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Abstract 

Viruses persist in nature owing to their extreme genetic heterogeneity and large population sizes, which enable them to evade host 
immune defenses, escape antiviral drugs, and adapt to new hosts. The persistence of viruses is challenging to study because mutations 
affect multiple virus genes, interactions among genes in their impacts on virus growth are seldom known, and measures of viral fitness 
are yet to be standardized. To address these challenges, we employed a data-driven computational model of cell infection by a virus. 
The infection model accounted for the kinetics of viral gene expression, functional gene–gene interactions, genome replication, and 
allocation of host cellular resources to produce progeny of vesicular stomatitis virus, a prototype RNA virus. We used this model to com-
putationally probe how interactions among genes carrying up to eleven deleterious mutations affect different measures of virus fitness: 
single-cycle growth yields and multicycle rates of infection spread. Individual mutations were implemented by perturbing biophysi-
cal parameters associated with individual gene functions of the wild-type model. Our analysis revealed synergistic epistasis among 
deleterious mutations in their effects on virus yield; so adverse effects of single deleterious mutations were amplified by interaction. 
For the same mutations, multicycle infection spread indicated weak or negligible epistasis, where single mutations act alone in their 
effects on infection spread. These results were robust to simulation in high- and low-host resource environments. Our work highlights 
how different types and magnitudes of epistasis can arise for genetically identical virus variants, depending on the fitness measure. 
More broadly, gene–gene interactions can differently affect how viruses grow and spread.
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Introduction
Epistasis describes how gene–gene interactions contribute to traits 
or behaviors of biological processes or organisms. Traits of com-
plex diseases such as diabetes, asthma, or hypertension may 
depend on contributions and interactions from multiple genes 
(Cordell 2002). An understanding of epistasis in complex traits, 
including disease, has to a large extent advanced by systemat-
ically studying how genetic variations in model organisms con-
tribute to quantifiable traits (Moore and Williams 2009; Mackay 
2013). Approaches of systems biology, which combine mechanis-
tic understanding of individual gene functions with mathematical 
and computational representations, can forecast behaviors or 
traits of processes in living cells, tissues, and organisms; such 
approaches offer a potentially useful way to computationally 
quantify epistasis (Segrè et al. 2005; Phillips 2008). More specifi-
cally, kinetic models of virus reproduction within their host cells 
can provide a foundation for probing how gene–gene interac-
tions impact virus growth (You and Yin 2002; Yin and Redovich
2018).

It is well-known that genetic variation within individual genes 
of a virus can have critical impacts on its growth and spread; 
noteworthily, single-gene examples that impact virus fitness are 

the reverse transcriptase of human immunodeficiency virus 1

(HIV-1) (Goudsmit et al. 1997), the neuraminidase of influenza A 

virus (Yen et al. 2005), and the spike protein of severe acute res-

piratory syndrome coronavirus 2 (Harvey et al. 2021). Despite the 

depth of knowledge and understanding of nucleotide-level vari-

ation on these and other gene functions, and ultimately virus 

growth and spread, our understanding of how variants of two or 

more genes interact to influence such behaviors is limited. Stud-

ies of nucleotide substitution mutations and interactions between 

mutations have provided evidence for adaptation of virus fitness 
by multiple small steps for phage ϕ6 (Burch and Chao 1999), they 
have shown how pairs of deleterious or beneficial mutations can 
exhibit positive or negative epistasis for vesicular stomatitis virus 
(VSV) (Sanjuán, Moya, and Elena 2004), and they have suggested 
how variation across clinical isolates of HIV-1 exhibits positive 
epistasis (Bonhoeffer et al. 2004). However, such studies have 
neglected to account for how mutations map onto gene functions 
and interactions in their impacts on virus growth or correlates of 
fitness. Here, we show how a data-driven computational model of 
virus growth can be adapted to explicitly account for functional 
gene–gene interactions in their impacts on quantifiable proxies for 
virus growth and infection spread.
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It is feasible to perform ‘computational experiments’ in epis-
tasis on virus growth and infection spread. Studies of such virus 
behaviors are enabled by several features: (1) virus genomes are 
small and are in many cases well-studied; they have a manage-
able or countable number of often well-characterized molecular 
functions (Fields, Knipe, and Howley 2013); (2) key environmental 
factors, specifically, host cell resources are relatively well under-
stood with respect to how they can contribute to virus growth 
(You, Suthers, and Yin 2002; Kim and Yin 2004; Lim et al. 2006; 
Birch, Ruggero, and Covert 2012); (3) molecular mechanisms of 
virus growth have a significant overlap with known mechanisms 
of gene expression (transcription and translation), genome repli-
cation, packaging, and progeny release (Fields, Knipe, and Howley 
2013); and (4) mathematical and computational models or rep-
resentations of how such processes individually and collectively 
contribute to growth and spread behaviors are now feasible (Yin 
and Redovich 2018). Here, we focus on VSV, a prototypical RNA 
virus, where the mechanisms of its transcriptional regulation, 
gene expression, and genome replication are relatively well under-
stood (Lyles, Kuzmin, and Rupprecht 2013), as highlighted in Fig. 1. 
These mechanisms have been incorporated into a biophysical 
model of VSV growth kinetics during infection of a host cell (Lim 
et al. 2006). In this work, the VSV model is employed to simulate 
how one or more mutations in VSV functions interact to affect the 
kinetics of VSV production.

Modeling epistasis
To quantitatively characterize different types of epistasis, consider 
a simple case that describes how a single deleterious mutation, x, 
and a more deleterious mutation, y, interact in their effects on 
organismal fitness. Specifically, suppose that the wild type has 
fitness, w = 1, and variants carrying x or y have fitnesses 0.9 or 
0.6, respectively. In the simplest case, a variant genome with both 
mutations x and y will behave in a way where mutations each 
contribute independently, without interaction, yielding a fitness 
that is their product, (x)(y), or 0.54. Alternatively, if the mutations 
interact in a way that exacerbates their deleterious effects, then 
synergistic epistasis results and the fitness of the organism is less 
than 0.54; and if the interaction between mutations softens or 
buffers their deleterious effects, then the result is antagonistic 
epistasis with organismal fitness above 0.54. This example can be 
generalized to quantify how more than two mutations interact in 
their effects on fitness. Specifically, by using a power function as 
previously proposed (Lenski et al. 1999), one may regress measures 
of mutant fitness (wi) versus number of deleterious mutations (n) 
for computational fitness variants: 

(wi) = −𝛼n𝛽, (a)

where different metrics of fitness (i) are all relative to wild type, so 
0 < wi < 1 for variants that are less fit than wild type. The parameter 
𝛼 is positive, and for deleterious mutations, its magnitude is larger 
for mutations that have greater deleterious effects on fitness; the 
parameter 𝛽 characterizes the type of epistasis among mutations, 
described in Fig. 2.

During a single generation or cycle of virus growth, a com-
mon measure or correlate of virus fitness is the ‘burst size’ or 
average yield of virus particles per infected cell (Y); the average 
yield is experimentally measured by simultaneously exposing a 
large population of susceptible cells (∼106) to a population of 
virus particles that are in excess, with multiplicity of infection 
3–10, where 3–10 virus particles are available to infect each cell

(You, Suthers, and Yin 2002; Lam, Duca, and Yin 2005). After 
allowing time for adsorption, typically an hour, particles that have 
not adsorbed are washed away, culture medium is replenished, 
and the titer or level of released progeny particles is estimated 
by sampling the supernatant solution at different times and per-
forming the plaque assay. Division of the virus titer at each time 
by the number of infected cells provides the average number of 
virus particles released per cell, N(t); a plot of these values over 
the time course of infection provides the one-step growth curve 
(Fig. 3(A)), where the total particles released per cell is the growth 
yield (Y). The one-step growth behavior of N(t) versus time (t) 
may also be used to estimate a correlate of fitness associated 
with infection spread. Specifically, in an environment with plen-
tiful host cell resources, one may anticipate fitness that is not 
limited to a single cycle or generation of virus production, but 
instead accounts for potentially multiple cycles that occur dur-
ing the spread of infection. Then, it would be advantageous for 
the virus to not only make as many particles as possible but 
also do so as quickly as possible and move on to infect further 
rounds of susceptible host cells. After multiple cycles of growth 
spanning time (t), the number of viral particles produced will be 
approximately Y

t
𝜏  where Y is the average yield per cycle, (𝜏) is 

the time within a cycle that maximizes production over multi-
ple cycles, and t

𝜏
 is the number of infection cycles. This num-

ber may be written as [Y
1
𝜏 ]

t
, so a fitness correlate for infection 

spread should maximize Y
1
𝜏  over multiple cycles of infection. 

One may then define a time-dependent correlate of fitness, rate 

(R) that equals max{N(t)
1
t }, which may be estimated from the 

N(t) versus time (t) behavior over a single cycle, as shown in 
Fig. 3(B); in short, we find the value of t that maximizes the
rate (R).

To regress the simulated behavior of single-cycle yields from 
variant virus infection relative to wild type, we can simulate 
one-step growth curves, as in Fig. 3(A), for wild-type and variant 
virus, estimate their respective average yields per cell, Ywildtype and 
Yvariant, respectively, and define wgrowth (= Yvariant/Ywildtype), which 
we determine for diverse variants carrying different numbers of 
deleterious mutations (n) and fit to Equation 1. Similarly, for a cor-
relate of fitness based on infection spread, which maximizes the 
rate of virus production; we can estimate rates for wild-type and 
variant viruses, Rwildtype and Rvariant, respectively, and define wspread

(= Rvariant/Rwildtype), which can be fit to Equation 1.
Here, we study VSV, a negative-sense, single-stranded RNA 

virus that has served as a model system for laboratory studies 
of virus evolution (Holland et al. 1982) and for computational 
kinetic modeling of virus intracellular growth (Lim et al. 2006; Yin 
and Redovich 2018). Computational models of virus intracellular 
growth link mechanistic mathematical representations, typically 
ordinary differential equations, of the steps that define a single 
cycle of host cell infection: virus particle adsorption to their cell 
surface receptors, endocytosis, membrane fusion, expression of 
viral genomes to be delivered to the cells, transcription and trans-
lation of virus functions, assembly of progeny virus particles from 
genomes and structural proteins, and release of progeny parti-
cles into the extracellular environment. Parameters of the model, 
which are determined from independent experiments, have in 
most cases been extracted from the biophysical and molecular 
biological literature and, in some cases, have been estimated from 
growth or other quantitative experiments (Lim et al. 2006). Specific 
details of the VSV model and its implementation in the current 
work are given in the Methods section.
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Figure 1. Essential genome structure and mechanisms of VSV growth during infection. (A) The genome of VSV is a single-stranded negative-sense RNA 
of 11,161 nucleotides, encoding a leader sequence (Le), five genes (nucleocapsid protein, N; phosphoprotein, P; matrix protein, M; glycoprotein, G; large 
protein, L), and a trailer sequence (Tr). Gaps between genes are intergenic sequences that encode partial transcription termination sites. (B) The 
negative-sense RNA genome is used as a template for transcription by the viral polymerase (filled oval), a complex of L and P proteins. Transcription is 
initiated when the polymerase binds a single promoter at the genomic 3′ end; synthesis of mRNA proceeds for each gene, and fraction of polymerases 
terminates at each intergenic site, causing a gradient in mRNA (and subsequent protein) expression from genes N through L. (C) High levels of N 
protein expression drive full encapsidation of the viral genome, and (D) the fully encapsidated genome then serves as a template for the polymerase to 
make the complementary full-length anti-genome, which carries complementary leader (Lec) and complementary trailer (Trc) sequences. Similarly, 
the N protein encapsidates the full-length anti-genome, which then serves as a template for replication of the full-length genome (not shown). (E) The 
underlying genetic architecture of VSV shows how expression of virus genes and emergence of their functions play out in a sequence of processes that 
culminate in the release of progeny virus particles. Here, the image of a VSV particle was adapted from Zhou et al. (2022). A VSV particle binds to its 
host cell receptor, enters the cell cytoplasm, and uncoats the virus genome or ss(-)RNA, described in (a), which then serves as a template for 
production of virus transcripts, by the mechanism shown in (b). The transcripts serve as templates for synthesis of the five proteins, and a complex of 
L and P proteins forms the RNA-dependent RNA polymerase (filled oval). Accumulation of N protein (filled rectangle) leads to encapsidation of the 
virus genome, as in (c), and the encapsidated genome serves as a template for synthesis of the full-length anti-genome, as in (d); likewise, 
encapsidation of the full-length anti-genome by N protein is followed by replication of the full-length virus genome. Finally, encapsidated genomes 
combine with other viral proteins to assemble and bud from the host membrane, yielding progeny virus
particles.
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Figure 2. Interactions among deleterious mutations reflect different forms of epistasis. The average fitness of a variant (w) drops as its deleterious 
mutations increase in number (n). In the simplest case, mutations act independently in their effects on fitness, so the fitness of a variant carrying two 
or more mutations can be estimated by multiplying the fitness associated with variants carrying their single mutations; epistasis is multiplicative, 
𝛽 = 1. Alternatively, interactions can synergize or exacerbate effects of individual mutations (𝛽 > 1), or interactions can antagonize each other or buffer 
the effects of individual mutations (𝛽 < 1), where 𝛽 refers to the exponent in Equation (a). The average fitness of a variant is defined relative to the 
wild-type fitness, so w for variants with deleterious mutations is generally less than unity, and log(w) is negative.

Figure 3. Correlates of fitness for virus growth and infection spread. The 
release of virus progeny during a single cycle of growth enables 
estimates of (A) virus growth (yield, Y) and (B) infection spread (rate, R). 
Details are given in the main text.

Results
Epistatic interactions for virus growth are 
synergistic
Interactions between deleterious mutations in their effects on 
single-cycle virus growth exhibited synergistic epistasis, as evi-
dent from the concave down patterns of log(wgrowth), or fitness 
relative to wild type, versus number of mutations across a range 

of mutation severity (Fig. 4A). For the most severe class of muta-
tions in their effects on fitness, estimation of the exponent, 𝛽, was 
larger than three and decreased as severity effects were reduced; 
but in all cases, 𝛽 was greater than unity, consistent with syner-
gistic interactions (Fig. 4B). When the intracellular growth model 
was parametrized for a host cell that provides lower-resource lev-
els (delayed-brain tumor (DBT) cells) for virus growth (Lim et al. 
2006) than the base case (baby hamster kidney (BHK) cells), quali-
tatively similar results were found for implementation of the same 
mutations across five severity classes (Fig. 4C and D).

Epistatic interactions for infection spread are 
weak or negligible
Interactions between deleterious mutations in their effects on 
multicycle virus growth (infection spread) exhibited weak or neg-
ligible epistasis, as evident from the effectively linear patterns 
of log(wspread), or fitness relative to wild type, versus the num-
ber of mutations across a range of mutation severity (Fig. 5A). 
Accordingly, estimation of the exponent, 𝛽, was close to unity, con-
sistent with mutations acting independent of each other (Fig. 5B). 
When the intracellular growth model was parametrized for a 
host cell that provides lower-resource levels (DBT cells) for virus 
growth than the base case (BHK cells), qualitatively similar results 
(minimal epistasis) were found for implementation of the same 
mutations across five severity classes (Fig. 5C and D).

Discussion
At a basic level, life history traits of viruses describe how single 
and multiple cycles of host cell invasion enable virus reproduction 
and infection spread. Such traits can be quantified by employing a 
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Figure 4. Interactions among deleterious mutations are synergistic in their effects on virus growth. (A) Virus fitness drops as the number of deleterious 
mutations increases; the concave down dependence is indicative of synergistic epistasis. Fitness here was based on the yield (Y) of virus progeny from 
simulations of virus one-step growth for different severity and number of mutations. Five classes of severity are shown, and simulations were 
parameterized for growth on BHK host cells. (B) Dependence of 𝛽 on 𝛼 as defined by Equation (a) and Fig. 2. Synergistic epistasis is associated with 
𝛽 > 1, and larger 𝛼 are associated with more deleterious effects of mutation on fitness. (C) and (D) are like (A) and (B), except they have been 
parameterized for growth on DBT cells, which provide fewer resources for virus growth than BHK cells.

kinetic model for virus intracellular growth; the model can enable 
one to compute the time-dependent release of virus progeny from 
an average infected host cell, commonly known as the one-step 
growth behavior of the virus. Two features of this behavior can 
be mapped onto correlates of fitness for single- and multicycle 
growth.

When a single cell is infected, the average yield or number 
of virus progeny produced can be readily estimated from the 
simulated one-step growth. In addition, when multiple cells are 
available and an initial cell is infected, then we expect a fitness 
correlate for multicycle growth to depend on the timing of virus 
progeny production and release; earlier or more rapid release 
of progeny particles from the initial and subsequent infected 
cells would have a selective advantage over later or more slowly 
released particles. We have shown here how the simulated one-
step growth behavior can also be used to estimate such a fit-
ness correlate for multicycle growth associated with infection
spread.

We have simulated the effects of mutations on virus growth 
by simply altering biophysical parameters of the model from their 
base-case (or wild-type) values and confirmed when they have a 
deleterious effect on virus growth. However, the mechanistic link 
between a mutation and its effect on growth is not straightfor-
ward. For example, a single mutation in the VSV polymerase could 
affect multiple interactions or processes; these could include the 
elongation rate of the polymerase, the strength of promoters, or 

the degree of intergenic attenuation, affecting multiple parame-
ters of the model. Alternatively, mutations in different genes could 
have the same or similar effects on a process characterized by 
a single parameter; for example, mutations in the viral nucleo-
capsid and matrix protein could be described by a change in the 
rate of association between these proteins. Our approach has been 
to note the extensive literature linking mutations in proteins to 
changes in their biophysical properties and parameters (DePristo, 
Weinreich, and Hartl 2005), so the changes we implemented in 
biophysical parameters of VSV proteins could be plausibly linked 
to specific mutation. We did not consider what specific mutations 
would be needed to enable such changes, which would be beyond 
the scope of the current study.

Comparable results were found when a kinetic model of bac-
teriophage T7 growth in host Escherichia coli was used to probe 
gene–gene interactions (You and Yin 2002). In the T7 model, corre-
lates of fitness were defined based on calculated one-step growth 
behavior in ‘poor’ and ‘rich’ host resource environments. Fitness 
in a poor host resource environment for phage T7 was calcu-
lated in the same way as growth yield of virus progeny in the 
current work for VSV from a single cycle of infection; consid-
ering the extreme case where a virus infects a single cell, and 
no other cells are available for subsequent infection, a plausible 
measure of fitness is the overall yield of virus produced, without 
an associated penalty or benefit for slower or faster production. 
Moreover, fitness in a rich resource environment for phage T7 is 
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Figure 5. Interactions among deleterious mutations are weak or negligible in their effects on virus infection spread. (A) Virus fitness drops as the 
number of deleterious mutations increases; the near-linear dependence is indicative of non-interacting mutations or negligible epistasis. Fitness was 
based on the optimal rate (R) of virus progeny production from repeated one-step growth, a metric for infection across a population of host cells; 
simulations are shown for virus production rate for different severity and number of mutations. Five classes of severity are shown, and simulations 
were parameterized for growth on BHK host cells. (B) Dependence of 𝛽 on 𝛼 as defined by Equation (a) and Fig. 2. Negligible epistasis is associated with 
𝛽 ≃ 1, and larger 𝛼 are associated with more deleterious effects of mutation on fitness. (C) and (D) are like (A) and (B), except that they have been 
parameterized for growth on DBT cells, which provide fewer resources for virus growth than BHK cells.

analogous to the fitness of infection spread over multiple cycles 
in the current work for VSV; here, the initial infection of a sus-
ceptible cell occurs in an environment where many cells are 
available to serve as hosts for subsequent generations or cycles of 
growth, so faster initial and subsequent progeny production plau-
sibly correlates with higher fitness. For analogous cases, phage 
T7 production on poor resources or VSV single-cycle growth, syn-
ergistic epistasis was found for interactions among deleterious 
mutations in their effects on fitness. However, for phage T7 pro-
duction on rich resources or VSV multicycle spread, T7 exhibited 
purely antagonistic epistasis, while epistasis for VSV was weak or 
negligible.

In the current work, differences in VSV growth on susceptible 
(BHK) versus relatively resistant (DBT) host cells yielded similar 
results: single-cycle growth exhibited synergistic epistasis, while 
multicycle spread gave weak or negligible epistasis. However, a 
subtle difference was revealed by comparing the plots of 𝛽 ver-
sus 𝛼 for spread on BHK or DBT host cells. On BHK cells, the 
deleterious mutations acted independent of each other (or 𝛽 ≃ 1), 
independent of the mutational severity (𝛼), while on DBT host 
cells, 𝛽 versus 𝛼 exhibited a negative slope, indicating a transition 
from synergistic to antagonistic epistasis as mutational sever-
ity increased. A similar synergistic-to-antagonistic transition with 
increasing mutational severity was observed for phage T7 under 
poor host resource (or single-cycle) growth conditions. Antagonis-
tic epistasis between deleterious mutations was dominant in a 
theoretical model of virus-inspired RNA replication (Elena, Solé, 

and Sardanyés 2010); however, the model neglected entry, gene 
expression, and other essential processes for virus intracellular 
growth. To the best of our knowledge, no other systems beyond 
VSV and T7 have exhibited such transitions between forms of epis-
tasis, as driven by the severity of mutations in their effects on 
fitness.

The key result of this work is that interactions among the same 
mutations can give different magnitudes and signs of epistasis, 
depending on how organismal fitness is defined. For virus fitness 
defined by the fecundity or progeny yield from infected host cells, 
interactions among deleterious mutations were synergistic; but 
for virus fitness defined by the yield-per-time or fecundity rate of 
infected cells, the extent of interaction between mutations was 
reduced, allowing for transition between weakly positive or neg-
ative epistasis. These results could be tested in the laboratory by 
identifying mutations that cause detectable changes in the aver-
age fecundity or production rate of virus progeny from infected 
cells. For example, deep mutational scanning (DMS) can be used 
to make all amino acid variants at each residue of a target protein 
(Fowler and Fields 2014), and DMS has been used to make variants 
of viral proteins that bind to cellular receptors (Haddox, Din-
gens, and Bloom 2016; Starr et al. 2020), replicate viral genomes 
(Soh et al. 2019), and perform other functions important for virus 
growth (Burton and Eyre 2021). Variant viruses carrying one or 
more mutations, generated by DMS or related methods, could be 
characterized in the laboratory based on features of their one-step 
growth, such as yield or production rate (Jin and Yin 2021). Such 
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variants could also be assessed using correlates of virus fitness, 
including effects of infection on host density (Turner, Draghi, and 
Wilpiszeski 2012), live-cell reporters of virus infection (Akpinar, 
Timm, and Yin 2015), or rates of infection spread (Yin 1991; Lee 
and Yin 1996; Akpinar, Inankur, and Yin 2016). For each mea-
sure of fitness, different variants carrying one or more deleterious 
mutations could be analyzed, as we have done here. Differences 
in fecundity, measured by progeny yield, extent of host lysis, or 
reporter level, would exhibit synergistic epistasis; by comparison, 
differences in fitness based on rates, measured by progeny produc-
tion rate, the rate of host lysis, or the rate of reporter expression, 
would be relatively little if any epistasis is present.

Here, we have taken a first step toward considering how gene–
gene interactions might exacerbate or buffer effects of deleteri-
ous mutations on virus behaviors, focusing on virus growth and 
infection spread. Future work will give a more comprehensive 
picture; in particular, such studies might also account for the 
effects of genetic variation of eukaryotic viruses on activating 
host innate and adaptive immune responses to infection. More-
over, future work might elucidate how epistasis impacts trans-
mission between hosts as well as the stability of virus particles in 
aerosols, on surfaces, and other environments inhabited by their
hosts.

Methods
Modeling virus growth
Using algebraic and differential forms of equations, our math-
ematical model aims to account for established molecular pro-
cessing steps in the development of VSV. Most model parameters 
were extracted from the literature. However, five parameters were 
obtained by fitting our simulation results to experimental data 
that were from the literature and our own experiments. Key model 
parameters are provided in Table S1 (Supporting Information), and 
details of the parameter estimation process have been published 
(Lim et al. 2006).

Virus binding and penetration
VSV initiates an infection by binding to a receptor such as 
phosphatidylserine, a lipid component in the plasma membrane 
(Schlegel et al. 1983; Rose and Whitt 2001). After the binding step, 
the VSV particle is endocytosed via a clathrin-coated pit and then 
penetrates intracellular vesicles such as endosomes by membrane 
fusion (Matlin et al. 1982; Florkiewicz and Rose 1984; Superti et al. 
1987; Rose and Whitt 2001). The penetration leads to the release of 
the encapsidated negative-sense viral genome and virus proteins 
into the cytoplasm of the host cell. By assuming that the binding 
step is rate-determining (Miller and Lenard 1980), we lump these 
early steps from the binding to the penetration into a first-order 
expression: 

dVb

dt
= kbVex, (1)

where Vb and Vex are the concentrations of bound and extracellu-
lar virus particles, respectively, t is time, and kb is the apparent 
rate constant for virus binding. After binding, we assume that 
the bound virus is immediately endocytosed and fused, and its 
genome and protein components are instantaneously released 
into the cytoplasm at the expense of the fused virus particle. The 
protein stoichiometry of a single VSV particle and the lengths of 
each viral gene and protein are summarized in Table S2 (Support-
ing Information) (Thomas et al. 1985; Wagner 1987).

Population distribution of polymerases and 
nucleocapsids
Following the release of the encapsidated genome and proteins 
into the cytoplasm, VSV transcription is initiated. The viral tran-
scription was assumed to be independent of host cell functions 
such as replication (Simonsen, Batt-Humphries, and Summers 
1979). Instead, the viral complex of L and P proteins, with a 
stoichiometry of 1–3.6, was taken to function as polymerase 
in transcription and replication (Gao and Lenard 1995). In the 
absence of P protein, L protein cannot bind to the genome or 
anti-genome (Mellon and Emerson 1978). After binding to the 3′

promoter regions of the genomic and anti-genomic templates, 
the viral polymerase starts to synthesize its own RNA transcrip-
tion and replication products by elongating along the templates. 
During transcription, a fraction of elongating polymerases termi-
nates transcription by dissociating from the templates as they 
encounter regulatory signals in intergenic regions (Iverson and 
Rose 1981; Rose and Whitt 2001). In addition to the regulated 
polymerase dissociation, time-dependent concentration changes 
of the polymerases and the viral templates in the cytoplasm 
influence the distribution of polymerases on the viral templates 
during transcription and replication. Hence, the distribution of 
polymerases continuously varies over the viral templates, ulti-
mately determining the relative synthesis levels of mRNAs and 
genome-size RNAs.

We simulate the transcription and replication processes 
by considering the spatial–temporal distribution of template-
associated polymerases. We first partition the viral genome and 
anti-genome templates into forty segments, excluding their 3′ and 
5′ end regions, which are the leader (Le) and trailer regions (Tr) for 
the genome and the complementary trailer (Trc) and complemen-
tary leader regions (Lec) for the anti-genome, respectively. For the 
genome template that is used for transcription as well as replica-
tion, we specially grouped the segments into five genes. We chose 
forty as a minimum number of total segments that allows each 
gene to be split into a specific integer number of segments, propor-
tional to the length of the gene. By considering the mechanisms for 
the interactions between polymerase and the intergenic regula-
tory sequences of the templates, as described in the Transcription 
section, we simulated the polymerase flux into each segment over 
the time elapsed from the initiation of transcription on each tem-
plate. Then, we correlated the level of polymerase occupying each 
gene-encoding section of the template with the synthesis rate of 
each corresponding viral mRNA. In a similar way, the distribu-
tion of polymerases on the replication templates was correlated 
with the synthesis rate of viral genome-sized RNA. Such explicit 
treatment of polymerase spatial distributions on the viral genome 
and anti-genome templates was central to modeling the growth of 
wild-type and gene-rearranged virus strains. This treatment sys-
tematically accounts for polymerization-associated time delays 
and the polymerase fluxes into each template segment.

Before estimating the polymerase flux, we need to figure out 
how the polymerase complex and M protein compete for bind-
ing to the genomic nucleocapsid as well as how the polymerases 
bound to nucleocapsids are subsequently distributed to one of 
three possible tasks: transcription, replication of genome, or repli-
cation of anti-genome. In our model, we assume that the genomic 
templates (negative-sense nucleocapsid) whose promoters (leader 
regions) are free of polymerases are available for association with 
free polymerase or M protein. We further assume that the associa-
tions of the free genomic templates by M proteins or polymerases 



8 Virus Evolution

take place instantaneously: 

(−)nc − poll

Spol

ll
= (−)ncM,new + (−)ncpol,new, (2)

where (−)nc, (−)ncM,new and (−)ncpol,new are the concentrations 
of total genomic nucleocapsids and subsets of genomic nucleo-
capsids whose promoters are newly occupied by M protein and 
polymerase, respectively. Spol is the spacing between neighbor-
ing polymerases on the genomic or anti-genomic template, poll is 
the concentration of polymerases bound to the promoter region 
(Le) of the genomic template, and ll is the length of the pro-
moter region. Specifically, the second term in the left-hand side 
of the equation denotes the concentration of the genomic tem-
plates whose promoters are currently occupied by polymerases. 
In our model, the concentration of the genomic nucleocapsids 
whose promoters are bound to polymerases and the concentra-
tion of the polymerases bound to the promoters of the genomic 
nucleocapsids are interchangeable with each other by the fac-
tors (ll/Spol) and (Spol/ll), respectively. The binding of M protein 
or polymerase initiates reactions leading to virion assembly or 
RNA synthesis, respectively. Because the initiation of RNA syn-
thesis by the polymerase requires a finite time, a space between 
adjacent polymerases on the template (Spol) would be maintained 
during infection, assuming a fixed elongation rate. With these 
considerations, one may expect that at any time, the concentra-
tion of nucleocapsids available for the new binding of the free 
proteins is inversely proportional to the concentration of poly-
merases currently bound to the leader region of the genomic 
nucleocapsids (poll) and the polymerase spacing (Spol) as shown in 
the second term of Equation 2. The ratio of (−)ncM,new to (−)ncpol,new

is determined by the ratio of the association rates of M protein 
and polymerase with the genomic nucleocapsid, which is fur-
ther a function of the rate constants and relative amounts of the 
corresponding free components in the cytosol: 

(−)ncM,new

(−)ncpol,new
=

rasso,M

rasso,pol
=

kM (1 − condM)M
kpol (L ⋅ trans − poltotal)

=
Scond (1 − condM)M
(L ⋅ trans − poltotal)

, (3)

where rasso,M and rasso,pol are the rates of the associations of M 
protein and polymerase with the genomic nucleocapsid, respec-
tively, and kM and kpol are the rate constants for each association 
reaction, respectively. Scond denotes the ratio of the two rate con-
stants (= kM/kpol). Unlike L protein, 10 per cent of synthesized M 
proteins are associated with the plasma membrane (Chong and 
Rose 1993). In the Equation (3), condM is the fraction of M proteins 
associated with the plasma membrane, trans is the fraction of L 
proteins satisfying the polymerase stoichiometry with P protein, 
poltotal is the total concentration of polymerases associated at the 
time with nucleocapsids, and M and L are the total concentrations 
of M and L proteins not assembled into viral progeny. If the con-
centration of P protein (P) is larger than 3.6-fold concentration of 
L protein, then trans is equal to 1. Otherwise, trans is equal to 
P/(3.6L). In our model, M and L proteins compete for free genomic 
nucleocapsids, and the condensed nucleocapsids, owing to their 
association with M proteins, cannot be utilized for transcription 
or replication (Rose and Whitt 2001). From Equations 2 and 3, the 
newly occupied nucleocapsids by polymerases ((−)ncpol,new) can be 
calculated: 

(−)ncpol,new = ((−)nc − poll

Spol

ll
) 1

Scond(1−condM)M
(L⋅trans−poltotal)

+ 1
, (4)

In the same way, given Spol, the concentration of positive-sense 
anti-genomic nucleocapsids available for binding to polymerases 
would be ((+)nc − poltrc(Spol/ltrc)), where (+)nc is the total concen-
tration of anti-genomic nucleocapsids, poltrc is the concentration 
of the polymerases bound to the promoter region (Trc) of the anti-
genomes, and ltrc is the length of the promoter region. Because the 
anti-genome has a stronger promoter than the genome (Rose and 
Whitt 2001; Le Mercier et al. 2002), which is quantified by Sprom

in our model, Sprom-fold more polymerases bind to the promoter 
of the anti-genome than to that of the genome. Under the lim-
itation of free polymerase complexes, the concentration of the 
polymerases newly binding to the promoters of the genomes or 
the anti-genomes (polterm

new) could be described as follows: 

polterm
new = min((−)ncpol,new ll

Spol
+ ((+)nc

ltrc
Spol

Sprom − poltrc) ,

L ⋅ trans − poltotal) , (5)

where Sprom is the strength of the anti-genomic promoter relative 
to that of the genomic promoter, and min(A, B) equals the smaller 
of A and B. The distribution of newly bound polymerases between 
genomic and anti-genomic templates is determined by the con-
centrations of the available free templates of each type and the 
relative strengths of their promoters: 

poll
new =

(−)ncpol,new ll
Spol

(−)ncpol,new ll
Spol

+ [(+)nc ltrc
Spol

Sprom − poltrc]
polterm

new, (6.1)

poltrc
new = polterm

new − poll
new, (6.2)

where poltrc
new is the concentration of the polymerases newly 

binding to the complementary trailer region (promoter) of the 
anti-genome. The polymerases newly binding or already bound to 
the promoters of the genomes and anti-genomes start viral RNA 
synthesis as a transcription or replication process.

Transcription
The viral polymerase in the leader region of the genome starts 
either transcription or replication. If there are sufficient N pro-
teins, transcription is inhibited by the encapsidation of nascent 
positive-sense RNAs by N proteins, and then replication dom-
inates transcription (Blumberg, Leppert, and Kolakofsky 1981; 
Banerjee and Barik 1992; Plumet, Duprex, and Gerlier 2005). In 
contrast, if there are insufficient free N proteins, then transcrip-
tion dominates replication. In the model, we correlate the extent 
of transcription dominance with the availability of N proteins by 
introducing a factor, encap. This factor is defined as the ratio of 
the number of free N proteins to the number required to encap-
sidate all available nascent genome-sized viral RNAs. Only nocap 
(= 1 − encap) of the polymerases bound to the genomic promoters 
can start the transcription: 

dpolN,1

dt
= ke,pol [(1 − 𝜙N)nocap

poll

ll
−

nsec,N

lmRNA,N
polN,1] , (7)

where polN,1 is the concentration of the polymerases located at 
the first segment of the N gene, ke,pol is the elongation rate of 
polymerase, 𝜙N is the attenuation factor for N gene, nsec,N is the 
total number of segments of N gene, and lmRNA,N is the length of 
N mRNA (Table S2 (Supporting Information) (Thomas et al. 1985; 
Wagner 1987)). The genome segments are continuously charged 
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with incoming polymerases and discharged with outgoing poly-
merases with a rate of ke,pol (Equations 7–9). If the polymerase 
input to the leader region of the genome is decreased owing to 
a lack of free polymerases, then the polymerase concentrations 
downstream of the leader region will be subsequently reduced. 
There are conserved intergenic sequences involved in letting a 
fraction of viral polymerases release from the genome template 
at intergenic sections during transcription, which is so-called par-
tial transcription termination or attenuation (Ball et al. 1999; Rose 
and Whitt 2001). Because the transcription is initiated from the 
3′ end promoter, the attenuation mechanism causes genes more 
proximal to the 3′ end to be more highly expressed, which ulti-
mately leads to an unequal concentration distribution of viral 
mRNAs. The extents of partial transcription termination are quan-
tified by the attenuation factors, 𝜙i, in our model. These are 
0/0.25/0.25/0.25/0.05 for leader–N/N–P/P–M/M–G/G–L intergenic 
regions, respectively (Iverson and Rose 1981; Ball et al. 1999; Rose 
and Whitt 2001; Barr, Whelan, and Wertz 2002). 𝜙i fraction of poly-
merases are released in intergenic region i. With Equations 7–9, 
we simulate the polymerase flux into each gene segment, which 
is proportional to the elongation rate of polymerase, but inversely 
proportional to the extent of attenuation: 

dpoli,j

dt
= ke,pol [(1 − 𝜙N)

nsec,i−1

lmRNA,i−1
poli−1,nsec,j−1 −

nsec,i

lmRNA,i
poli,j] j = 1,

i = P,M,G, L, (8)

dpoli,j

dt
= ke,pol

nsec,i

lmRNA,i
(poli,j−1 − poli,j) j ≠ 1, i = N,P,M,G,L, (9)

where poli,j is the concentration of the polymerases located at the 
jth segment of gene i and i − 1 indicates the prior gene of gene i. The 
amount of newly synthesized mRNAs for each gene is determined 
by the concentration of polymerases occupying each gene section 
on the genome template and the decay rates of the mRNAs: 

dmRNAi

dt
=

ke,pol

lmRNA,i
polt,i − kd,mRNAmRNAi , (10)

where mRNAi is the concentration of mRNAs for gene i, kd,mRNA is 
the decay rate constant of mRNA that is the same for all five viral 
mRNAs (Pennica et al. 1979), and polt,i is the total concentration 
of the polymerases occupying on the ith gene.

Our formulation for transcription assumes that the synthesis 
of viral mRNAs is rate-controlled by the transcription initiation as 
well as the elongation of polymerase. Transcription initiation rate 
is parameterized by the spacing between neighboring polymerases 
in our model. At a given polymerase elongation rate, the larger 
polymerase spacing indicates the lower rate of transcription initi-
ation. Transcription initiation modulates the input of polymerases 
to the leader region of the genome.

Translation
We consider that both translation initiation and polypeptide chain 
elongation contribute to the rate of viral protein synthesis. The 
translation initiation rate is parameterized by the ribosomal spac-
ing. In our model, we first calculated the number of ribosomes 
involved in viral translation by considering the maximum concen-
tration of the ribosomes bound to viral mRNAs at a fixed ribosomal 
spacing: 

rib = min(nrib,avail,
∑L

j=N lmRNA,jmRNAj

Srib
) , (11)

where rib and nrib,avail are the concentrations of the ribosomes 
actually involved in viral translation and the ribosomes available 

for viral translation, respectively, and Srib is the spacing between 
neighboring ribosomes.

The ribosomes involved in viral translation (rib) are allocated to 
the five types of viral mRNAs according to their length and abun-
dance, assuming that each viral mRNA has the same efficiency of 
translation initiation (Lodish and Froshauer 1977): 

ribi =
lmRNA,imRNAi

∑L
j=N lmRNA,jmRNAj

(rib) , (12)

where ribi is the concentration of the ribosomes assigned to 
mRNAi.

The synthesis rate of each viral protein depends on the elon-
gation rate of the ribosome, linear density of ribosomes on its 
corresponding mRNA, and its first-order decay rate: 

dpi

dt
=

ke,rib

lp,i
ribi − kdp,ipi i = P,M, G,L, (13)

where pi is the concentration of protein i, ke,rib is the elongation 
rate of the ribosome, lp,i is the length of protein i, and kdp,i is the 
decay rate constant of protein i.

We also accounted for the consumption of free N proteins 
during the encapsidation of genome-length nascent RNAs and 
assumed that the degradation of nucleocapsids yielded intact N 
proteins: 

dpi

dt
=

ke,rib

lp,i
ribi − kdp,ipi − ni (encap ⋅ ke,pol (

poltr

ltr
+

pollec

llec
)

− kd,nc ((+)nc + (−)nc)) , i = N, (14)

where nN is the stoichiometry of N protein in a single nucleocap-
sid or virion progeny (Table S2 (Supporting Information) (Thomas 
et al. 1985; Wagner 1987)), poltr and pollec are the concentrations of 
the polymerases located in the trailer and complementary leader 
regions of the genomes and the anti-genomes, respectively, llec

(= ll) is the length of the complementary leader region, and kd,nc

is the decay rate constant of nucleocapsid. As progeny virions 
are assembled, the concentration of each protein is reduced by 
the amount corresponding to its stoichiometry in a single virion 
particle.

Replication
We assumed that N protein regulates the switch of the role of 
polymerase between transcription and replication by encapsidat-
ing the newly synthesized RNAs (Banerjee and Barik 1992; Plumet, 
Duprex, and Gerlier 2005). The polymerase that starts the replica-
tion in the leader region of the genome requires further supply of 
N proteins to skip the attenuation signals at each gene junction 
and thereby to complete each round of replication. Depending on 
the availability of N proteins, nocap (= 1 − encap) fraction of poly-
merases terminates the replication at each gene junction in our 
model: 

dpolr,n,N,1

dt
= ke,pol (encap

poll

ll
−

nsec,N

lmRNA,N
polr,n,N,1) , (15)

where polr,n,N,1 is the concentration of the replicating polymerases 
on the first segment of the N gene section in the negative-sense 
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genomic nucleocapsid, 

dpolr,n,i,1

dt
= ke,pol (encap

nsec,i−1

lmRNA,i−1
polr,n,i−1,nsec,i−,1 −

nsec,i

lmRNA,i
polr,n,i,1) ,

i = P,M,G,L, (16)

where polr,n,i,1 and polr,n,i−1,nsec,i−1 are the concentrations of the 
replicating polymerases on the first segment of gene i and on the 
last segment of gene i − 1, respectively.

The level of polymerases that scan through the whole genome 
(poltr) determines the amount of newly synthesized anti-genomic 
nucleocapsids, (+)nc: 

dpoltr

dt
= ke,pol (

nsec,i

lmRNA,i
polr,n,i,j −

poltr

ltr
) , i = L, j = nsec,L, (17)

d (+)nc
dt

= ke,polencap( poltr

ltr
) − kd,nc (+)nc, (18)

where ltr (= ltrc) is the length of the trailer region of the genome. 
We also considered the first-order kinetics for the decay of anti-
genomic nucleocapsid.

The synthesis and decay of genomic nucleocapsids are 
described in the same way as for those of the anti-genomic 
nucleocapsids except that the polymerases on the anti-genomic 
templates are not released in intergenic regions: 

dpolr,p,j

dt
= ke,pol (encap

poltrc

ltrc
−

nsec

l − ltrc − llec
polr,p,j) , j = 1, (19)

where polr,p,j is the concentration of the replicating polymerases 
on the jth segment of the positive-sense anti-genomic nucleocap-
sids, l is the total length of the genome, and nsec is the total number 
of segments of the genome. 

dpolr,p,j

dt
= ke,pol (

nsec

l − ltrc − llec
)(polr,p,j−1 − polr,p,j) , j = 2,…nsec, (20)

dpollec

dt
= ke,pol (

nsec

l − ltrc − llec
polr,p,nsec

−
pollec

llec
) , (21)

d (−)nc
dt

= ke,pol (encap)( pollec

llec
) − kd,nc (−)nc. (22)

In our model, non-encapsidated nascent genome and anti-
genome fragments are released from polymerases and immedi-
ately degraded.

As polymerases leave the promoter regions by moving toward 
the downstream sequences, the concentration of polymerases on 
the promoters will decrease. The dynamic changes in the poly-
merase concentrations on the promoters of the genomic and the 
anti-genomic templates are finally described, respectively: 

poll,n+1 = poll,n + poll,n
new − poll−leave,n, (23)

where poll−leave is the concentration of the polymerases leaving the 
genomic promoters, Οn and Οn+1 are the concentrations of a com-
ponent (Ο) at time n and time n + 1 (in our numerical integration, 
time n + 1 − time n = ∆t), respectively. 

poltrc,n+1 = poltrc,n + poltrc,n
new − poltrc−leave,n, (24)

where poltrc−leave is the concentration of the polymerases leaving 
the anti-genomic promoters.

Assembly and budding
We assume that the condensation of negative-sense nucleocap-
sid by M protein initiates the virion assembly and the con-
densed nucleocapsids are not degraded in the same manner as 
virion progeny. Whenever the requirement for the stoichiometric 
amounts of proteins is satisfied, progeny virions are instanta-
neously assembled and released to the extracellular space. The 
time required for the condensation of the negative-sense nucle-
ocapsid, the assembly, and the budding of progeny virion was 
assumed to be negligible relative to the preceding steps.

Host cell
In our model, the host cell provides unlimited building blocks such 
as nucleoside triphosphates and amino acids for the growth of 
virus. However, as viral components accumulate during the course 
of infection, some key host components for translation such as 
initiation and elongation factors may be depleted (Centrella and 
Lucas-Lenard 1982; Wagner 1987). Two main viral products, leader 
mRNA and M protein, contribute to the deficiency by inhibiting 
the synthesis of host macromolecules at the transcription level 
(McGowan, Emerson, and Wagner 1982; Wagner 1987; Lyles et al. 
1996; Rose and Whitt 2001). Because leader mRNA starts to accu-
mulate soon after the initiation of infection, and a small amount 
of the component is enough to trigger the inhibition (McGowan, 
Emerson, and Wagner 1982; Wagner 1987), the pool of host factors 
is continuously reduced from the onset of infection. We quantify 
this reduction with a single decay rate constant specific to the type 
of host cell: 

fdec = exp(−kd,hostt) , (25)

where f dec is the level of host translation factors at time t, relative 
to that of the initial state of the cell before infection (at t = 0), and 
kd,host is the decay rate constant.

The inhibition by the leader mRNA causes a first-order decay of 
the host factors, resulting in a shortage of the ribosomes equipped 
with the accessory factors for viral translation in the late infec-
tion stage in our model. Unlike viral transcription and replication, 
viral translation is directly affected by the decay of host factors 
since it depends entirely on host machinery. In the early infection, 
host mRNAs outnumber viral mRNAs and thereby successfully 
compete for the host translation machinery. However, the newly 
synthesized M proteins inhibit the host transcription initiation 
and the export of host mRNAs from the nucleus to the cytoplasm 
(Lyles 2000), thereby causing a gradual shift in translation from 
host mRNAs to viral mRNAs. For our model, we assumed that 
the potency of the inhibition by the M protein was independent 
of the type of cell and its differentiation state (Lyles et al. 1996), 
and we developed an empirical formula using available experi-
mental data from the literature (Lyles et al. 1996) to account for 
the competition between host and viral mRNAs for ribosomes. 
Lyles et al. co-transfected the host cells with VSV M mRNA and 
chloramphenicol acetyl transferase (CAT) plasmid DNA, and then 
they quantified the expression of CAT based on its activity, as a 
function of the expression of VSV M protein (Lyles et al. 1996). In 
their experiment, the gene expression of CAT was more reduced at 
higher M protein expression levels. We assume that the decrease 
in the expression of CAT (or its activity decrease) is proportional 
to the decrease in the occupancy of host mRNAs by the transla-
tion machinery. Using their experimental data, the occupancy of 
host mRNAs by the translation machinery is correlated with the 
number of newly synthesized M proteins in the cytoplasm: 

ribhost = 1.88 × 103(Mcell (1 − condM))−0.9582, (26)
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where rib_host is the fraction of the translation machinery asso-
ciated with host mRNAs and Mcell is the total number of newly 
synthesized M proteins per cell.

Considering the decay of host factors and the competition 
between host and viral mRNAs, we could derive a formula to quan-
tify the number of fully functional ribosomes that are available for 
the viral protein synthesis over time post-infection (nribavail): 

nribavail = nrib (1 − rib_host) fdec, (27)

where nrib denotes the total concentration of ribosomes whether 
they incorporate all the required accessory factors for their trans-
lation function.

Although the ribosomes distribute into membrane-bound and 
cytoplasmic forms, each class supporting the syntheses of the 
viral G protein and the other four viral proteins (N, P, M, and 
L), respectively, we treated the ribosomes in our model as one 
population.

Initial condition for simulation
The initial condition for our simulation is set by a fixed number of 
infectious extracellular virus particles per cell (Vex(0)). At time zero 
(t = 0), the number of bound virus particles and the level of all viral 
components within cells are zero. In our model, binding of extra-
cellular virus particles to cells reduces their level (Equation 1), 
and an encapsidated genome and stoichiometric amounts of viral 
proteins (Table S2 (Supporting Information) (Thomas et al. 1985; 
Wagner 1987)) are then immediately released from each bound 
virus particle to the cytoplasm. Specifically, we assume that all 
N proteins from a bound virus particle are released as a form 
of encapsidated genome complex. Downstream processes, begin-
ning with transcription, are then initiated. In our simulation, viral 
infection starts with rib_host = 0.99 (with rib_host = 0.9, ∼0.9995 
simulations showed the same results). Other key model parame-
ters for simulation are summarized in Table S1 (Supporting Infor-
mation). In addition, a nomenclature list is shown in Table S3 
(Supporting Information).

Computation of fitness dependence on mutations
In the base-case or wild-type infection setting, we simulated the 
one-step growth of VSV on BHK cells as previously done (Lim et al. 
2006). Eighteen parameters of the model associated with molecu-
lar processes and mechanisms were candidates for perturbation 
to simulate virus variants arising from mutation. These include 
five attenuation factors that characterize the fractional release 
of the viral RNA-dependent RNA polymerases from the negative-
sense single-stranded RNA genome as it transcribes viral mRNA, 
creating a gradient in time and level of viral gene expression; 
five degradation constants associated with the translated viral 
proteins of the five encode genes (nucleocapsid N, polymerase P, 
matrix M, glycoprotein G, and large L); two degradation rates for 
the mRNA (one constant for all genes) and the nucleocapsids; an 
elongation rate for the viral polymerase; and a kinetic constant for 
the binding and entry of the initial infecting virus particle. Addi-
tional parameters were the spacing between viral polymerases, 
the fraction of M proteins bound to the plasma membrane, the 
ratio of rate constants for the associations of M proteins and poly-
merases with genomic nucleocapsids, and the relative strength of 
the anti-genomic promoter to the genomic promoter. The model is 
a system of differential and algebraic equations that uses a fourth-
order Runge–Kutta method with a timestep of 15 s to simulate a 
25-h infection. The model further accounts for consumption of 
essential host resources over the course of infection.

We selected eleven of the eighteen virus-associated parameters 
of the VSV model, considering how their perturbations could be 
plausibly linked to a deleterious mutation; for example, increasing 
an individual intergenic attenuation factor or protein degradation 
rate had a negative impact on both the virus yields and produc-
tion rates from the simulated one-step growth. To create different 
classes of mutation, each parameter range was linearly divided 
into five subranges. For example, 𝜂n,wt = 1, so the parameter range 
was (0, 1). A Class 1 severity, the lightest, would be (0.8, 1). A class 5 
severity, where the largest reduction in fitness was seen, would be 
(0, 0.2). Initially, we followed the standard set by You et al., where 
all five classes were included in the simulations and subsequent 
analysis. But initial testing gave more severe reductions in yield 
and rate than those seen by You et al., such that a mutant with 
several Class 3 mutations would likely have low to zero fitness; to 
avoid such potentially lethal mutations, we narrowed the parame-
ter ranges to class 1 and 2 mutations, dividing these two subranges 
into five new ones. For example, 𝜂n,wt = 1 would have the five ranges 
between 1.0 and 0.60, with each range spanning 0.08.

A simulation of a VSV particle carrying a genome that had n
mutations in the specified k class of severity was built by ran-
domly choosing n parameters from the available set and then 
multiplying the wild-type parameter by a randomly chosen con-
stant from the k severity level. The constant was selected from 
a uniform distribution that spanned the k severity subrange. For 
each unique pair (n, k), where 1 ≤ k ≤ 5 and 1 ≤ n ≤ 11, 500 sim-
ulations were run using a distributed network of computers. The 
random number generation was seeded by identifiers unique to 
every set of trials, ensuring that sets of parameters and constants 
were not repeated. Each simulated mutant growth was used to 
estimate mutant yields and rates, which were normalized to their 
wild-type values to give wgrowth and wspread, and Equation 1 was 
fit to the logarithm of each fitness correlate by minimizing the 
sum-squared-error to determine the 𝛼 and 𝛽 parameters for each 
fitness type at each severity level. Each mutation was tested prior 
to the simulations to ensure that wi ≤ wi,wt, so when applying the 
power law from Equation 1, log (wi) ≤ 0 . The model and subse-
quent analysis was performed in MATLAB using the computed 
resources and assistance of the University of Wisconsin-Madison 
Center for High Throughput Computing in the Department of 
Computer Sciences. All codes written in support of this work 
are publicly available at https://github.com/bfschwab/Epistasis-
VSV.git
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