
����������
�������

Citation: Huang, Y.-H.; Lian, W.-S.;

Wang, F.-S.; Wang, P.-W.; Lin, H.-Y.;

Tsai, M.-C.; Yang, Y.-L. MiR-29a

Curbs Hepatocellular Carcinoma

Incidence via Targeting of HIF-1α and

ANGPT2. Int. J. Mol. Sci. 2022, 23,

1636. https://doi.org/10.3390/

ijms23031636

Academic Editors: Nam Deuk Kim

and Simona Gurzu

Received: 22 December 2021

Accepted: 28 January 2022

Published: 31 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

MiR-29a Curbs Hepatocellular Carcinoma Incidence via
Targeting of HIF-1α and ANGPT2
Ying-Hsien Huang 1,2,† , Wei-Shiung Lian 3,4,†, Feng-Sheng Wang 3,4, Pei-Wen Wang 3,5, Hung-Yu Lin 6 ,
Ming-Chao Tsai 7 and Ya-Ling Yang 2,8,*

1 Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Chang, Kaohsiung 833, Taiwan;
yhhuang123@yahoo.com.tw

2 College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
3 Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital,

Kaohsiung 833, Taiwan; lianws@gmail.com (W.-S.L.); wangfs@ms33.hinet.net (F.-S.W.);
wangpw@cgmh.org.tw (P.-W.W.)

4 Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung
Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

5 Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University
College of Medicine, Kaohsiung 833, Taiwan

6 Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
linhungyu700218@gmail.com

7 Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial
Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; tony0779@gmail.com

8 Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University
College of Medicine, Kaohsiung 833, Taiwan

* Correspondence: inr453@cgmh.org.tw
† These authors contributed equally to this work.

Abstract: A high-fat diet is responsible for hepatic fat accumulation that sustains chronic liver damage
and increases the risks of steatosis and hepatocellular carcinoma (HCC). MicroRNA-29a (miR-29a), a
key regulator of cellular behaviors, is present in anti-fibrosis and modulator tumorigenesis. However,
the increased transparency of the correlation between miR-29a and the progression of human HCC is
still further investigated. In this study, we predicted HIF-1α and ANGPT2 as regulators of HCC by
the OncoMir cancer database and showed a strong positive correlation with HIF-1α and ANGPT2
gene expression in HCC patients. Mice fed the western diet (WD) while administered CCl4 for
25 weeks induced chronic liver damage and higher HCC incidence than without fed WD mice. HCC
section staining revealed signaling upregulation in ki67, severe fibrosis, and steatosis in WD and
CCl4 mice and detected Col3a1 gene expressions. HCC tissues significantly attenuated miR-29a
but increased in HIF-1α, ANGPT2, Lox, Loxl2, and VEGFA expression. Luciferase activity analysis
confirms that miR-29a specific binding 3′UTR of HIF-1α and ANGPT2 to repress expression. In
summary, miR-29a control HIF-1α and ANGPT2 signaling in HCC formation. This study insight
into a novel molecular pathway by which miR-29a targeting HIF-1α and ANGPT2 counteracts the
incidence of HCC development.

Keywords: miR-29a; hepatocellular carcinoma; HIF-1α; ANGPT2

1. Introduction

Hepatocellular carcinoma (HCC) is considered the sixth most common cancer and the
second principal detriment of cancer-related deaths worldwide, accounting for approxi-
mately 841,000 new cases and 782,000 deaths every year [1,2]. Risk factors include viral
hepatitis B, hepatitis C, alcoholic fatty liver, non-alcoholic fatty liver disease (NAFLD), and
non-alcoholic steatohepatitis (NASH) are ultimately the causes of liver fibrosis and cirrhosis,
and nearly 70–80% will convert into HCC patients [3,4]. Solid tumors have a feature on
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insufficient oxygen supply and create hypoxia microenvironment to induce many abnor-
malities with prognostic consequences. Hypoxic is a hallmark of cancer and a key factor
for angiogenesis and dysregulation of the immune response [5]. HCC exhibited upregula-
tion of hypoxia-inducible factors (HIFs) and mediated neovascular and lymphatic vessel
formation process to create an appropriate niche, allowing tumor progress, multiplying,
and disorganized architecture. Emerging pieces of evidence suggest that antiangiogenic
drugs with novel immuno-oncology drugs or other drugs with novel mechanisms of action
would be an essential way to explore diverse therapeutic strategies [6].

MicroRNAs (MiRs) are approximately 22 nucleotides in length, short non-coding
RNAs that function in a pathway-centric manner by targeting multiple genes and are
potential therapeutic targets for HCC [7]. Previously, we have illustrated the biolog-
ical role of miR-29a in the context of hepatic disorders, such as liver fibrosis [8–10],
NAFLD [11–13], and NASH [14]. Mounting evidence has unveiled that NAFLD and NASH
connote progressive liver injury leading to liver cirrhosis and hepatocellular carcinoma [15].
We employ the Gene Expression Omnibus (GEO) dataset corroborated the differential
expression and diagnostic value of miR-29a [16]. Moreover, we have previously uncovered
an anti-HCC effect of miR-29a via comprehensively suppressing the expression of lysyl oxi-
dase family members, Lox, Loxl2, and vascular endothelial growth factor A (VEGFA) [16].
VEGFA plays a significant role in angiogenesis, while angiopoietin (ANGPT) growth fac-
tors, such as ANGPT1 and ANGPT2, regulate vascular stabilization and remodeling during
angiogenesis [17].

The transcription factor hypoxia-inducible factor-1 alpha (HIF-1α) has been charac-
terized as the master regulator of cellular adaption to hypoxia in tumorigenesis microen-
vironment [18], which acts to promote various gene expressions, including angiogenic
inducer VEGFs, VEGFRs, and ANGPTs [19]. Low oxygen tension-dependent HIF-1α and
constitutively expressed HIF-1β form active HIF-1 [20]. HIF-1α exerts transcriptional
activity by directly binding to downstream target genes, like VEGF and VEGFR1 gene
promoters at the hypoxia-responsive elements (HREs) site and induce the transcription of
VEGFA and VEGFR1 genes. Excessive HIF-1α dominates the maintenance of the tumor
microenvironment, and studies have shown that inhibiting HIF-1α-binding protein CDK5
affected HIF-1α activity could effectively suppress the angiogenesis of tumorigenic [21].

Hypoxia is a hallmark of solid cancers, especially HCC mediating metabolic repro-
gramming in drug resistance in HCC [22]. Inasmuch as Lin and Wei et al., respective
mentioned that HIF-1α was associated with the prognostic value of patients with HCC fol-
lowing trans-arterial chemoembolization (TACE) [23,24]. Concerning the molecular basis of
miR-29a at the post-transcriptional level, one bioinformatic survey predicted that miR-29a
targets the 3′-untranslated region (3′-UTR) of HIF-1α and ANGPT2. As miR-29a possesses
an emerging role in HCC, whether it is implicated in the regulation of HIF-1α in the context
of HCC remained unanswered. We demonstrate that miR-29a regulates the expression
of HIF-1α and ANGPT2 in vivo and in vitro, offering novel insights into the miR-29a -
involved chronic liver disease in the developing of a practical diagnostic/prognostic panel
for HCC.

2. Results
2.1. MIR-29a Is a Significant Suppressor of HIF1A and ANGPT2 in HCC

Given previews results, we delineated the contribution of miR-29a as a principal
element that affected pathogenesis of chronic liver disease and HCC [16]. TargetScan
(version 7.2) and the GSCALite platform was used to prognostic miR-29a regulated tracks
and define the edge of the gene network (Figure 1). Prediction networks showed HIF1A and
ANGPT2 as candidate target genes of miR-29a. Thus, we examined HIF1A and ANGPT2
in HCC patients and matched normal data to evaluate their roles in HCC progression.
HIF1A and ANGPT2 gene expression were characterized by managing the bioinformatics
web-based platform UALCAN. The mRNA expression data were obtained from RNA-
seq profiles and generated from the TCGA (The Cancer Genome Atlas) datasets. The
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results showed that, compared with normal clinical patients, the expression of HIF1A and
ANGPT2 in HCC was upregulated (Figure 2A,B), and was correlated with decreased HCC
patient survival rate by the Kaplan-Meier method analysis.
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Figure 1. Interpretation of miR-29a regulates HIF1A and ANGPT2 expression. The OncoMir database
analysis delineates the miR-29a interaction edge that suppressed the expression of HIF1A, ANGPT2,
and VEGFA.

2.2. Western Diet (WD) Combine Carbon Tetrachloride (CCl4) Treated Promote Chronic Liver
Disease and Cancer Formation

To generate a clinical comparative animal model and accelerated progress of HCC, we
followed administration procedures described by Tsuchida et al. [25], which consists of mul-
tiple treated CCl4 with Western diet feed as the WD/CCl4 group (Figure 3A). Feed WD was
shown to enhance and accelerate the roughness of fur, but there was no significant differ-
ence in body weight compared with the normal diet (ND) plus CCl4 group (Figure 3B,C). A
significant discrepancy in liver pathology was observed between ND/CCl4 and WD/CCl4
groups. After 25 weeks of WD/CCl4 treatment, nodules were obtained in the liver tissue
of mice, indicating that hepatocellular carcinoma (HCC) was induced and successfully
established an animal disease model (Figure 3D). To test whether cancer-related gene ki67
involve in HCC growth and proliferation. We performed immunohistological analysis,
demonstrated that liver tissue from the WD/CCl4 group displayed strong signaling of
ki67 and quantified positively stained cells (Figure 3E). Masson staining showed that the
WD/CCl4 group also resulted in severe liver fibrosis and infiltration of inflammatory cells
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under the disordered lobular structure (Figure 3F). In addition, we further performed qRT-
PCR to detect the expression level of Col3al, which confirmed that the liver tissue of the
WD/CCL4 mice had excessive collagen deposition in liver tissue compared to ND/CCl4
mice (Figure 3G).
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Figure 2. The HIF1A and ANGPT2 expression were committed on HCC patients. (A,B) The HIF–1
and ANGPT2 expression levels in human HCC and normal tissue by regained of TCGA cohort
database. (C,D) The HIF–1 and ANGPT2 expression levels are significantly correlated with the
probability of survival in HCC patients by Kaplan–Meier survival analysis. *** p-value < 0.001 was
comparative between the normal and HCC group.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 3. Western diet (WD) and carbon tetrachloride (CCl4) treatment promote HCC formation in 
the mouse. (A) Schematic diagram of establishing a mouse HCC process. (B,C) Observation of 
appearance and body shape of mice in HCC and the range of weight change in time course. (D) 
Representative liver tissue macroscopic images and WD/CCl4 group indicate the number of red 
arrow numbers. (E) Liver tissue section of the WD/CCl4 group showed ki67 positive im-
munostaining. Scale bar, 2mm, and 40μm indicated low and high magnificently. (F) Masson tri-
chrome stained livers presence of hepatic fibrosis and steatohepatitis. Scale bar, 40 μm. (G) Col3a1 
gene expression elevated in WD/CCl4 treated group. Data per group are expressed as mean ± SEM 
calculated from six to seven mice. * p-value < 0.05; *** p-value < 0.0001 between groups. 

Figure 3. Cont.



Int. J. Mol. Sci. 2022, 23, 1636 5 of 14

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 3. Western diet (WD) and carbon tetrachloride (CCl4) treatment promote HCC formation in 
the mouse. (A) Schematic diagram of establishing a mouse HCC process. (B,C) Observation of 
appearance and body shape of mice in HCC and the range of weight change in time course. (D) 
Representative liver tissue macroscopic images and WD/CCl4 group indicate the number of red 
arrow numbers. (E) Liver tissue section of the WD/CCl4 group showed ki67 positive im-
munostaining. Scale bar, 2mm, and 40μm indicated low and high magnificently. (F) Masson tri-
chrome stained livers presence of hepatic fibrosis and steatohepatitis. Scale bar, 40 μm. (G) Col3a1 
gene expression elevated in WD/CCl4 treated group. Data per group are expressed as mean ± SEM 
calculated from six to seven mice. * p-value < 0.05; *** p-value < 0.0001 between groups. 

Figure 3. Western diet (WD) and carbon tetrachloride (CCl4) treatment promote HCC formation
in the mouse. (A) Schematic diagram of establishing a mouse HCC process. (B,C) Observation
of appearance and body shape of mice in HCC and the range of weight change in time course.
(D) Representative liver tissue macroscopic images and WD/CCl4 group indicate the number of red
arrow numbers. (E) Liver tissue section of the WD/CCl4 group showed ki67 positive immunostaining.
Scale bar, 2mm, and 40µm indicated low and high magnificently. (F) Masson trichrome stained livers
presence of hepatic fibrosis and steatohepatitis. Scale bar, 40 µm. (G) Col3a1 gene expression elevated
in WD/CCl4 treated group. Data per group are expressed as mean ± SEM calculated from six to
seven mice. * p-value < 0.05; *** p-value < 0.0001 between groups.

2.3. WD/CCl4 Treated Intervention miR-29a Expression and Promoted Tumorigenesis Signaling in
Liver Tissue

Furthermore, miR-29a decreased expression in high-risk HCC using WD/CCl4-treated
mice (Figure 4A). Expanding evidence has revealed that miR-29a is indispensable in chronic
liver disease [26]. We uncovered that liver tissue of mice treated with WD/CCl4 upregu-
lated the expression of HIF-1α and Angpt2 (Figure 4B,C). This finding is consistent with
liver cancer patients’ bioinformatics analysis and regulatory network, whereas Lox, Loxl2,
and Vegfα mRNA expression also increased in WD/CCl4 mice rather than ND/CCl4 mice
(Figure 4D–F).
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Figure 4. Differential expression of tumorigenesis associated genes expression in liver tissue of
ND/CCl4 and WD/CCl4 group. (A) The expression of miR-29a in the WD/CCl4 treatment group
was significantly reduced, and (B–F) five related genes were significantly increased. Data per group
are expressed as mean ± SEM calculated from five to six mice. * p-value < 0.05; ** p-value < 0.001
between groups.

2.4. miR-29a Targeted the 3′-UTR of HIF-1a and ANGPT2

As predicted by bioinformatics (miRBase 22.1) show HIF-1a and ANGPT2 putative tar-
get of miR-29a. We constructed luciferase reporters for control, and the 3-base pair mutated
3′-UTR of HIF-1a and ANGPT2 (Figure 5A,B) that deciphered how miR-29a affected specific
areas gene expression in HepG2 cells. Notably, increased miR-29a significantly decreased
luciferase reporter activity of 3′-UTR of HIF-1a and ANGPT2 (Figure 5C,D), whereas
miR-29a-mimic also attenuated protein expression of HIF-1a and ANGPT2 (Figure 5E,F).
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Figure 5. Effect of miR-29a signaling on HIF-1a and ANGPT2 in hepatocytes. (A,B) Illustrated
3’UTR sequences of HIF-1a and ANGPT2 are specific for miR-29a binding. Overexpression of
miR-29a decreased 3’UTR luciferase report activity (C,D) and protein activities (E,F) of HIF-1a and
ANGPT2. Knocking down by mutant sequence of HIF-1a and ANGPT2 are diminished miR-29a-
3′-UTR luciferase reporter activity. Data per group are expressed as mean ± SEM. * p-value < 0.05;
** p-value < 0.01, *** p-value < 0.001 between groups.

3. Discussion

Hepatocellular carcinoma (HCC) is a common malignant liver disease, which ac-
counts for one of the leading cause of mortality globally [2]. Clinical diagnosis of various
liver diseases, including chronic viral and C, alcoholic liver disease, NAFLD and NASH,
etc., all increase the probability of HCC [27,28]. While accumulating studies reveal that
dysfunctional hepatic cells, oxidative stress, and immune dysregulation accelerate HCC
development [29,30], little is known about how chronic liver disorders shift into HCC.
Clarifying the underlying molecular mechanisms of the progression of HCC is essential for
determining novel therapeutic targets for HCC. As HCC diagnosis and treatment status
is not promising, many clinical trials looking for more ideal tools are underway. One of
these tools is miRNA, which can be considered a promising HCC diagnostic and prognostic
tool. The importance of miRNA dysregulation and expression has been confirmed in many
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cancers [31,32]. Chaotic miRNA expression is related to HCC tumorigenesis, and plasma
miRNA expression has also been mentioned as a potential regulator of HCC [33].

Our previous study confirmed that miR-29a targets multiple biological function im-
pacts, including attenuated shoulder stiffness fibrosis [34], liver fibrosis [8,12,35], and
mitigated NAFLD [14,36], as well as influenced progression of HCC formation [26]. Similar
findings have been confirmed by Song et al., who showed miR-29a downregulated Bcl-2
expression to ameliorate liver tumorigenesis [35]. In our previous study, we utilized and
combined multiple public databases that perceived miR-29a expression was significantly
decreased in HCC patients [16]. Of note, research establishes HIF-1α dominated roles in
HCC patients that co-expression of HIF-1α and PD-L1 has significantly increased the risk
of recurrence [37]. In this study, we also provide direct evidence that the two prognostic
markers HIF-1α and ANGPT2 are upregulated in HCC patients and HCC animal models.
In addition, our research also confirmed that miR-29a has a broader epigenetic effect on
tumorigenesis-related gene expression and could regulate the expression of HIF-1α and
ANGPT2 in HepG2 cells.

It is well-known that the microenvironment of tumorigenesis increased hypoxia status
to promote neovasculogenesis for additional growth [38]. The significant role of HIF-1α
in tumor development has been demonstrated in various tumor types and is responsible
for tumor initiation, progression, and drug resistance [22]. Along with the crucial role of
HCC growth under hypoxia conditions, the accumulation of reactive oxygen species (ROS)
leads to the electron transport chain of mitochondrial obscurely and oxidative stress [39]. In
this reaction, HIF-1α co-work with Notch signaling to modulate mitochondrial biogenesis
metabolism and cross-reacted with HEY1 and PINK1 gene expression [39]. Furthermore,
HIF-1α was also shown to strongly correlate with a higher rate of lymph node metastasis
and vasculogenic mimicry [38].

Again, ANGPT2 (angiopoietin-2) as a prognostic marker plays a pivotal role in liver
cancer and concomitantly with ANGPT1 (angiopoietin-1) and VEGF (vascular endothelial
growth factor) promoted activity hypervascularity [17]. In steatohepatitis, the severity
of pathogenesis was positively correlative with serum concentration of ANGPT2 and
indispensable found, for which ANGPT2 excess of the HCC organization can be used as
a predictor in HCC patients in recurrent or de novo rate. At the same time, the ANGPT2
showed a positive relationship with liver stiffness [40]. Evolving evidence suggests that
ANGPT2 may utilize two molecular pathways to influence the growth of HCC and that
ANGPT2 could secrete via exosomes and exist on the surface of HCC to promote epithelial-
to-mesenchymal transition (EMT) activity [41]. On the other hand, the ANGPT2 and
TIE2-expressing monocytes (TEMs) co-excess pathway has also been confirmed to have
participated in metastatic and recurrent HCC [42].

Advanced HCC implicated multiple cellular pathways and played central roles in tumor
metastasis and recurrence. Activity signaling cascade in HCC, including Ras/Raf/MEK/ERK
and Ras/PI3K/Akt/mTOR, which promotes transcription of genes involved in tumor
proliferation [43]. Sorafenib, a TKI (tyrosine kinases inhibitor) drug, was the first multi-
kinase inhibitor authorized for the medicine of HCC. The efficacy of Sorafenib has been
considered in numerous clinical trials and demonstrated affects many kinases, not only
RAF and MEK, but other kinases, such as vascular endothelial growth factor receptor
(VEGFR), platelet-derived growth factor receptor (PDGFR), and others. However, emerging
studies found that advanced HCC patients who exhibit a B-RAS mutation or DCP (des-γ-
carboxyl prothrombin) are more likely to be multifocal, aggressive, and resistant to TKI
therapies [44,45]. Thus, finding more signaling pathways such as epigenetic moderators
include Long non-coding RNA (lncRNA) [44], siRNA [46], miR agonists/antagonists [47],
and small molecules [48], could help develop promising therapeutic strategies.

Trans-arterial chemoembolization (TACE) is a first-line treatment for patients with hep-
atocellular carcinoma (HCC) in Barcelona Clinic Liver Cancer stage B (BCLC-B) [2]. How-
ever, TACE puts hypoxic and chemotherapeutic stress on HCC, and some surviving tumors
frequently transform into more aggressive and TACE-resistant tumor tissues [49,50]. As a
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result, hypoxia-induced by TACE can stimulate VEGF production by the residual tumor
cells, promoting angiogenesis and ultimately tumor progression following TACE [51,52].
AMG386, a peptibody (first-in-class peptide-Fc fusion protein) that impedes ANGPT1/2 sig-
naling, was exploited to develop trebananib for clinical studies with human patients [53,54].
Furthermore, HIF-1 activity is required to express some lysyl oxidase (LOX) family mem-
bers, including Lox, Loxl2, and Loxl4 [55–57]. LOX family members are characterized by
their catalytic activity contributing to structural integrity and increased tensile strength, act-
ing to remodel the cross-linking of the structural extracellular matrix (ECM) of such fibrotic
organs as the liver [58,59], as well as cancer microenvironments [58,60]. More recently,
mounting evidence has recognized the emerging role of Lox and Loxl2/4 in fostering the
corrupt microenvironment of HCC via angiogenesis promotion, epithelial-mesenchymal
transition (EMT) program, and formation of pre-metastatic sites [55,61–63]. While the study
delineates the contribution of miR-29a in the HCC development, considering the initial
liver disease and the different stages of long-term development, which have increased the
complexity of studying HCC. However, we are also aware of the experiment’s limitations
that lack identification of miR-29a expression on human liver biopsies of various stages of
HCC and engineering virus vector-mediated miR-29a to extend gene therapy strategies for
HCC mice to explanation mechanisms on angiogenesis. In addition, the immune response
is also the focus of future investigation. For instance, HIFs and miR-29a participated with
liver tissue innate immunity [9,64]. In conclusion, profound evidence revealed that miR-29a
loss, HIF-1α, and Angpt2 increase were correlated and pronounced influences with HCC
development while contributing a clearly identifiable molecular mechanism in chronic liver
disease.

4. Materials and Methods
4.1. miR-29a Interacted Cancer Gene Sets Platform Interpretation and Genes Differential
Expression in HCC Patients Outcome Correlation

Bioinformatic predictive analysis of miR-29a regulate gene network in HCC patients,
and candidate genes identification were performed public web analysis platforms, includ-
ing OMCD (OncoMiR Cancer Database), UALCAN, GSCALite, TCGA (Cancer Genome
Atlas), and TargetScan database. The detailed analysis procedure refers to the description
of the previously published manuscript [15].

4.2. The HCC Mice Model Generative

The animal operative protocol, experimental procedures were reviewed and approved
by the Institutional Animal Care and Use Committee (IACUC) of Kaohsiung Chang Gung
Memorial Hospital (KCGMH, Affidavit No. 2020121109). Age 8 weeks C57BL/6N male
mice (25–30 g) were purchased BioLASCO (Taipei, Taiwan), and all experimental animals
were housed and followed IACUC use committee guidelines. Mice were randomized
divided into two groups, which were fed with a regular chow diet (ND) or western diet
(WD) containing 21.1% fat, 41% sucrose, and 1.25% cholesterol (TD. 120528, Teklad diets).
Group of ND and WD were intraperitoneally given CCl4 (0.32 µg/g of body weight, 289116,
Sigma-Aldrich, St. Louis, MO, USA) once a week for 25 weeks [65]. The animal measured
body weight every four weeks until euthanasia and harvested the liver tissues for section
and staining.

4.3. Liver Tissue Section and Staining

Tissue samples from at least two representative fragments of each liver lobes were
taken and fixed in 10% paraformaldehyde for 36 h and, then, embedded in paraffin wax.
Continuous 5 mm slices underwent Masson’s trichrome staining (Polysciences, NY, USA)
in accordance with the manufacturer’s standard protocol and previously described [66].
For immunohistochemistry, tissue slides were dewaxed and conducted epitope retrieval
(Thermal scientific at 95 ◦C for 30 min). Primary antibodies against Ki67 (ab15580, abcam,
Cambridge, UK) were immunoreaction in sections to probed ki67 and reaction color use
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BioGenex detection kits (BioGenex, Fremont, CA, USA). Histological images were captured
utilizing the digital slide scanner (Pannoramic MID), and images were randomly selected
for quantification under constant magnification by ImageJ (V1.48) from three fields of each
section and two sections of each liver specimen.

4.4. Cell Culture and Transfection

Human HCC cell line HepG2 purchased from American Type Tissue Collection (ATCC)
and cultured in DMEM medium supplemented with 10% heat-inactivated fetal bovine
serum (FBS), glutamax, and antibiotic-antimycotic at 37 ◦C in a humidified incubator with
5% CO2. HepG2 were seeded into 6-cm dishes (1.5 × 106 cells/dish) overnight and then
transfected with miR-29a precursor (a miR-29a mimic, GE Healthcare Dharmacon, Inc.,
Lafayette, CO, USA) or miR negative control (GE Healthcare Dharmacon, Inc.) for 24 h
by using the Lipofectamine™ RNAiMAX Transfection Reagent (Invitrogen, Carlsbad, CA,
USA), following the manufacturer’s instructions. The complete cell extracts are subjected
to Western Blot analysis.

4.5. Quantitative RT-PCR

Total RNA in liver tissue was extracted by using TRIzol® reagent (Invitrogen, CA, USA)
and conducted reverse transcription of 1 µg total RNA to yield cDNA. The qPCR reaction
was undertaken using 2× SYBR Green PCR Master Mix (04887352001, Roche Molecular
Systems, Pleasanton, CA, USA) on LightCycler480® (Roche). The specific primers for
detected genes expression and detailed sequences of mouse genes are shown in Table 1.

Table 1. Sequence of primers pairs.

Gene Name Forward Primers (5′
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Lox GACCACAGGGTACTGCTACG TGGCTGAATTCGTCCATGCT

Loxl2 CTGACTTCCGCCCCAAGAAT GTTGAGGCTCAGCAGGTCAT

Vegfa CCCACGTCAGAGAGCAACAT TGCGCTTTCGTTTTTGACCC

Gapdh GCACAGTCAAGGCCGAGAAT GCCTTCTCCATGGTGGTG

4.6. Western Blotting

A total of 1.5 × 106 cells were washed with PBS and lysed in protein lysis buffer (iN-
tRON Biotechnology, Seongnam, Korea), homogenized, centrifugated, and quantitative su-
pernatant lysates (Bio-rad protein assay). Briefly, 25 µg protein extracts were employed and
probed by primary antibodies of HIF-1α (Proteintech, 20960-1-AP), ANGPT2 (Proteintech,
24613-1-AP), and GAPDH (1:100,000; 60004-1-lg, Proteintech, IL, USA) as an internal control.
Membranes were incubated with secondary antibodies against horseradish peroxidase-
coupled anti-rabbit immunoglobulin-G antibodies (1:5000; NEF812001EA, PerkinElmer,
Waltham, MA, USA) at room temperature for one hour. The signaling of blots was reacted
with an ECL Western blotting system and exposed to film (GE Healthcare, Chicago, IL,
USA). The signals were quantified using Quantity One® 1-D analysis software (Bio-Rad
Laboratories, Hercules, CA, USA). The accurate quantitative value of the target protein was
normalized by its corresponding GAPDH.

4.7. Luciferase Reporter Activity Assay

The oligonucleotides that contained the HIF-1α or ANGPT 3′UTR target sequence
were annealed and cloned into the pMIR-REPORTTM miRNA Expression Reporter Vector
(Applied Biosystems, Waltham, MA, USA) to generate pMIR-HIF-1α luciferase plasmid
or pMIR-ANGPT2 luciferase plasmid. The sequences in which the miR-29a binding site
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was replaced with the mutant site were annealed and cloned into the pMIR-REPORTM
reporter vector to generate the pMIR-HIF-1α Mut luciferase plasmid or pMIR-ANGPT2-
Mut luciferase plasmid. We then purified the plasmids using the EasyPrep EndoFree Maxi
Plasmid Extraction Kit (BIOTOOLS, Ltd., Taipei, Taiwan). HepG2 cells were seeded at
3 × 106 cells in a 10-cm dish for 18 h and transfected with a 6 µg reporter plasmid using
Turbofect transfection reagent (Thermo Fisher Scientific, Rockford, IL, USA). After 18 h, the
culture medium changed to a fresh medium and placed for 6 h. Post-transfection 24h, cells
were trypsinized cells and seeded on a 6-cm dish with a density of 1.6 × 106 cells/dish
overnight. The cells were transfected with miR-29a precursor (a miR-29a mimic, GE
Healthcare Dharmacon, Inc., Lafayette, CO, USA) or MIR negative control (GE Healthcare
Dharmacon, Inc.) for 24 h using the Lipofectamine™ RNAiMAX Transfection Reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. After 48 h
transfection, cells were lysed for the detection of luciferase signal with Neolite Reporter
Gene Assay System (PerkinElmer, Waltham, MA, USA) [67].

4.8. Statistical Analysis

The experiment results of transfected cells were repeated six times, and animal tissues
as well and were presented as mean ± sem. Between two-groups compare was utilized
t-test with unpaired two-tailed. Ordinary one-way ANOVA and Tukey’s multiple compar-
isons test with a single pooled variance were significantly analyzed for multiple groups.
Statistical all values for significantly different as the p values were set at <0.05.
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