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Abstract: The effect of the morphology and chemical composition of a surface on the wettability
of porous silicon structures is analyzed in the present work. Hydrophobic and superhydrophobic
macroporous substrates are attractive for different potential applications. Herein, different hydropho-
bic macroporous silicon structures were fabricated by the chemical etching of p-type silicon wafers
in a solution based on hydrofluoric acid and coated with a fluoro silane self-assembled monolayer.
The surface morphology of the final substrate was characterized using a scanning electron microscope.
The wettability was assessed from contact angle measurements using water and organic solvents
that present low surface energy. The experimental data were compared with the classical wetting
states theoretical models described in the literature. Perfluoro-silane functionalized macroporous
silicon surfaces presented systematically higher contact angles than untreated silicon substrates.
The influence of porosity on the surface wettability of macoporous silicon structures has been estab-
lished. These results suggest that the combination of etching conditions with a surface chemistry
modification could lead to hydrophobic/oleophilic or superhydrophobic/oleophobic structures.

Keywords: macroporous silicon; perfluoro-silane; wettability; hydrophobic; oleophilic; contact angle

1. Introduction

The wettability of solid surfaces plays important roles not only in industrial applica-
tions [1–3] but also in daily life [4–6]. It is a characteristic property of materials and it is
determined by two factors: one is the chemical component of the surface and the other
is the surface topology [7–14]. Superhydrophobic surfaces (SHSs) with a water contact
angle (WCA) larger than 150◦ have attracted interest due to developments in nanotech-
nology and their applications in industry [15–19]. This type of surface can be prepared by
a combination of lowering the surface energy and increasing the surface roughness [20].
Natural SHSs have been observed in some plant leaves and insect wings. Several stud-
ies have been focused towards the fabrication of synthetic superhydrophobic surfaces
capable of mimicking the natural SHSs [21–26]. A promising method to produce silicon
superhydrophobic surfaces is the use of porous silicon.

Macroporous silicon (MacroPSi) is a controllable material in respect of its pore size
distributions depending on its fabrication conditions [27–29]. The wetting properties of
porous silicon depend on pore diameter and porosity. Nanoporous silicon is reported to
be hydrophilic, while macroporous silicon can be either hydrophilic or highly hydropho-
bic, depending on the silicon doping and the electrochemical etching conditions [30,31].
The self-assembly of the alkylsilane or fluoride silane are some of the methods to introduce
low surface energy compounds on the surface to enhance the hydrophobicity [12,31–33].
Perfluoro-silane modified materials present improve dielectric properties and increase the
stability of some devices, such as organic solar cells or transistors [34–36].
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In this work, we present the fabrication and characterization of MacroPSi surfaces and
how the wettability of the surface depends on the porosity and the surface tension of the liquid
used on the contact angle measurements. We demonstrate that the water repellence of the
MacroPSi samples is subject to the resistivity of the silicon wafer and the etching parameters,
and the non-wetting properties can be enhanced by surface fluorocarbon modification.

Considering the biocompatibility of porous silicon, such surfaces will be useful to the
silicon-based biosensors, microarrays or microfluidics.

2. Materials and Methods
2.1. Fabrication of MacroPSi Structures

Boron-doped silicon wafers of p < 100 > crystal orientation and different resistivity
were used for the experiments (Si-Mat, Germany). MacroPSi substrates were prepared
in a custom-made Teflon etching cell using an electrolyte of hydrofluoric acid (HF 48%,
Sigma-Aldrich, Germany) in N, N dimethylformamide (DMF, Sigma-Aldrich, Germany)
(1:3). The anodization process was carried out during 90 min, changing the current density,
10 or 20 mA/cm2, and the resistivity of the silicon substrate. Then, the samples were rinsed
with pentane and dried under a nitrogen flow.

2.2. Surface Characterization

MacroPSi samples were morphologically characterized by environmental scanning
electron microscopy (ESEM) using an FEI Quanta 600 environmental scanning electron
microscope (Hillsboro, OR, USA) operating at an accelerating voltage of 25 keV.

2.3. Surface Modification of MacroPSi

Macroporous silicon samples were modified with 1H, 1H, 2H, 2H-Perfluorooctyltrichloro
silane (FOTS, CAS: 78560-45-9, Alfa Aesar, Germany) via physical vapor deposition. The sub-
strates were place in a sealed vessel with a container filled with silane precursor liquid.
There was no direct contact between the liquid and the substrates. The vessel was 1 h under
low pressure at room temperature followed by annealing at 120 ◦C for 2 h.

2.4. Contact Angle Measurements

Contact angles (CAs) were measured using a drop shape analysis system under
ambient conditions applying solvent droplets of approximately 3 µL. The average contact
angle value was obtained by measuring 9 times at 3 different positions for each sample.

3. Results and Discussions
3.1. Fabrication and Characterization of MacroPSi Substrates

The MacroPSi substrates were fabricated by electrochemical etching of p-type Si wafers
via anodization [37–40]. The resistivity of the silicon wafer and the current density during
the etching process were varied in order to generate porous surfaces with two different
porosities. The surface morphology of macroporus silicon was characterized by ESEM and
their wettability was measured on an optical contact angle meter.

ESEM images have been analyzed using ImageJ software. Silicon substrates with a
pore size of between 1.3 and 1.8 µm were obtained. The porosity value has been computed
from the surface topography by counting the percentage of pixels whose intensity is below
a set threshold. The measured porosity is the “surface porosity” of the sample, that is,
the area fraction occupied by depressions. Figures 1 and 2 show the scanning electron
micrographs of the pore morphologies and cross view for each of the four studied surfaces.
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Figure 1. Environmental scanning electron microscopy (ESEM) image of a top and cross-sectional 
view of macroporous silicon (MacroPSi) substrates with 6.2 Ωcm resistivity: (a,c) MacroPSi-1: 
HF:DMF = 1:3, current density = 10 mA/cm2, etching time = 90 min and porosity = 74.9 ± 6.5%; (b,d) 
MacroPSi-2: HF:DMF = 1:3, current density = 20 mA/cm2, etching time = 90 min and porosity = 86.2 
± 6.2%. 

 
Figure 2. ESEM image of top and cross-sectional view of MacroPSi substrates with 10 Ω cm 
resistivity: (a,c) MacroPSi-3: HF:DMF = 1:3, current density = 10 mA/cm2, etching time = 90 min and 
porosity = 30.2 ± 1.4%; (b,d) MacroPSi-4: HF:DMF = 1:3, current density = 20 mA/cm2, etching time 
= 90 min and porosity = 27.5 ± 0.4%. 

The influence of the resistivity of the substrate on the pore density and pore depth is 
similar to the previous studies [41]. If the HF:DMF ratio, current density and etching time 
remain constant, pore density decreases with the increasing of substrate resistivity 

Figure 1. Environmental scanning electron microscopy (ESEM) image of a top and cross-sectional
view of macroporous silicon (MacroPSi) substrates with 6.2 Ωcm resistivity: (a,c) MacroPSi-1:
HF:DMF = 1:3, current density = 10 mA/cm2, etching time = 90 min and porosity = 74.9 ± 6.5%;
(b,d) MacroPSi-2: HF:DMF = 1:3, current density = 20 mA/cm2, etching time = 90 min and
porosity = 86.2 ± 6.2%.
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Figure 2. ESEM image of top and cross-sectional view of MacroPSi substrates with 10 Ω cm re-
sistivity: (a,c) MacroPSi-3: HF:DMF = 1:3, current density = 10 mA/cm2, etching time = 90 min
and porosity = 30.2 ± 1.4%; (b,d) MacroPSi-4: HF:DMF = 1:3, current density = 20 mA/cm2,
etching time = 90 min and porosity = 27.5 ± 0.4%.

The influence of the resistivity of the substrate on the pore density and pore depth
is similar to the previous studies [41]. If the HF:DMF ratio, current density and etching
time remain constant, pore density decreases with the increasing of substrate resistivity
(Figure 1a,b and Figure 2a,b). As shown in Figure 1c,d and Figure 2c,d, the pore length
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increases with the increasing of substrate resistivity. Table 1 summarizes the porosity and
the pore depth obtained under different experimental conditions.

Table 1. Resistivity, anodization current density, resulting porosity and pore depth for macroporous
silicon substrates.

Substrates Resistivity (Ω cm) Currrent Density
(mA/cm2) Porosity (%) Pore Depth (µm)

MacroPSi-1 6.2 10 74.9 ± 6.5 27.0 ± 0.7
MacroPSi-2 6.2 20 86.2 ± 6.2 57.8 ± 3.9
MacroPSi-3 10 10 30.2 ± 1.4 51.7 ± 3.1
MacroPSi-4 10 20 27.5 ± 0.4 155.8 ± 1.3

3.2. Hydrophobic and Superhydrophobic States on MacroPSi

MacroPSi surfaces were prepared on silicon wafers tuning the anodization conditions
in order to display their hydrophobic behavior. The reason for the changed wettability
is due to the obtained morphology, which depends on the porosity of the final substrate.
To have repellence, surfaces with more micropores are favorable because of the greater air
resistance against wettability. In Table 2, we show the contact angle (CA) measurements
for each of the four studied surfaces. In this work, the contact angles were calculated
directly by measuring the angle formed between the solid and the tangent to the drop
surface. The substrates were analyzed after fabrication and after more than 4 months at
ambient conditions. We observed that the hydrophobicity of the samples increases with the
increasing of the porosity. This effect could be explained by the increasing level of porous
silicon fractalization and the topography, which reduce the contact of the solid surface with
the drop of the liquid [31] (Figure 3).

Table 2. Values of water contact angle in degrees for macroporous silicon substrates.

MacroPSi-1 MacroPSi-2 MacroPSi3 MacroPSi-4

Porosity (%) 74.9 ± 6.5 86.2 ± 6.2 30.2 ± 1.4 27.5 ± 0.4
CA (◦) 148.4 ± 5.8 157.0 ± 2.5 129.3 ± 4.0 117.9 ± 4.3
CA (◦) 41.4 ± 1.9 <10 72.9 ± 0.8 77.7 ± 0.2

After +4 months
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Figure 4 illustrates the water contact angles (WCAs) on porous structures as a function
of solid fraction (Φ), which was calculated by 1-Apore/A, where Apore is the summation
of the pore area in a given area (A) [42]. It was measured several times in order to check
the uniformities of the surface. The results show the influence of the solid fraction on the
wettability of the structure. On MacroPSi substrates, the CA changed from 117.9◦ to 157.0◦

with a solid fraction from 0.7 to 0.2. In the case of flat silicon (Φ = 1), the CA was 69◦.
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Another parameter to consider is the oxidation of the substrates. The porosity could
also be the cause of that and then the reduction of the water contact angle on the porous
substrates measured several months after fabrication under ambient conditions. This effect
is higher on MacroPSi-1 and MacroPSi-2 with porosities superior to 70% (Table 2), which are
more hydrophobic, and then the oxidation is higher than in substrates with less porosity.

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 5. Water contact angle (WCA) as a function of porosity: values of WCA for MacroPSi 
surfaces after fabrication, after 4 months of fabrication, after FOTS modification and after 4 months 
of FOTS functionalization. 

3.3. Intermediate Wetting State on MacroPSi Structures 
In order to understand how the interfacial properties affect the introduction of 

molecules into the pores of macro- or nanoporous materials, it is important to improve 
studies of liquid–solid interactions. The contact angle (θ) is used as a measure of wetting 
between a liquid and a solid surface. On a smooth surface, this value is given by Young’s 
equation [43], where γsv, γsl and γlv are the interfacial tensions of the solid–vapor, solid–
liquid and liquid–vapor interface (Equation (1)). 

γlv cos θY = γsv − γsl (1) 

Wenzel [44] studied contact angle on rough surfaces, where the liquid may 
completely penetrate into the rough structure and the CA on the surface is given by 
Equation (2). In this equation, r is the area ratio of structured surface to planar surface. 
Cassie and Baxter expanded upon Wenzel’s model to allow for measurements of porous 
surfaces (Equation (3)). In this case, the droplet of the liquid does not entirely cover the 
rough surface and leaves air between the droplet and the substrate [45,46,47], 

cos θw = r cos θY (2) 

cos θCB = (cos θY +1) f − 1 (3) 

where the contact angle depends on the surface fraction (f) of the droplet that is in contact 
with the surface. It was introduced as a factor for the partial wetting model and represents 
the part of liquid wetting into the structures. It is clear that f ranges from f = 0 for the non-
wetted Cassie–Baxter state to f = 1 for the fully wetted Wenzel state (Figure 6). However, 
a perfect state model is infrequent in real experiments. An intermediate state occurs 
between the Wenzel and Cassie–Baxter states, and several experimental water CAs 
disagree with these models [42]. 

Figure 5. Water contact angle (WCA) as a function of porosity: values of WCA for MacroPSi surfaces
after fabrication, after 4 months of fabrication, after FOTS modification and after 4 months of FOTS
functionalization.



Nanomaterials 2021, 11, 670 6 of 11

Surface functionalization with hydrophobic termini improves the water repellence
of the porous substrates. We modified the substrates by a chemical treatment using
hydrophobic surface coupling agent. MacroPSi substrates showed an increase in CA values
after modification with FOTS (Figure 5). These values are also affected by the porosity.
We observed that the contact angle increases with the degree of porosity and after the
functionalization, which generate superhydrophobic states on MacroPSi-1 and MacroPSi-2,
increasing CA values from 148.4 ± 5.8◦ to 158.5 ± 2.1◦ and from 157.0 ± 2.5◦ to 163.2 ± 2.9◦,
respectively. The obtained structures were stable and exhibited no decay in CA value over
4 months; just MacroPSi-2 demonstrated oxidation of the surface, causing a reduction in
CA value after these months. As we have commented previously, the oxidation is related
to the high porosity of the surface. These results indicate that the surface modification with
a fluoro-silane protects against the oxidation, and therefore the variation of the substrate
wettability is smaller than without functionalization after several months.

3.3. Intermediate Wetting State on MacroPSi Structures

In order to understand how the interfacial properties affect the introduction of
molecules into the pores of macro- or nanoporous materials, it is important to improve
studies of liquid–solid interactions. The contact angle (θ) is used as a measure of wet-
ting between a liquid and a solid surface. On a smooth surface, this value is given by
Young’s equation [43], where γsv, γsl and γlv are the interfacial tensions of the solid–vapor,
solid–liquid and liquid–vapor interface (Equation (1)).

γlv cos θY = γsv − γsl (1)

Wenzel [44] studied contact angle on rough surfaces, where the liquid may completely
penetrate into the rough structure and the CA on the surface is given by Equation (2).
In this equation, r is the area ratio of structured surface to planar surface. Cassie and
Baxter expanded upon Wenzel’s model to allow for measurements of porous surfaces
(Equation (3)). In this case, the droplet of the liquid does not entirely cover the rough
surface and leaves air between the droplet and the substrate [45–47],

cos θw = r cos θY (2)

cos θCB = (cos θY + 1) f − 1 (3)

where the contact angle depends on the surface fraction (f ) of the droplet that is in contact
with the surface. It was introduced as a factor for the partial wetting model and represents
the part of liquid wetting into the structures. It is clear that f ranges from f = 0 for
the non-wetted Cassie–Baxter state to f = 1 for the fully wetted Wenzel state (Figure 6).
However, a perfect state model is infrequent in real experiments. An intermediate state
occurs between the Wenzel and Cassie–Baxter states, and several experimental water CAs
disagree with these models [42].
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Figure 6. Schematic representation of the wetting states of a liquid droplet on non-planar surfaces.

Figure 7 illustrates a comparison between contact angles at MacroPSi substrates and
the Wenzel and Cassie–Baxter theoretical models as is reported in Reference [42]. In this
published work, a theoretical partial wetting model is developed in order to explain that in
structured surfaces there is a derivation between experimental and theoretical models for
hydrophobic substrates. We have not used the equations presented in the literature, but,
if we compare the published graphics with our results (Figure 7), it shows better agreement
with the model established by Nagayama et al. [42] than with the classic models. It means
that the experimental WCAs for MacroPSi substrates with a porosity ranging from 27.5%
to 86.2% show agreement with a partial wetting model.
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3.4. Wetting Behavior of Different Liquids on Macroporous Structures

Most studies on macroporous silicon have been focused on measurements of water
contact angle. Herein, we have studied the wetting behaviour of liquids with different
viscosities and low surface tension on macroporous silicon surfaces. Table 3 shows the
parameters of the liquids at room temperature used in this work. Contact angle (CA)
measurements for MacroPSi substrates with different porosities using four different liquids
are summarized in Table 4. The aim of this study is to know the effect of surface morphology
and the porosity on the wettability of the structure with different solvents. We note that flat
silicon presents a contact angle of 69◦ using deionized (DI) water, and only contact angles
of macroporous silicon substrates are reported in this table.
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Table 3. Surface tension and viscosity of liquids employed in this work.

Liquid Surface Tension (mN/m) Dynamic Viscosity (mPa s)

DI Water 72.8 1.0
Ethylene glycol 48.0 17.3
Diiodomethane 50.8 2.8

Formamide 58.0 1.0

Note: All data cited from [48,49].

Table 4. Summary of contact angle values for MacroPSi substrates using different solvents.

Substrates Porosity (%) Water CA (deg) EthyleneGlycol CA
(deg)

Diiodomethane CA
(deg) Formamide CA (deg)

MacroPSi-1 74.9 ± 6.5 148.4 ± 5.8 13.7 ± 2.8 <10 88.0 ± 0.7
MacroPSi-2 86.2 ± 6.2 157.0 ± 2.5 14.2 ± 5.0 <10 94.5 ± 4.0
MacroPSi-3 30.2 ± 1.4 129.3 ± 4.0 59.1 ± 1.8 30.0 ± 4.3 63.5 ± 9.7
MacroPSi-4 27.5 ± 0.4 117.9 ± 4.3 61.6 ± 3.0 55.5 ± 1.0 82.2 ± 7.0

MacroPSi structures not only show water repellency but are also an excellent absorber
for organic solvents. We observed higher CA values using water as a solvent and lower
CA values with a droplet of ethlynene glycol, diiodomethane or formamide. As a result,
we obtained macroporous silicon hydrophobic/oleophilic surfaces (Figure 8).
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Figure 8. Images of a liquid droplet on MacroPSi-2 with a porosity of 86.2 ± 6.2%.

Wettability is also related to the topography. When we compare the same liquid but
with a different surface morphology, the CA depends on the porosity of the substrate. In the
case of the DI water, the hydrophobicity is higher when the porosity increases. When using
ethylene glycol or diiodomethane, the effect of the porosity is the opposite. The CA is
higher when the porosity decreases. In the case of formamide, the effect of the porosity is
not so remarkable in the CA values.

After chemical modification with FOTS, all the contact angle values increased, as we
expected. The wettability of the surface changes from hydrophobic to superhydrophobic
for water and from olehophilic to oleophobic for the probe liquids with low surface tension.
In this case, the topography is not decisive. If we compare samples with different porosities,
the CA value increases slightly higher when the porosity increases, but it is not a significant
value (Table 5).

Table 5. Summary of contact angle values for MacroPSi substrates after FOTS modification using different solvents.

Substrates Porosity (%) Water CA (deg) Ethylene Glycol
CA (deg)

Diiodomethane
CA (deg)

Formamide CA
(deg)

MacroPSi-1 74.9 ± 6.5 158.5 ± 2.1 136.1 ± 4.7 148.7 ± 8.1 146.2 ± 3.9
MacroPSi-2 86.2 ± 6.2 163.2 ± 2.9 142.4 ± 5.1 152.3 ± 8.6 145.3 ± 1.5
MacroPSi-3 30.2 ± 1.4 148.0 ± 4.2 129.7 ± 2.2 107.7 ± 6.3 119.0 ± 7.8
MacroPSi-4 27.5 ± 0.4 147.0 ± 3.0 122.6 ± 3.9 97.1 ± 1.5 124.1 ± 4.2

Figure 9 illustrates the experimental CA values of the studied solvents on MacroPSi
and MacroPSi-FOTS structures. The results obtained from this graphic indicate which
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wetting state presents the porous surface. For organic solvents, such as diiodomethane,
ethylene glycol and formamide, the macroporous structure fabricated is oleophilic and
proves hydrophobic if the liquid is water. As is shown in the figure, the CA value increases
with porosity for water or formamide, but it decreases when the solvent studied is ethylene
glycol or diiodomethane. The reason for this could be the surface tension of these liquids,
which is lower than the value for water or formamide. It seems like the porosity increases
this effect and the surface gets more hydrophilic. After modification with FOTS, the CA
values with organic solvents increase and then the surface becomes oleophobic. In the
case of water, after surface modification, the porous surface changes from hydrophobic to
superhydrophobic for porosities higher than 70%.
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4. Conclusions

The present work demonstrates macroporous silicon processing as a method to obtain
surfaces with controlled wetting behaviour. Hydrophobic/oleophilic and superhydropho-
bic/oleophobic surfaces on MacroPSi substrates were prepared by electrochemical etching
combining with chemical modification with a hydrophobic coupling agent by chemical
vapour deposition. The liquid–solid interfaces were studied with the contact angle measure-
ments. The results show that the wetting behaviour depends on the substrate morphology.
The contact angle increases with an increasing of the porosity, and surface functionalization
with hydrophobic termini improves the water repellence of the porous substrates.

We have also analyzed the wetting behaviour on MacroPSi surfaces of liquids with
different surface tensions. The contact angle value decreases using liquids with low surface
tension, such as ethylene glycol. If the surface is previously functionalized, no significant
differences are observed if we compare the CA values with water and organic solvents,
but it should be noted that in the case of water we obtained a superhydrophobic surface
for porosities higher than 70%. These results could be used to design both hydropho-
bic/oleophilic and superhydrophobic/oleophobic surfaces, which are of great significance
for practical applications in liquid microtransport in microfluid devices and microsys-
tems/labs on a chip.
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