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Background: Exercise is increasingly recognized as a key component of Parkinson’s
disease (PD) treatment strategies, but the underlying mechanism of how exercise affects
PD is not yet fully understood.

Objective: The activation likelihood estimation (ALE) method is used to study the
mechanism of exercise affecting PD, providing a theoretical basis for studying exercise
and PD, and promoting the health of patients with PD.

Methods: Relevant keywords were searched on the PubMed, Cochrane Library, and
Web of Science databases. Seven articles were finally included according to the
screening criteria, with a total sample size of 97 individuals. Using the GingerALE
3.0.2 software, an ALE meta-analysis was performed using seven studies that met
the requirements, and the probability of the cross-experiment activation of each
voxel was calculated.

Results: The meta-analysis produced seven clusters, and major activations were found
in the cerebellum, occipital lobe, parietal lobe, and frontal lobe brain regions.

Conclusion: Exercise for PD mainly results in the enhanced activation of the cerebellum,
occipital lobe, parietal lobe, and frontal lobe. Exercise for PD does not cause a change
in the activation of a single brain area, and the observed improvement may result from
coordinated changes in multiple brain areas.

Keywords: exercise, Parkinson’s disease, brain imaging, meta-analysis, activation likelihood estimation

INTRODUCTION

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder,
affecting 2–3% of older adults. Its incidence and prevalence are highest among people aged
≥65 years, making the disease a significant public health burden for older adults (Poewe
et al., 2017). The clinical symptoms of PD include tremors, rigidity, bradykinesia, and postural
instability. In addition to these motor impairments, patients may also experience various
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non-motor symptoms, including psychiatric symptoms. Both of
these symptom types increase mortality, profoundly affecting
human health and quality of life (Takamiya et al., 2021).

The main treatments for PD involve pharmacological and
surgical interventions; however, some patients are not sensitive
or responsive to levodopa drugs, and some may develop
motor complications after the long-term use of dopaminergic
drugs. The symptoms of PD are difficult to adequately control
with these treatments due to the incurable and progressively
neurodegenerative nature of diseases (Álvarez-Bueno et al., 2021;
Ge et al., 2021). Currently, exercise is increasingly recognized
as a key component in the treatment strategy for PD and has
received significant attention due to its easy accessibility, low
cost, and low technical equipment requirements (Ji et al., 2021;
Morley et al., 2021). Many clinical studies and meta-analyses
have shown that exercise promotes the recovery of motor and
non-motor symptoms in patients with PD (da Silva et al., 2018).
For example, implementing an exercise program improves the
gait, balance, and motor capacity of patients with PD and
their quality of life (Gilat et al., 2021), and resistance exercises
can promote neuroplastic changes within the central nervous
system of patients with PD to improve cognitive functioning
(Chow et al., 2021).

The mechanism of exercise for treating PD may be related
to changes in the dopaminergic system, brain, and glial-derived
neurotrophic factors, and the modulation of neuroinflammation
(Earhart and Falvo, 2013). In addition, it may also increase
neurotrophic signaling and promote neurogenesis by changing
the cerebral vascular system (Sacheli et al., 2019). Although the
therapeutic mechanism of exercise has been broadly described,
most studies only discuss this at the molecular level, and the
neurobiological mechanism remains unclear. In recent years,
with the continuous progress in functional imaging technologies,
an increasing number of studies have explored the mechanism
of exercise for treating PD through neuroimaging technology
(Weingarten et al., 2015; Myers et al., 2018). Among them,
functional MRI (fMRI) is widely used due to its advantages of
being non-invasive, non-radioactive, and having a relatively high
spatial resolution, which allows the study of PD to be extended
to the level of brain function/neurotic material metabolism
and to understand further the pathogenesis of PD motor
and non-motor symptoms (Bidesi et al., 2021; Mitchell et al.,
2021).

The activation likelihood estimation (ALE) is one of the
most commonly used meta-analysis methods in the field of
brain imaging in recent years (Eickhoff et al., 2010). The basic
principle of ALE is to calculate the probability that each voxel
is activated under certain conditions in each experiment and
to statistically analyze these data (Wager et al., 2007). Using
the activation probability as an indicator, the probability of the
cross-experiment activation of each voxel was calculated, and the
hypothesis testing was performed on this possibility to obtain a
general conclusion of the execution control of the relevant brain
activation area in multiple experiments (Isherwood et al., 2021).

The purpose of our study was to review the published
literature on exercise intervention for PD and to use ALE
for analyzing the included literature, exploring the neural

mechanism of exercise affecting PD, expanding our knowledge
of exercise and PD-related brain science research, and deepening
our understanding of neuroscience. We aimed to provide
a theoretical basis for exercise in promoting the health of
patients with PD.

MATERIALS AND METHODS

Literature Search
This meta-analysis was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Shamseer et al., 2015).

We searched the PubMed, Cochrane Library, and Web of
Science databases for relevant articles published on September
20, 2021, using exercise-related keywords such as “exercise,
training, physical activity, physical therapy, fitness, traditional
Chinese exercise, swimming, yoga, running, walking, cycling,
and Tai Chi,” PD-related keywords such as “Parkinson and PD,”
and neuroimaging-related keywords such as “fMRI, functional
magnetic resonance imaging, neuroimaging, brain, cortical, and
neural.” There were no restrictions on language or publication
status. The reference lists of studies were also reviewed to identify
other relevant eligible studies.

Inclusion and Exclusion Criteria
The inclusion criteria for this study were in the order of the
population, intervention, comparator, outcome, and study design
(PICOS) formulation.

1) Studies clearly describing patients suffering from PD
(diagnosed using established clinical diagnostic criteria);

2) The intervention involved any form of exercise during
the hospital course of PD. Examples of well-recognized
types of exercise include training, physical activity, physical
therapy, fitness, traditional Chinese exercise, swimming,
yoga, running, walking, cycling, and Tai Chi;

3) The comparators were those who did not undergo exercise
intervention during PD;

4) Studies which included functional neuroimaging
measurement;

5) Only literature that used standardized Montreal
Neurological Institute (MNI) or Talairach coordinates to
represent the peak coordinates of the brain area;

6) Studies using whole-brain analysis instead of a region of
interest (ROI) analysis;

7) Observational studies, randomized controlled trials, and
clinical trials were included.

The exclusion criteria were as follows: literature reviews,
animal studies, studies involving in vitro experiments, and non-
randomized controlled studies.

Two researchers independently conducted a systematic review
using the same criteria and included the study based on
agreement. When there was a disagreement, a third investigator
joined and helped make the final decision.
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Data Extraction
Data extraction was performed independently from the included
studies using an established data collection form. The following
information was obtained: name of the author, publication year,
patient information (diagnostic criteria and age), treatment,
imaging conditions, and coordinates provided in standard space
(i.e., Talairach and Tournoux or MNI space).

Statistical Analysis
All included studies were assessed using the Covidence Quality
Assessment Template after a quality check. In this study,
GingerALE 3.0.2 and Mango 4.1 software were used to
analyze the data.

Ginger ALE 3.0.2 software was used for ALE meta-analysis.
The ALE meta-analysis converts the coordinates reported in the
MNI space standard to Talairach coordinates using Lancaster,
which is carried out under the Talairach space standard. At the
same time, the inference was made at the cluster level, resulting in
a better balance between the sensitivity and specificity of the study
(Eickhoff et al., 2012). According to the activation coordinates,
a three-dimensional Gaussian model was used to establish an
ALE map. Based on the recommendations of the ALE instruction
manual, the cluster-forming threshold was set at P < 0.05, to
overcome the false-positive problems of multiple comparisons,

the false discovery rate method was used for correction, and the
minimum cluster volume was set to 200 mm3. Using Mango
4.1 software, the threshold ALE image was superimposed on
the standardized anatomical template in the Talairach space to
visualize the results.

In the case of a small number of included studies,
implementing a meta-analysis requires a certain degree of
vigilance (Valentine et al., 2010). To avoid bias, we distinguished
significant results from insignificant peaks, and only clustering
results are discussed in detail in our study.

RESULTS

Study Selection
A total of 2,874 publications were selected through databases
for initial screening, and among them, 1,201 duplicates were
removed, and 1,651 articles were excluded as they did not satisfy
the inclusion criteria. As a result, through the full text of 22
screened studies, only seven fully satisfied all the criteria for
inclusion in the meta-analysis (Shine et al., 2013; Duchesne et al.,
2016; Agosta et al., 2017; Kelly et al., 2017; Messa et al., 2019;
Segura et al., 2020; Silva-Batista et al., 2020). A flowchart of this
process is shown in Figure 1.

FIGURE 1 | Workflow for selection process.
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TABLE 1 | Characteristics of the 7 included studies.

Study Number of participants Mean age (SD) Treatment Imaging conditions Coordinates

Segura et al.,
2020

6 57.8 Bicycle fMRI MNI

Duchesne
et al., 2016

19 59 (7.11) Exercise fMRI MNI

Silva-Batista
et al., 2020

15 64.6 (10.5) Resistance training fMRI MNI

Kelly et al.,
2017

17 66.6 (5.8) Exercise fMRI MNI

Agosta et al.,
2017

12 69.0 (8.0) Exercise fMRI MNI

Messa et al.,
2019

10 69.1 (6.5) Exercise fMRI MNI

Shine et al.,
2013

18 66.8 (8.2) Walking fMRI MNI

Main Clusters
The meta-analysis yielded six clusters with four peaks in the first
and second clusters and two peaks in the other clusters. The full
results are detailed in Tables 1, 2 and Figure 2.

The first cluster from (x, y, z = −52, 12, −4) to (x, y,
z = −8, 36, 36), centered at (x, y, z = −34.5, 25.1, 16.6)
with four peaks and a max value at (x, y, z = −44, 24, 28)
(ALE = 0.0091, P = 4.2159907 × 10−5, Z = 3.93), was located
in the left brain hemisphere, with 56.9% frontal lobe activation
and 43.1% sub-lobar activation. Anatomically, this corresponds
to the middle frontal gyrus (40.5%), caudate (31.8%), precentral
gyrus (10.6%), claustrum (7.7%), inferior frontal gyrus (5.8%),
and insula (3.3%). In terms of functional areas, these were
mainly Brodmann area 9 (44.9%), the caudate body (21.5%),
the caudate head (10.2%), Brodmann area 46 (9.1%), Brodmann
area 13 (3.3%), and Brodmann area 45 (2.9%). This corresponds
to the activation of the left cerebrum frontal lobe in the
middle frontal gyrus.

The second cluster from (x, y, z = −22, −30, 42) to (x, y,
z = 14, 4, 78), centered at (x, y, z = −3.6, −13.8, 60.7) with four
peaks and a max value at (x, y, z = 4, −16, 62) (ALE = 0.0102,
P = 1.7117862 × 10−5, Z = 4.14), was located in the left brain
hemisphere (60.1%) and right brain hemisphere (39.9%), with
85.8% frontal lobe activation, 13% limbic lobe activation, and
1.2% parietal lobe activation. Anatomically, this corresponds
to the medial frontal gyrus (70%), paracentral lobule (14.4%),
cingulate gyrus (12.3%), postcentral gyrus (1.4%), and precentral
gyrus (1.4%). In terms of functional areas, these are mainly
Brodmann area 6 (81.5%), Brodmann area 24 (10.3%), Brodmann
area 31 (5.3%), Brodmann area 3 (1.4%), and Brodmann area
4 (1.4%). This corresponds to activation of the left and right
cerebrum, frontal lobe, and medial frontal gyrus.

The third cluster from (x, y, z = −46, −2, −24) to (x,
y, z = −10, 24, 0), centered at (x, y, z = −26.8, 11.6, −12)
with two peaks and a max value at (x, y, z = −18, 6, −12)
(ALE = 0.0089, P = 5.1213978 × 10−5, Z = 3.88), was located
in the left brain hemisphere, with 77.5% sub-lobar activation
and 21.8% frontal lobe activation. Anatomically, this corresponds
to the lentiform nucleus (53.5%), inferior frontal gyrus (16.9%),

insula (16.4%), subcallosal gyrus (5.2%), extranuclear (3.1%), and
claustrum (3.1%). In terms of functional areas, these were mainly
putamen (42%), Brodmann area 47 (18.9%), Brodmann area 13
(16.6%), globus pallidus (10.8%), and Brodmann area 34 (3.8%).
This corresponds to the activation of the left cerebrum sub-lobar
lentiform nucleus.

The fourth cluster from (x, y, z = −14, −60, −24) to (x,
y, z = 14, −44, −4), centered at (x, y, z = −0.1, −52.5,
−14) with two peaks and a max value at (x, y, z = −6, −52,
−12) (ALE = 0.0076, P = 2.712689 × 10−4, Z = 3.46), was
located in the left cerebellum (58.2%) and right cerebellum
(41.8%), with 97% anterior lobe activation and 3% posterior lobe
activation. Anatomically, this corresponds to the culmen (76.8%),
cerebellar lingual (18.9%), declive (3%), and fastigium (1.3%).
This corresponds to activations of the left and right cerebellum
anterior lobe culmen.

The fifth cluster from (x, y, z = 16, −92, −18) to (x, y,
z = 34, −74, 6), centered at (x, y, z = 25.5, −83.5, −5.5)
with two peaks and a max value at (x, y, z = 24, −85, −10)
(ALE = 0.005, P = 0.0041320226, Z = 2.64), was located in the
right brain hemisphere (62%) and right cerebellum (38%), with
62% occipital lobe activation and 38% posterior lobe activation.
Anatomically, this corresponds to the lingual gyrus (38.9%), live
(38%), fusiform gyrus (15.8%), middle occipital gyrus (5.4%), and
inferior occipital gyrus (1.4%). In terms of functional areas, these
were mainly Brodmann area 18 (46.6%) and Brodmann area 19
(15.4%). This corresponds to the activation of the right cerebrum
and right cerebellum occipital lobe, lingual gyrus, and posterior
lobe lingual declive.

The sixth cluster from (x, y, z = −58, −54, 32) to (x, y,
z = −38, −32, 56), centered at (x, y, z = −48, −43.2, 44.4)
with two peaks and a max value at (x, y, z = −46, −46,
40) (ALE = 0.008, P = 1.3964054 × 10−4, Z = 3.63), was
located in the left brain hemisphere, with parietal lobe activation.
Anatomically, this corresponds to the inferior parietal lobule
(82.2%) and supramarginal gyrus (17.8%). The functional area
involved here was Brodmann area 40 (100%). This corresponds
to the activation of the left cerebrum, parietal lobe, and inferior
parietal lobule.
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TABLE 2 | Clusters and peaks.

Cluster # x y z ALE Area Brodmann Hemisphere

1 −44 24 28 0.009119155 Frontal lobe. Middle frontal gyrus. 9 L

1 −16 24 4 0.00773276 Sub-lobar. Caudate. L

1 −44 28 14 0.007248954 Frontal lobe. Middle frontal gyrus. 46 L

1 −26 20 10 0.004873995 Sub-lobar. Claustrum. L

2 4 −16 62 0.010242551 Frontal lobe. Medial frontal gyrus. 6 R

2 −6 −22 72 0.007914808 Frontal lobe. Medial frontal gyrus. 6 L

2 −12 −4 50 0.005071956 Frontal lobe. Medial frontal gyrus. 6 L

2 −14 −10 56 0.00495608 Frontal lobe. Medial frontal gyrus. 6 L

3 −18 6 −12 0.008865426 Sub-lobar. Lentiform nucleus. L

3 −38 16 −8 0.007668495 Sub-lobar. Insula. 13 L

4 −6 −52 −12 0.007571907 Anterior lobe. Culmen. L

4 6 −52 −16 0.007520604 Anterior lobe. Culmen. R

5 24 −85 −10 0.0049557 Occipital lobe. Fusiform gyrus. 19 R

5 27 −82 −1 0.004842124 Occipital lobe. lingual gyrus. 18 R

6 −46 −46 40 0.00796068 Parietal lobe. Supramarginal gyrus. 40 L

6 −52 −40 50 0.007166639 Parietal lobe. Inferior parietal lobule. 40 L

7 −21 −82 −16 0.0049557 Posterior lobe. declive. L

8 60 −26 −18 0.007731717 Temporal lobe. Middle temporal gyrus. 21 R

9 58 −6 10 0.007144281 Frontal lobe. Precentral gyrus. 43 R

10 6 −42 14 0.006627638 Limbic lobe. Posterior cingulate. 29 R

11 8 −62 40 0.006627638 Parietal lobe. Precuneus. 7 R

12 −18 −44 50 0.006627638 Parietal lobe. Precuneus. 7 L

13 30 −16 56 0.007144281 Frontal lobe. Precentral gyrus. 4 R

14 −33 −67 −19 0.004731151 Posterior lobe. Declive. L

15 11 25 3 0.007424954 Sub-lobar. Caudate. R

16 6 −30 −19 0.007497888

17 45 20 −8 0.007913446 Sub-lobar. Insula. 13 R

18 38 −54 1 0.007787312 Limbic lobe. Parahippocampal gyrus. 19 R

19 −36 −19 65 0.004842124 Frontal lobe. Precentral gyrus. 4 L

20 −30 12 −38 0.008291761 Temporal lobe. Superior temporal gyrus. 38 L

21 16 −46 −54 0.008291758

22 −20 −42 −52 0.008291758 Posterior lobe. Cerebellar tonsil. L

23 28 −72 −38 0.008291758 Posterior lobe. Inferior semi-lunar lobule. R

24 30 12 −36 0.008291758 Temporal lobe. Superior temporal gyrus. 38 R

25 −34 −16 −12 0.008291758 Temporal lobe. Caudate. L

26 60 14 28 0.008169615 Frontal lobe. Inferior frontal gyrus. 9 R

FIGURE 2 | Slice view of clusters. 1, 2, 3, 4, 5, 6, and 7, respectively, indicate activation clusters that have reached a significant activation level.
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DISCUSSION

Our study used an ALE meta-analysis to elucidate that the
activation of brain regions affected by exercise in PD is mainly
located in the left and right cerebellum, left middle frontal gyrus,
left and right medial frontal lobes, right occipital lobes, and left
and right parietal lobes.

Effect of Exercise on the Cerebellum of
Patients With Parkinson’s Disease
The cerebellum is the main structure that affects movement,
cognition, and emotional behavior. It is well known that the
cerebellum affects motor and cognitive functions through the
cerebellar-thalamic-cortical circuit (Pierce and Péron, 2020).
Studies have shown that multiple areas of the cerebellum in
patients with PD are atrophied, the subthalamic nucleus has
lost its ability to regulate connections in the cerebellum, and
there are extensive cerebellar-cortical network abnormalities
(Shi et al., 2021). In patients with PD, the volume of cerebellar
gray matter decreases, the connections within the cerebellum
and between the cerebellum and the sensory-motor network
increase, the connections between the cerebellum and the
caudate nucleus, thalamus, and amygdala increase, and
the connections between the auxiliary motor area and the
cingulate gyrus decrease (Tuovinen et al., 2018). In rats with
PD following aerobic exercise, the functional reorganization
of brain activity was observed in the cerebellum, thereby
improving their exercise capacity (Wang et al., 2015).
Neuroimaging studies have also found that patients with
PD change the activation of the cerebellum during exercise,
motor learning, and rest. The cerebellum and its circuits play
a vital role in PD tremors (Duchesne et al., 2016). Therefore,
exercise may reorganize the function of the cerebellum
and its circuits to improve motor function and cognitive
dysfunction after PD.

Effect of Exercise on the Occipital,
Frontal, and Parietal Lobes of the Brain
in Patients With Parkinson’s Disease
The occipital lobe is highly related to basic cognitive processing,
such as visual deficits and visual attention (Göttlich et al., 2013).
Studies have found that the executive function is mainly related
to the metabolism of the parieto-occipital junction and frontal
lobe, the mnemonic function is related to the metabolism of the
parietal lobe, the visuospatial function is related to the occipital
parietal lobe, and language is related to the metabolism of the
frontal lobe. Decreased metabolism in the frontal and parietal
regions and the parieto-occipital lobe can lead to executive
dysfunction and cognitive impairment in patients with PD
(Abe et al., 2003; Garcia-Garcia et al., 2012). Learning motor
tasks in patients with PD mainly relies on the compensatory
cortical circuit involving the prefrontal lobe area, and it also
produces changes in the brain activation of the cerebellum and
prefrontal lobe area. Physical exercise affects the plasticity of the
brain and has a significant impact on the parietal and frontal

cortex, as well as the anterior and transverse tracts between the
frontal and parietal regions, i.e., the areas involved in cognition
and daily life functions (Maidan et al., 2017; da Silva et al.,
2018). Therefore, exercise may affect the frontal cortex circuit
and parieto-occipital frontal metabolism, thereby affecting brain
plasticity and improving the non-motor symptoms of PD.

From the abovementioned analysis, it can be observed that
the cerebellum, occipital lobe, parietal lobe, and frontal lobe
brain areas are the important areas for exercise interventions
in the treatment of PD. There is no current consensus on the
neural mechanism of exercise that promotes the recovery of
PD. This study performed an ALE meta-analysis of the included
literature and achieved cross-experimental consistency, which
not only overcomes the limitations of a single study but also
increases statistical power, and clarifies the neural mechanism of
exercise to improve PD; i.e., exercise that enhances the activation
of the cerebellum, occipital lobe, parietal lobe, and frontal lobe
promotes the improvement of PD.

This meta-analysis included seven studies on the brain
activation patterns of PD that met the requirements of exercise
intervention, but overall, the number of published articles is
relatively small, which shows that there are relatively few studies
on exercise and brain imaging in PD. In this exploratory research
and data analysis based on brain imaging studies, the ALE
guidebook-recommended threshold was set at P < 0.001, and
the use of a non-corrected P-value method was used. As the
number of neuroimaging studies in this field gradually increases,
more literature can be included in the meta-analysis, and more
stringent multiple comparison correction methods, such as false
discovery rate (FDR) and family-wise error rate (FWE), can
be verified to provide a more theoretical basis for exercise
to promote the improvement of PD symptoms. The exercise
intervention methods in this study involved various exercises,
and the exercise duration and intensity are also inconsistent,
but the results still show that exercise generally affects the
brain activation patterns of PD. In conclusion, exercise for PD
treatment enhances the activation of the cerebellum, occipital
lobe, parietal lobe, and frontal lobe. The improvements conferred
by exercise for PD do not cause a change in the activation of
a single brain area but may result from coordinated changes in
multiple brain areas.
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