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Cellular senescence has been considered an important driver of many chronic lung diseases. However, the specific mechanism of
cellular senescence in silicosis is still unknown. In the present study, silicotic rats and osteoclast stimulatory transmembrane protein
(Ocstamp) overexpression of MLE-12 cells were used to explore the mechanism of OC-STAMP in cellular senescence in alveolar
epithelial cell type II (AEC2). We found an increasing level of OC-STAMP in AEC2 of silicotic rats. Overexpression of Ocstamp
in MLE-12 cells promoted epithelial-mesenchymal transition (EMT), endoplasmic reticulum (ER) stress, and cellular
senescence. Myosin heavy chain 9 (MYH9) was a potential interacting protein of OC-STAMP. Knockdown of Ocstamp or Myh9
inhibited cellular senescence in MLE-12 cells transfected with pcmv6-Ocstamp. Treatment with 4-phenylbutyrate (4-PBA) to
inhibit ER stress also attenuated cellular senescence in vitro or in vivo. In conclusion, OC-STAMP promotes cellular senescence
in AEC2 in silicosis.

1. Introduction

Silicosis is a chronic occupational lung disease caused by
long-term inhalation of free crystalline silica dust and is char-
acterized by silicotic lesions and progressive massive fibrosis
[1]. Injury, loss, and disruption of alveolar epithelial cell type
II (AEC2) play a central role in pulmonary fibrosis due to its
critical function in alveolar niche homeostasis through the
production of pulmonary surfactant and as progenitor cells
to self-renew and transdifferentiate into AEC1 [2].

Cellular senescence is now considered an important
driving mechanism for chronic lung diseases, particularly
chronic obstructive pulmonary disease (COPD) and idio-
pathic pulmonary fibrosis (IPF) [3]. Cellular senescence
occurs due to replicative and stress-related senescence with

activation of p53 and p16INK4a, respectively, leading to acti-
vation of p21CIP1 and cell cycle arrest [3, 4]. As silicosis is
an age-related and chronic occupational lung disease, sili-
cotic patients showed significantly shorter and telomerase
gene variants compared with healthy controls in response to
exposure to silica [5]. Our previous study showed increasing
levels of p21, cleaved caspase-3, and phosphorylated histone
H2AX (γH2AX) in rats exposed to inhaled silica over time
[6]. We also found that silica, matrix stiffening, or their com-
bination triggered DNA damage and replication stress in
AEC2 [7]. Therefore, cellular senescencemay be a key contrib-
utor to silicosis, but the exact mechanism is still unknown.

In our preliminary study, we found that the receptor acti-
vator of nuclear factor kappa-B ligand (RANKL) signaling
pathway, a classic signaling pathway for regulating osteoclast
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differentiation, is activated in the lungs of silicotic rats, and it
promoted lung inflammation and proteolytic phenotype of
macrophages [8]. Interestingly, we found that the expression
of osteoclast stimulatory transmembrane protein (OC-
STAMP) was found in AEC2, unlike the RANKL and RANK
expression in lung macrophages. Several studies have docu-
mented that OC-STAMP has an important role in cell fusion
in osteoclast precursor cells and foreign body giant cells to
exert function in pathogenic bone resorption [9, 10]. To date,
specific knowledge about the role and regulation of OC-
STAMP remains limited [11].

Furthermore, endoplasmic reticulum (ER) stress and the
unfolded protein response (UPR) have been linked to lung
fibrosis through regulation of AEC apoptosis, epithelial-
mesenchymal transition (EMT), myofibroblast differentia-
tion, and M2 macrophage polarization [12]. ER stress can
be targeted to improve the inflammatory and cellular senes-
cence in chronic respiratory diseases [13]. Therefore, the
present study examined the molecular mechanism of ER
stress and cellular senescence crosstalk regulated by OC-
STAMP overexpression.

2. Methods

2.1. Silicosis Model. Wistar rats (3w old) were employed in
this study. A silicosis model was induced by inhalation of
50 ± 10μg/m3 of silica (s5631; Sigma-Aldrich, St. Louis,
MO, USA; ground and then heated at 180°C for 6 h) for
32w and inhalation of pure air as the control group. To
inhibit ER stress, rats received 4-phenylbutyrate (4-PBA,
P21005, Sigma-Aldrich) at 100mg/Kg once daily from 24w
until 32w [1]. All animal protocols were reviewed and
approved by the Committee on the Ethics of North China
University of Science and Technology (LX2019033), and they
complied with the US National Institutes of Health Guide for
the Care and Use of Laboratory Animals [14].

2.2. Cell Culture and Treatment. The MLE-12 cell line was
obtained from the Chinese Academy of Sciences cell library
(Shanghai, China). Cells were plated in 6 cm2 dishes
and transfected with pCMV6-Entry (PS100001, OriGene
Technologies Inc., MD, USA) and pCMV6-Ocstamp
(MR207985, OriGene), or they were transfected with small
interfering RNAs (siRNAs) targeted against Ocstamp and
Myh9 (RiboBio, Guangzhou, China), and treated with
50μg/mL silica or 1mmol/L 4-PBA [1]. The target sequences
of Ocstamp-siRNAs were CAAACGTCTTAGGCAAGT,
TGGACTTCATCCTCTTCGT, and CTCAGAAGTTACCA
CTGT, and the target sequences of Myh9-siRNAs were
GCTGCCAAGAAGTTGGTAT, CCATGAATTATGGGCAT,
and GCAGAACATCCAGGAACTT.

2.3. Immunohistochemistry and Immunofluorescence Staining.
Immunohistochemical staining was performed using pub-
lished protocols [15] with antibodies directed against OC-
STAMP (1 : 100 dilution, 2051. PB1; FabGennix Inc., Frisco,
TX, USA), ABCA3 (1 : 200 dilution, ab24751, Abcam,
Cambridge, UK), P21 (1 : 100 dilution, ab109520, Abcam,
Cambridge, UK), α-smooth muscle actin (α-SMA, 1 : 200 dilu-

tion, ab32575, Abcam, Cambridge, UK), Proliferating Cell
Nuclear Antigen (PCNA, 1 : 100 dilution, GTX100539, Gene-
tex, Irvine, CA, USA), and Phospho-PERK (p-PERK, 1 : 100
dilution, DF7576, Affinity, Cincinnati, OH, USA) at a concen-
tration of 1 : 200. Immunofluorescence staining was per-
formed using published protocols with antibodies directed
against ABCA3/OC-STAMP, p21/α-SMA, and p-PERK at a
concentration of 1 : 200.

2.4. Western Blot. Western blot was performed using pub-
lished protocols [16] with antibodies directed against OC-
STAMP (2051. PB1; FabGennix Inc.), collagen type I (Col
I) (ab34710, Abcam), α-SMA (ab32575, Abcam), E-
cadherin (ab76055, Abcam), N-cadherin (ARG23870,Arigo),
p-Smad2/3 (8828 s, Cell Signaling Technology, MA, USA),
Smad2/3 (5678, Cell Signaling Technology), Phospho ataxia
telangiectasia and Rad3-related protein (p-ATR, DF7512,
Affinity), Phospho ataxia telangiectasia mutated (p-ATM,
AF8410, Affinity), p-p53-S15 (AP0083, Abclonal), p21
(ab109520, Abcam), p16 (A0262, Abclonal), p-PERK
(DF7576, Affinity), p-IRE1α (ab48187, Abcam), Phospho-
nuclear factor-kappaB (p-NF-κB, ARG51516, Arigo), trans-
forming growth factor-β1 (TGF-β1, ARG56429, Arigo),
TGF-β receptor I (TGFβR1, A16396, Abclonal), and TGF-
β receptor II (TGFβR2, ARG59501, Arigo) at a concentra-
tion of 1 : 1000.

2.5. Coimmunoprecipitation (CoIP). The interaction of OC-
STAMP with Myh9 was evaluated by Co-IP. The cells were
lysed in RIPA (R0020, Solarbio Life Sciences, Beijing, China)
buffer containing 1% protease inhibitors. Then, 30μL of
sepharose beads (FO115, Santa Cruz Biotechnology, Santa
Cruz, CA, USA) and cell lysates (2 g/L) were mixed to a vol-
ume of 400μL and incubated for 2 h at 4°C on a shaker for
preclearing. The clear supernatant was incubated overnight
with anti-Myh9, anti-IgG antibody, and Protein A sepharose
at 4°C. The beads were collected and washed 3 times with
PBS before being boiled in a 2× loading buffer at 95°C for
5min. Western blotting was used to analyse the CoIP results.

2.6. Real-Time Quantitative Polymerase Chain Reaction
(PCR) Analysis. Reverse transcription (K1622, Thermo Sci-
entific, USA or ZR102, ZOMANBIO, China) was performed
according to company recommendations. Amplification by
real-time PCR was carried out using the 2× SYBR qPCR
Mix (ZF102, ZOMANBIO, China) system [17]. The
sequence details were as follows: (1) Rat Oc-stamp: Forward:
Forward: TGCTGGGCTGTGTTACTGAG, Reverse: GTGT
GAAGTCGGAAGGCTGA; (2) Rat Gapdh, Forward: GGTG
AAGGTCGGTGTGAACG, Reverse: CTCGCTCCTGGAAG
ATGGTG. The results were calculated via the 2−△△CT method.

2.7. Statistical Analysis. Statistical analyses were performed
using SPSS 20.0 software (IBM Corp., Armonk, NY, USA).
Two-group comparisons were made using unpaired Stu-
dent’s t-test, and multiple-group comparisons were made
using one-way analysis of variance followed by Tukey’s post
hoc test. Statistical significance was achieved when P < 0:05
at a 95% confidence interval.

2 Oxidative Medicine and Cellular Longevity



Control 24 w
Silicosis 24 w

Alveolitis Silicotic granuloma

A
BC

A
3

V
G

C A S

C A S

C A S

C A S
0.0
0.1
0.2
0.3
0.4
0.5

ABCA3

A
s f

ol
d 

as
 co

nt
ro

l

P=0.033 P=0.704

0.0
50 𝜇m

0.5

1.0

1.5

PCNA

A
s f

ol
d 

as
 co

nt
ro

l

P<0.001 P=0.143 P=0.028

P=0.016 P=0.014

0.2

0.4

0.6

VG

A
s f

ol
d 

as
 co

nt
ro

l

P<0.001 P<0.001

AEC2 M𝜑

AEC2 M𝜑

0.0
0.1
0.2
0.3
0.4
0.5

p21

A
s f

ol
d 

as
 co

nt
ro

l

P=0.044

0.0

0.5

1.0

1.5
PCNA

A
s f

ol
d 

as
 co

nt
ro

l

(One way ANOVA, F=15.677) 

(One way ANOVA, F=4.109) (One way ANOVA, F=60.014) 

(T test, t=0.003) 

(One way ANOVA, F=28.366) (T test, t=0.035) 

0.0

0.1

0.2

0.3

0.4

p21

A
s f

ol
d 

as
 co

nt
ro

l

P<0.001 P=0.015

PC
N

A
p2

1

0

2

4

6

A
s f

ol
d 

as
 co

nt
ro

l

C S C S
0.0

0.2

0.4

0.6

0.8

OC-stamp OC-stamp

A
s f

ol
d 

as
 𝛽

-a
ct

in

DAPI ABCA3 OC-stamp Merge HE

Si
lic

os
is 

24
 w

Co
nt

ro
l 2

4 
w

C 24

𝛽-Actin

OC-stamp

43 kd

50 kd

S 24

(T test, t=0.018) (T test, t=0.023) 

50 𝜇m50 𝜇m

50 𝜇m50 𝜇m50 𝜇m

50 𝜇m50 𝜇m50 𝜇m

50 𝜇m50 𝜇m50 𝜇m

50 𝜇m

50 𝜇m

50 𝜇m 50 𝜇m 50 𝜇m 50 𝜇m

50 𝜇m 50 𝜇m 50 𝜇m 50 𝜇m

(a)

(b)

(c)

(d)

Figure 1: An increased level of OC-STAMP in silicotic rats. (a) Positivity of ABCA3 and collagen in silicotic rats; data are presented as the
mean ± SD; n = 8 per group. (b) Positivity of p21 and PCNA in silicotic rats; data are presented as the mean ± SD; n = 8 per group. (c)
Coexpression of ABCA3 and OC-STAMP in silicotic rats; (d) protein and mRNA levels of OC-STAMP in silicotic rats. Data are presented
as the mean ± SD; n = 3 per group.

3Oxidative Medicine and Cellular Longevity



3. Results

3.1. Silica Increases the Level of OC-STAMP in a Silicotic
Model. Silicotic rats were investigated in the present study,
and our published reports have well documented that inha-
lation of silica promotes macrophage activation, myofibro-
blast differentiation, and collagen deposition [1, 6]. First,
we used ABCA3 to identify AEC2 in silicotic rat lungs,
and we found that hyperplastic AEC2 can be observed in
silicotic lesions, inflammatory alveoli, and lymph nodes
(Figure 1(a)). Although AEC2 in silicotic rats showed a
“hyperplastic” phenotype, most of these cells showed
expression of p21 but not of PCNA (Figures 1(b) and
1(c)). These results suggested that an increased level and
activation of AEC2 showed a cellular senescence phenotype
in rats exposed to silica. We also found coexpression of
ABCA3 and OC-STAMP in silicotic rats (Figure 1(d)).
The protein and mRNA levels of OC-STAMP were also
increased in silicotic rats (Figure 1(d)).

3.2. Overexpression of OC-STAMP Promotes EMT in MLE-12
Cells. For exploring the effect of OC-STAMP on AEC2, MLE-
12 cells were transfected with the pCMV6-Ocstamp plasmid.
As shown in Figure 2, the major profibrotic signaling path-
ways were measured in OC-STAMP-overexpressing cells.
IF staining showed increased expression of α-SMA, as well
as decreased expression of E-cadherin in MLE-12 cells
transfected with pCMV6-Ocstamp. Overexpression of OC-
STAMP also increased the levels of TGF-β1, TGF-β1 recep-
tors, p-Smad, col I, N-cadherin, and α-SMA. The expression

of E-cadherin was reduced in MLE-12 cells transfected with
pCMV6-Ocstamp.

3.3. Overexpression of OC-STAMP Promotes ER Stress and
Cellular Senescence in MLE-12 Cells. Transfection with
pCMV6-Ocstamp promoted ER stress in MLE-12 cells
(Figure 3(a)). As shown in Figure 3(b), overexpression of
OC-STAMP induced positive staining of SA-β-gal in MLE-
12 cells. IF staining showed increased positive expression of
p21 and reduced expression of PCNA in MLE-12 cells trans-
fected with pCMV6-Ocstamp (Figure 3(c)). The levels of p-
ATM, p-ATR, p-p53, p21, and p16 were also increased in
MLE-12 cells transfected with pCMV6-Ocstamp (Figure 3(d)).
Furthermore, silencing of Ocstamp inhibited cellular senes-
cence and ER stress in MLE-12 cells transfected with
Ocstamp (Figure 4).

3.4. Overexpression of OC-STAMP Induces Insensitivity in
Silica-Induced MLE-12 Cells. First, the cell apoptosis in
MLE-12 cells treated with or without 50μg/mL silica was
measured by flow cytometry; silica did not exhibit cytotoxic-
ity in MLE-12 cells at a concentration of 50μg/mL
(Figure S1). As shown in Figure 5, the pCMV6-Entry and
pCMV6-Ocstamp cells were treated with 50μg/mL silica.
Silica promoted cellular senescence in MLE-12 cells
transfected with pCMV6-Entry, but it did not increase the
activation of cellular senescence signaling in pCMV6-
Ocstamp cells. Also, silica treatment did not change the
EMT-related proteins in MLE-12 cells transfected with
pCMV6-Ocstamp.
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Figure 2: Overexpression of OC-STAMP promotes EMT in MLE-12 cells. (a) Coexpression of E-cadherin and α-SMA in MLE-12 cells.
Bar = 50μm; (b) levels of TGF-β1, TGF-β1 R1, TGF-β1 R2, p-Smad2/3, Col I, E-cadherin, N-cadherin, and α-SMA in MLE-12 cells,
measured by Western blotting. Data are presented as the mean ± SD; n = 3 per group.
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We used 4-PBA to explore the role of ER stress in cellular
senescence induced by OC-STAMP overexpression or silica,
and we found that treatment with 4-PBA inhibited the acti-
vation of senescence signaling in silica-induced or OC-
STAMP overexpressing MLE-12 cells (Figures 6 and 7).

3.5. OC-STAMP Interacts with MYH9 to Promote Cellular
Senescence. To explore the effect of OC-STAMP in MLE-12
cells, we screened for potential OC-STAMP interacting pro-
teins. We performed CoIP using an anti-OC-STAMP anti-
body followed by LC-MS/MS assay. MYH9 was identified

as a potential OC-STAMP interacting protein. As shown in
Figure 8, Western blot analysis of the precipitates with an
OC-STAMP antibody indicated OC-STAMP CoIP with
MYH9. Downregulated expression of MYH9 with siRNA
also inhibited senescence signaling in Ocstamp-overexpress-
ing MLE12 cells.

3.6. Inhibition of ER Stress Attenuates Cellular Senescence in
Silicotic Rats. In the present study, the established model
[1] was used to explain the effect of ER stress on cellular
senescence in silicotic rats. Treatment with 4-PBA attenuated
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Figure 3: Overexpression of OC-STAMP promotes ER stress and cellular senescence in MLE-12 cells. (a) Levels of p-PERK, p-EIF 2α, p-NF-
κB, and p-IRE 1α in MLE-12 cells, measured byWestern blotting. Data are presented as themean ± SD; n = 3 per group; (b) SA-β-gal staining;
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the activation of senescence signaling, collagen deposition,
and high expression of OC-STAMP in silicotic rats, which
suggested that blocking of ER stress inhibited cellular senes-
cence in pulmonary fibrosis induced by silica (Figure 9).

4. Discussion

Hypertrophy and hyperplasia of AEC2 is one of the promi-
nent features of silicosis and is consistently associated with
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alveolitis, but the contribution of AEC2 in the pathogenesis
of silicosis is largely unknown [18, 19]. Several studies have
suggested that hypertrophic and hyperplastic AEC2 was pro-
liferative AEC2, as well as enhanced production and secre-
tion of phospholipids and surfactant proteins for lung
injury and repair [20, 21]. In the present study, we analyzed
the number of AEC2, collagen deposition, expression of
p21 and PCNA in normal alveoli, alveolitis (consisting of
macrophages and hypertrophic AEC2), and silicotic granulo-
mas. As observed in previous studies, hypertrophic and
hyperplastic AEC2 was mostly located in the alveolitis-
affected area and showed a senescent phenotype with more
collagen deposition. An in vitro study also showed activation
of cellular senescence signaling in silica-treated MLE-12 cells.
Furthermore, ER stress markers were also observed in hyper-

trophic and hyperplastic AEC2, which suggested that stress-
related senescent AEC2 may be a potential trigger for
silicosis.

Most importantly, we found overexpression of OC-
STAMP, one of the major factors of RANKL signaling,
derived EMT, ER stress, and cellular senescence in MLE-12
cells, which showed some similar features in rats exposed to
silica. OC-STAMP knockout (KO) mice showed normal
skeleton, growth, and bone metabolic markers, and OC-
STAMP-deficient cells isolated from bone marrow were able
to differentiate into TRAP-positive osteoclasts under RANKL
stimulation but could not fuse into multinucleated cells,
which suggested the specific role of OC-STAMP in osteoclast
multinucleation or cell fusion rather than osteoclast differen-
tiation [9, 10]. Thus, several studies have proposed that OC-
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STAMP is involved in pathogenic bone resorption rather
than normal bone metabolism [11]. Furthermore, OC-
STAMP induced a phenotypic switch in macrophage polari-
zation and suppressed the M1 proinflammatory state [22].
We have been described the potential proinflammatory effect
of OC-STAMP in macrophages, as a member of the RANKL
signaling pathway in silicosis [8]. In the present study, we
found a different mechanism of OC-STAMP in AEC2 and
promoted EMT, ER-stress, and cellular senescence in MLE-
12 cells, which could be blocked by Ocstamp-siRNA or 4-
PBA. Furthermore, ER stress has been reported to be
associated with EMT and resulted in an increase in the p16
and p21 levels in lung epithelial cells in pulmonary fibrosi
[23]. ER stress has been also observed in senescence induced
by different stimuli and has been proposed as the conse-
quence of senescent phenotype [24]. Combined with our pre-
vious study [1, 25], we speculated that the EMT, ER stress,
and cellular senescence worked together in silicosis, at least
in part, by the overexpression of OC-STAMP.

Our data showed that OC-STAMP interacted with non-
muscle myosin class II, isoform A (NM II-A, also known as
MYH9), which regulated the senescent signaling pathway.
MYH9 is an actin-binding molecular motor and is encoded
by theMyh9 gene, which participates in many crucial cellular
processes, such as adhesion, cell migration, cytokinesis and
polarization, maintenance of cell shape, and signal transduc-
tion [26]. It has been reported that MYH9 localization and
filament assembly can be modulated by the interaction with
S100A16 during kidney injury or TGF-β stimulation to
promote cytoskeleton reorganization and EMT progression
in renal tubulointerstitial fibrosis [27]. TGF-β1 increased
MYH9 expression, and siRNA-mediated knockdown of
MYH9 remarkably repressed TGF-β1-induced lung fibroblast-
to-myofibroblast differentiation [28]. Furthermore, inducible
conditional knockout of Myh9 in the renal tubules of adult
mice resulted in progressive kidney disease with expansion
of ER tubules and activation of ER stress [29]. Our data
showed that OC-STAMP interacted with MYH9, which reg-
ulated cellular senescence signaling in MLE-12 cells and may
have an important role in silicosis. This study has some lim-
itations. First, the results should be verified in clinical
samples to strengthen the meaning of high expression of
OC-STAMP in silicosis. Furthermore, the cross talk between
ER stress and senescence in silicosis still needs to be explored
to better understand age-related lung pathology and patho-
physiology. Further studies are needed to consider and over-
come these limitations.

In summary, we have shown that cellular senescence of
AEC2 participates in silicosis formation. In the context of
profibrotic insults, overexpression of OC-STAMP in MLE-
12 cells exacerbates ER stress, EMT, and cellular senescence,
and it may play an important role in silicosis. Blockage of ER
stress protects against cellular senescence and pulmonary
fibrosis in response to silica exposure.
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