
signal features. The general convolution operates on all input feature maps, which is the
full-track convolution. It is the track dense connection, which means that the convolution
is performed on all tracks. In fact, the 1× 1 convolution in ResNeXt basically takes up
more than 90% of the multiply-add operations. Xception [25], MobileNet [26] also use a
similar convolution; these algorithms also adopt DepthConv, which is actually a special
convolution. Some packets make up a track, and each packet has only one feature map.
The DepthConv amounts to adding a barrier to remove unnecessary data, thus reducing
the computation amount. The disadvantages brought by the sparse fragmented network
are solved by restructuring the convolution tracks, and it means that the hybrid routing
network is a track sparse connection. When the GConv layer is stacked, the next problem
is that the feature maps between different branches do not communicate, which is similar
to dividing mutually irrelevant branches. The extracted features go their own way, and
will reduce the feature extraction capability of the network.

The information contained different branches may be similar in the same packet. If
there is no track exchange, the learned features will be very limited. If some tracks are
exchanged after different branches, and the learned information can also be exchanged.
Each packet has more information and more features can be extracted. To achieve the
features of all other packets in each branch, the form is conducive to better results. For
this reason, Xception and MobileNet are equipped with the serried 1× 1 convolution,
which ensures the information exchange between diverse packets of feature maps after the
convolution operation, referred to as the restructuring conversion. The solution guarantees
that the next convolution input comes from diverse packets so that the information can be
transferred between diverse packets. Normally, the restructuring conversion is not random,
but evenly disrupted, which is more beneficial for the sharing of the learned feature between
the distinct manifestation of tracks; this only requires the simple dimension transformation
and transposition to achieve an even restructure, which is simple and easy to operate. The
two-dimensional feature matrix corresponding to each branch is W1, W2, · · · , Wp, and the
selected feature range percentage is δ. The features involved in the exchange are

V1 = δW1

V2 = δW2

· · ·
Vp = δWn (3)
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after the first network unit learns, the proportionally selected initial matrix is

[V1, V2, V3, · · · , Vp−1, Vp] (4)

the rotating and changing operation from 1 to (p− 1)th is

[Vp, V1, V2, · · · , Vp−2, Vp−1] (5)

[Vp−1, Vp, V1, · · · , Vp−3, Vp−2] (6)

· · ·

[V2, V3, V4, · · · , Vp, V1] (7)

to complete the exchanging operation, these features are connected into the feature se-
quence of the first multi-routing unit by Concat, which can be transmitted to the next
multi-routing unit for further learning. When the above stage is completed, the global map
pooling (GlobalMapPooling) is intended to reduce the feature map size to 1× 1, and finally
the fully connected layer (Dense) outputs the ship type predictions.

Figure 6. The feature exchanges in the different branches.

4. Experiment
4.1. Training Setting and Ship Signal Dataset

The training setting of the used network is a batch size of 128; the optimizer selects the
stochastic gradient descent (SGD) with momentum = 0.9, decay = 5× 10−4, and learning
rate = 0.05. To elevate the extension ability of the trained network, the early stopping
technique uses a patience of 5.

In real shallow sea water, various forms of ships generate the signal dataset. Human
disturbance and underwater environmental impacts are contained in the target signal
dataset. The ship acoustic data are collected by an hydrophone, which was laid under
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water at 144 m. The approximate distances range from 50 m to 150 m, and the signal
sampling frequency is 32 kHz. The classes of signal recordings are well annotated, which
are conveniently applied to automatic identification algorithms. There are approximately
90 samples in each ship target signal type, which range from 9∼682 s in sample duration.

4.2. Classification Performance

Figure 7 shows the classification performance with different routing forms. There are
the superposition of three units in the network structure. (X, X) represents the method
of the auxiliary selection corresponding to the intermediate overlay units. Other forms
of (X, X, X) have similar meanings, and X is the different choice of l1, l2, or l3. δ is
the percentage of the selected packet range as a track for the exchange between auxiliary
branches. In the 12 different hybrid routing forms, 12 ship types can be effectively identified.
When δ is 20%, there are similar classification results in the different routing forms. With
the increase in δ, the classification ability differs from the the selection mode of auxiliary
branches. The form of (l1, l2, l3), δ = 100% increases by approximately 3, 93%, 3.40%, and
4.09% compared to the three forms of (l1, l2), (l1, l3), and (l2, l3) at δ = 20%, which has a
distinct advantage over other routing forms. The presence of different routing forms turns
out to be the sheep herd performance. (l1, l2, l3), δ = 100% slightly improves 3.27%, 2.58%,
and 2.44% than the other three routing forms of (l1, l2), (l1, l3), and (l2, l3) at δ = 60%.
(l1, l2, l3), δ = 100% is better around 1.85%, 2.40% than compared to (l1, l2, l3), δ = 60%,
(l1, l2, l3), δ = 20%, which performed better at 2.13%, δ = 100% of the other three routing
forms on average. When the sufficient exchange of the signal data are provided to the used
network, more high dimensional signal features are extracted, which helps to identify ship
types. The further addition of routing branches did not improve classification accuracy due
to the fact that the hybrid routing network can more effectively extract the signal features
by the full exchange of tracks, and the advantageous classification effect can be achieved
under the (l1, l2, l3), δ = 100% form; this explains the fact that the hybrid routing network
is an efficient method for ship-type classification.

Figure 7. Classification accuracy with different routing forms and tracking exchanges.

Figure 8 shows the convergence performance for the used network during the training
and validating process, which involves different multi-routing units. In Figure 8a, the
training signal dataset send data across the used network to obtain the training losses by
the categorical cross-entropy. In Figure 8b, the validating signal dataset verify the trained
network to obtain the validating losses, and the validating results are obtained by the same
loss function, such as the training losses. In horizontal axis, the number of epoch is the
learning number of the training process, which represents a whole training or validating
dataset that moves through the network and returns once. At the beginning, the six kinds
of the used network structures show a rapid convergence in the iterative procedure of the
top five. When the multi-routing unit is six, the training loss obtains the best results, which
has a longer epoch number. There is a similar convergence performance for the other five,
which is higher than the multi-routing unit of six by an average of more than 0.004. As the
multi-routing unit number increases, the epoch number displays a declining trend.
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(a)

(b)

Figure 8. Training and validating process in the hybrid route network. (a) Training process. (b) Vali-
dating process.

The validing loss of four multi-routing units is larger than that of two multi-routing
units and three multi-routing units, and it is due to the fact that the validing dataset is
under-fitted. Although the epochs of four multi-routing units are larger than the previously
mentioned units, they cannot learn more hidden signal distinguishing features, resulting
in larger validating losses. With the increase in multi-routing units, the ability to obtain
signal hidden features is further improved, which can effectively reduce validing losses and
achieve better classification results. Six multi-routing units and one multi-routing unit are
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partially coincident in the initial validing process. One multi-routing unit has a small num-
ber of layers, and it is impossible to obtain deeper signal classification information, which
stops learning after 13 epoches. Six multi-routing units can dig out the deep distinguishing
features of signals, and more epoches can effectively improve the classification effect. The
training process with six multi-routing units and one multi-routing unit are partially coinci-
dent in the initial validating process. One multi-routing unit has a small number of layers,
and it is impossible to obtain deeper signal classification information, which stops learning
after 13 epochs. Six multi-routing units can dig out the deep distinguishing features of
signals, and more epochs can effectively improve the classification effect, which shows
that the used network can work effectively to learn the signal data features. The validating
process is compared with the training process, and there is an approximate convergence
tendency. The validating process is not the smooth course similar to the training process,
and it is due to the fact that the probability distribution of the validating dataset is not
entirely consistent with those of the training dataset, which can productively fulfill the
validation of the trained network. In the validating process, the epoch number is also
decreasing as the amount of multi-routing units increases, which is similar to the training
process. It shows that the used network can effectively handle the ship acoustic signals by
various multi-routing units.

In Figure 9, the used network is compared with DNN [13], ADCNN [15],
DepthCNN [16], CDBN [17], and CRNN [18]. HRNet is the hybrid routing network
method. In Figure 9a, HRNet has the better classification result than other networks
in the epoch range of 0 and 6, and the recognition performance of CRNN is close to
the used network, which significantly outperforms DepthCNN and CDBN. ADCNN
and DNN have almost the same classification result when compared to HRNet, and
the former are 4.96% than the latter. From the sixth epoch to the thirty-second epoch,
the results generated by CRNN, ADCNN, and DNN share a great deal of similarity,
which are 3.18% smaller than HRNet on average. At the scope from 33 to 43, HRNet
is substantially higher than other networks in the classification rate, which is around
0.98%, 2.43%, and 3.17% than CRNN, ADCNN, and DNN on average, respectively. This
shows that HRNet is structurally superior and obtained a more advanced classification
of signals. In the validating accuracy process, there is an impressive melioration in the
classification effect of all networks in Figure 9b. The reason for vibration is that the
training dataset is not completely corresponding to the validating dataset. HRNet shows
impressive performance compared to the five other networks. ADCNN and DNN show
an approximate tendency toward the classification effect; they are less effective than
HRNet, which is 4.46% and 3.67% better than ADCNN and DNN, respectively—this is
due to the fact that the hybrid routing network structure enriches the feature extraction
of signals, which gain a better performance than CRNN, ADCNN, DNN, DepthCNN,
and CDBN. In the classification of 11 ship types, HRNet recognizes more than 95% in
Figure 10, and the accuracy of the Tugboat can also achieve 92%, which proves the target
recognition ability of HRNet.
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(a)

(b)

Figure 9. Classification results between different networks. (a) Training accuracy. (b) Validating accuracy.
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Figure 10. Ship type classification results.

5. Conclusions

In this paper, we analyzed the ship classification of the hybrid routing network in an
ocean sound environment. The particular conditions found underwater make it difficult to
achieve a high classification accuracy.

The used network with the multiple routing forms and the optional auxiliary exchang-
ing branches contributes to extracting a plenty of signal features and further boost the
classification performance. The used network with the multiple routing forms contributes
to extracting plenty of deep signal features, which effectively boost classification perfor-
mance. The optional auxiliary exchanging branches are an effective mechanism in signal
feature mining, which enhances the learning ability of the used network.

Through the experimental analysis of the used network, we show that the network
structure design is one of the best means to improve the recognition effect. The features
learned in the used network can also further enhance the classification effect. It is of
more practical significance to raise the efficiency of the underwater target recognition
system on harsh terms. The used network method can also be extended to the other
signal classification scene. In the future, we will study the hybrid routing method for the
communication signal classification in an underwater acoustic environment.

Author Contributions: X.C.: conceptualization, methodology, writing—original draft preparation,
visualization, validation. H.Z.: writing—reviewing, editing, software, data curation, investigation,
supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Marine S and T fund of Shandong Province, the
Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018SDKJ0210), Foundation
of State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201903).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 7799 14 of 14

References
1. Seok, J.; Bae, K. Target classification using features based on fractional Fourier transform. IEICE Trans. Inf. Syst. 2014,

97, 2518–2521. [CrossRef]
2. Chen, J.; Liu, J.; Liu, C.; Zhang, J.; Han, B. Underwater Target Recognition based on Multi-Decision LOFAR Spectrum

Enhancement: A Deep Learning Approach. arXiv 2021, arXiv:2104.12362.
3. Zhang, L.; Wu, D.; Han, X.; Zhu, Z. Feature extraction of underwater target signal using mel frequency cepstrum coefficients

based on acoustic vector sensor. J. Sens. 2016, 2016, 7864213. [CrossRef]
4. Lu, J.; Song, S.; Hu, Z.; Li, S. Fundamental Frequency Detection of Underwater Acoustic Target Using DEMON Spectrum and

CNN Network. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28
November 2020; pp. 778–784.

5. Wang, Q.; Zeng, X.; Wang, L.; Wang, H.; Cai, H. Passive moving target classification via spectra multiplication method. IEEE
Signal Process. Lett. 2017, 24, 451–455. [CrossRef]

6. Shamir, L.; Yerby, C.; Simpson, R.; von Benda-Beckmann, A.M.; Tyack, P.; Samarra, F.; Miller, P.; Wallin, J. Classification of large
acoustic datasets using machine learning and crowdsourcing: Application to whale calls. J. Acoust. Soc. Am. 2014, 135, 953–962.
[CrossRef] [PubMed]

7. Ke, X.; Yuan, F.; Cheng, E. Integrated optimization of underwater acoustic ship-radiated noise recognition based on two-
dimensional feature fusion. Appl. Acoust. 2020, 159, 107057. [CrossRef]

8. Xu, D.; Du, L.; Liu, H.; Wang, P.; Yan, J.; Cong, Y.; Han, X. Compressive sensing of stepped-frequency radar based on transfer
learning. IEEE Trans. Signal Process. 2015, 63, 3076–3087. [CrossRef]

9. Lei, Z.; Yang, K.; Ma, Y. Passive localization in the deep ocean based on cross-correlation function matching. J. Acoust. Soc. Am.
2016, 139, EL196–EL201. [CrossRef]

10. Brunetti, A.; Buongiorno, D.; Trotta, G.F.; Bevilacqua, V. Computer vision and deep learning techniques for pedestrian detection
and tracking: A survey. Neurocomputing 2018, 300, 17–33. [CrossRef]

11. Purwins, H.; Li, B.; Virtanen, T.; Schlüter, J.; Chang, S.Y.; Sainath, T. Deep learning for audio signal processing. IEEE J. Sel. Top.
Signal Process. 2019, 13, 206–219. [CrossRef]

12. Stahlberg, F. Neural machine translation: A review. J. Artif. Intell. Res. 2020, 69, 343–418. [CrossRef]
13. Li, C.; Liu, Z.; Ren, J.; Wang, W.; Xu, J. A Feature Optimization Approach Based on Inter-Class and Intra-Class Distance for Ship

Type Classification. Sensors 2020, 20, 5429. [CrossRef] [PubMed]
14. Shen, S.; Yang, H.; Li, J.; Xu, G.; Sheng, M. Auditory inspired convolutional neural networks for ship type classification with raw

hydrophone data. Entropy 2018, 20, 990. [CrossRef] [PubMed]
15. Yang, H.; Li, J.; Shen, S.; Xu, G. A deep convolutional neural network inspired by auditory perception for underwater acoustic

target recognition. Sensors 2019, 19, 1104. [CrossRef] [PubMed]
16. Hu, G.; Wang, K.; Liu, L. Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks.

Sensors 2021, 21, 1429. [CrossRef] [PubMed]
17. Yang, H.; Shen, S.; Yao, X.; Sheng, M.; Wang, C. Competitive deep-belief networks for underwater acoustic target recognition.

Sensors 2018, 18, 952. [CrossRef] [PubMed]
18. Liu, F.; Shen, T.; Luo, Z.; Zhao, D.; Guo, S. Underwater target recognition using convolutional recurrent neural networks with

3-D Mel-spectrogram and data augmentation. Appl. Acoust. 2021, 178, 107989. [CrossRef]
19. Sahidullah, M.; Saha, G. Design, analysis and experimental evaluation of block based transformation in MFCC computation for

speaker recognition. Speech Commun. 2012, 54, 543–565. [CrossRef]
20. Lim, H.; Park, J.; Han, Y. Rare sound event detection using 1D convolutional recurrent neural networks. In Proceedings of the

Detection and Classification of Acoustic Scenes and Events 2017 Workshop, Munich, Germany, 16–17 November 2017; pp. 80–84.
21. Lecomte, I.; Lavadera, P.L.; Botter, C.; Anell, I.; Buckley, S.J.; Eide, C.H.; Grippa, A.; Mascolo, V.; Kjoberg, S. 2 (3) D convolution

modelling of complex geological targets beyond–1D convolution. First Break 2016, 34, 99–107. [CrossRef]
22. Hou, Q.; Cheng, M.M.; Hu, X.; Borji, A.; Tu, Z.; Torr, P.H. Deeply supervised salient object detection with short connections.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3203–3212.

23. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

24. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.

25. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;pp. 1251–1258.

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

http://doi.org/10.1587/transinf.2014EDL8003
http://dx.doi.org/10.1155/2016/7864213
http://dx.doi.org/10.1109/LSP.2017.2672601
http://dx.doi.org/10.1121/1.4861348
http://www.ncbi.nlm.nih.gov/pubmed/25234903
http://dx.doi.org/10.1016/j.apacoust.2019.107057
http://dx.doi.org/10.1109/TSP.2015.2421473
http://dx.doi.org/10.1121/1.4954053
http://dx.doi.org/10.1016/j.neucom.2018.01.092
http://dx.doi.org/10.1109/JSTSP.2019.2908700
http://dx.doi.org/10.1613/jair.1.12007
http://dx.doi.org/10.3390/s20185429
http://www.ncbi.nlm.nih.gov/pubmed/32971862
http://dx.doi.org/10.3390/e20120990
http://www.ncbi.nlm.nih.gov/pubmed/33266713
http://dx.doi.org/10.3390/s19051104
http://www.ncbi.nlm.nih.gov/pubmed/30836716
http://dx.doi.org/10.3390/s21041429
http://www.ncbi.nlm.nih.gov/pubmed/33670677
http://dx.doi.org/10.3390/s18040952
http://www.ncbi.nlm.nih.gov/pubmed/29570642
http://dx.doi.org/10.1016/j.apacoust.2021.107989
http://dx.doi.org/10.1016/j.specom.2011.11.004
http://dx.doi.org/10.3997/1365-2397.34.5.84451

	Introduction
	Signals and Basic Network
	Signal Description
	Basic Network Structure

	Hybrid Routing Network Architecture
	Experiment
	Training Setting and Ship Signal Dataset
	Classification Performance

	Conclusions
	References

