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P300 spellers have been widely modified to implement nonspelling tasks. In this work, we propose a “scenario” stimulation screen
that is a P300 speller variation to command a wheelchair. Our approach utilized a stimulation screen with an image background
(scenario snapshot for a wheelchair) and stimulation markers arranged asymmetrically over relevant landmarks, such as suitable
paths, doors, windows, andwall signs. Other scenario stimulation screen features were green/blue stimulationmarker color scheme,
variable Interstimulus Interval, single marker stimulus mode, and optimized stimulus sequence generator. Eighteen able-bodied
subjects participated in the experiment; 78% had no experience in BCI usage. A waveform feature analysis and a Mann–Whitney𝑈 test performed over the pairs of target and nontarget coherent averages confirmed that 94% of the subjects elicit P300 (𝑝 < .005)
on this modified stimulator. Least Absolute Shrinkage and Selection Operator optimization and Linear Discriminant Analysis were
utilized for the automatic detection of P300. For evaluation with unseen data, target detection was computed (median sensitivity
= 1.00 (0.78–1.00)), together with nontarget discrimination (median specificity = 1.00 (0.98–1.00)). The scenario screen adequately
elicits P300 and seems suitable for commanding awheelchair evenwhen users have no previous experience on the BCI spelling task.

1. Introduction

Noninvasive Brain-Computer Interfaces (BCI) are systems
that translate the electrical brain activity measured through
Electroencephalography (EEG) into executable commands
for any enabled device [1]. BCI were developed to augment
the communication and environment interaction possibil-
ities for patients with severe motor disabilities such as
amyotrophic lateral sclerosis, spinal cord injury, or locked-in
syndrome [2–4].

The P300 speller is a computer based dictation device
controlled through the P300 Event-Related Potential
(ERP) which is a cognitive brain response elicited by the
stimulation-dependent (synchronous) oddball paradigm
[1, 2, 4]. The P300 speller is one of the most used BCI, whose
conventional stimulation screen has solid-homogeneous
black color background with a symmetric and homogeneous
matrix arrangement of 6 × 6 stimulation markers: 26
English alphabet characters, nine decimal digits, and the

underscore for blank space. The stimulation consists of a
random sequence of marker flashes on single or multimarker
mode. Then, when the users perceive a flash stimulus on the
symbol to which they are focused on, a P300 ERP is elicited
[2, 4]. Finally, the spelling task process relates an automatic
detection of the P300 to the letter that generates it [2, 4–6].

P300 speller variations have included matrix size, marker
arrangement, marker types, stimulus sequence, and stimulus
presentation and have been tested to increase the information
transfer rate and the detection rate and even to perform
nonspelling tasks. A summary of these variations is described
next, to contextualize the stimulation screen presented in this
work.

Sellers et al. [7] used a 3 × 3 P300 speller matrix and esti-
mated the optimal Interstimulus Interval (ISI) and Stimulus
Duration (SD) to achieve detection and transfer rates similar
to the 6×6 conventional size speller. Colwell et al. [8], Jin et al.
[9–11], and Shi et al. [12] utilized rectangular speller matrices
of 9×8, 7×12, and 6×12, respectively. Regarding the stimulus
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presentation, some successful approaches were the submatrix
stimulation sequences [13], dispersemultimarker stimulation
[9–11, 14], blue/green color scheme of stimulationmarkers for
nonflashing/flashing states [15–17], and face paradigm [9, 18–
20]. Furthermore, all these variants had a solid black color as
background. In respect of P300 detection performances, high
rates were reached for all the variations mentioned above.

The geometric variation named Geospell [21] displayed
screen sequences instead of flash events. Each screen had six
characters in a circular arrangement, whose center has a cross
symbol where the subjects fix their attention. Each group of
six characters presented corresponded to the conventional6 × 6matrix rows and columns. Another geometric variation
was the lateral single character speller, proposed by Pires et
al. [5], which rearranged the stimulation markers laterally
on the screen preserving a regular geometry. Its stimulus
was presented in single marker mode that pseudorandomly
alternates between right and left. Both geometric variations
demonstrated high target detection and transfer rates. For all
these speller variants, backgrounds remain solid black color.

An approach of the Internet browsing task using a P300
speller-like variation was reported by Mugler et al. [22]. A
pair of monitors were used, one for stimulus presentation
and the other for web browser display. A homogeneous 8 × 8
stimulation matrix in row/column mode was used. On the
other hand, Yu et al. [23] implemented an oddball paradigm
tomove themouse cursor into the web browser. Additionally,
Halder et al. [18] also used two monitors, one of them for
face paradigm stimulus presentation of a P300 speller that
was reshaped according to the number of available browsing
commands, each represented with alphabet characters. On
another monitor, the web browsing task was performed.

Carabalona et al. [24] and Aloise et al. [25] adapted the
conventional speller to control a domotic system. Both cases
used icons as stimulation markers instead of alphabet letters.
However, they used the typical flashing and background
color schemes. A different stimulation screen for domotics
was proposed by Hoffmann et al. [26] where RGB images
were placed over the solid white background as stimulation
markers arranged on a rectangular 3 × 2matrix. Meanwhile,
the smart house control proposed by Corralejo et al. [27]
used RGB images and their corresponding text as stimula-
tion markers; the background was solid bright green; the
text and its outline were, respectively, white and black. In
addition, Ganin et al. [28, 29] demonstrated that moving and
consequently asymmetrically arranged stimulation markers
elicited P300 on a three-trial paradigm obtaining an average
hit rate of 0.8. This paradigm was used in [29] to control a
puzzle game, whose stimulation markers are circular puzzle
pieces, each labeled with a Cyrillic character.

P300-based wheelchair navigation consists of two com-
ponents: the P300-based selection of the displacement com-
mand and the robotic system that performs the navigation. In
this context, there are, essentially, two schemes for selecting
the navigation routes: selecting a direction in which a fixed
displacement will occur (with stimulation sequences after
each fixed displacement) or selecting a destination from some
sort of local or global map (with stimulation sequences after
attaining each selected destination). Rebsamen et al. [35, 36]

introduced a P300 3 × 3 stimulation matrix that had names
of apartment rooms and appliances like TV, lights, bed,
and so on, as stimulation markers. Its robotic navigation
system managed to reach the localization with no additional
stimulation sequences while the wheelchair was in transit. All
the paths and destinations were predefined.That is to say, the
approach implemented stimulation sequences favoring long
and complex navigation routes on known scenarios. On the
other hand, two approaches introduced a stimulation screen
that utilized image-arrows as stimulationmarkers over a solid
color background, emulating a joystick wheelchair. Lopes et
al. [34] presented the stimulation in single marker mode for
commanding an actual robotic navigation of the wheelchair.
Differently, Gentiletti et al. [33] utilized row/column mode
in a virtual navigation controller. Both works implemented
stimulation sequences after fixed displacements, since each
selection corresponds to a short piece of route. Though the
joystick stimulators enable navigation onunknown scenarios,
a high amount of selections is needed to perform long
pathways; therefore, the participants fatigue and lower P300
detection rates were obtained [38, 39]. Notwithstanding,
Gentiletti et al. [33] incorporated some kind of destination-
oriented stimulation by including a control automata forwall-
following. Other three approaches incorporated the current
information of the navigation scenario into the stimulation
screen. Notably, Iturrate et al. [32] integrated a real-time ren-
dered virtual representation of the actual navigation scenario
into the stimulation screen, where floor, walls, and obstacles
were distinguishable. The stimulation markers for navigation
were presented as dots in an arrangement that indicates
distance and direction using a polar coordinate system grid
centered at the wheelchair. Additional stimulation markers
for auxiliary commands were shown on a menu bar; the
stimulus presentation was in row/column stimulation mode
with a fixed displacement sequence scheme.

Similarly, Escolano et al. [30] implemented a polar grid
and menu bar commands, but using augmented reality. That
is to say, the virtual representation of the scenario screen, as
in [32], was set to low opacity and overlaid to its real counter-
part.Thus, amixed imagewas presented as stimulation screen
whose markers performed row/column stimulation mode
with stimulation sequences for fixed displacement according
to which a teleoperated robot was controlled. In order to
change the robot field of view, a stimulation screen with a
gray scale image as background and a square grid of circles
as stimulation markers was implemented. In another study,
Escolano et al. [30] reported another P300–based approach
for commanding a teleoperated robot. It used a gray scale
image of 60 × 60 pixels resolution. The stimulation markers
were six icons split in two menu bars, and six circles for
navigation points which were arranged in a rectangular grid
of 2 × 3. All of them were in fixed positions over the screen
performing row/column stimulation for fixed displacement.

This work introduces the scenario screen stimulator,
which is a P300 speller variant. The scenario screen has
an image background that is a snapshot of the wheelchair
perspective and whose stimulation markers are located over
relevant landmarks. To contrast the scenario screen features
with other reported P300-based stimulation screens for
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Table 1: Comparison among several works where P300 speller variants were used to generate commands for a wheelchair navigation control
system. t–nt diff : target–nontarget difference. ∗Included due to the asymmetric markers arrangement.

Stimulation Background Markers P300 analysis
Color scheme Type Number # subjects

Mode Color depth Encoding Latency
Presentation Arrangement 𝑡-𝑛𝑡 diff.

Scenario screen (this work)
Blue/green Real image 12 18

Single marker 24-bit Unicode Yes
Destination-based and fixed displacements Asymmetrical Yes

Escolano [30, 31]
White-green/blue Real image 12 2
Row/column Gray scale and 24-bit Icon-images No, yes

Fixed displacements Symmetrical No

Iturrate [32]
Black/blue/white Virtual image 20 5
Row/column 8-bit Icon-images No

Fixed displacements Symmetrical No

Gentiletti [33]
Gray/white Solid black 12 2
Row/column 5-bit Images + text No

Fixed displacements Symmetrical No

Lopes [34]
Gray/green Solid black; 7 11

Single marker 5-bit Arrows + text No
Fixed displacements Symmetrical No

Rebsamen [35, 36]
Blue/white Solid gray 7 5

Single marker 5-bit Box + text No
Destination-based Symmetrical Yes

Ganin [28, 29]∗
Image/white Solid gray 9 14
Single marker 24-bit Image + text Yes

Fixed displacements Asymmetrical Yes

navigation tasks, a comparative chart is shown in Table 1.
Except for the scenario screen, all the other approaches
utilized symmetric stimulation markers arrangements and
were focused on the evaluation of the wheelchair navigation
task. Although some studies indirectly reflected that an
image background does not impact the target detection,
further analysis in terms of the P300 elicitation, stimulus
presentation, and classifier adaptation is needed.

2. Materials and Methods

2.1. Overview. A scheme of the wheelchair navigation system
within which the scenario screen is incorporated is shown in
Figure 1. It is briefly described in the following, for the sake
of establishing the role of the stimulator that is the subject of
this document.

The Navigation Core component coordinates the work-
flow and the datapath throughout all the components of the
system.The Scenario Analysis component takes photographs
of the current frontal wheelchair perspective which is ana-
lyzed by computer vision methods searching for landmarks,
in particular navigation paths, doors, windows, and wall
signals. The P300 Path Selector component produces two
different stimulation screens. The first is the proper scenario
screen, which is the default stimulator screen. Its stimulation
markers are located over themost relevant landmarks accord-
ing to Scenario Analysis component results; the second,

for unexpected, finer-control situations, a P300 joystick-
like variant is displayed instead. The robotic navigation
system controls all the devices and sensors mounted on the
wheelchair for driving it safely to its destination, either with
the destination-based selections from the scenario screen or
following fixed displacement commands from the joystick
screen.

Figure 2 exemplifies two realizations for navigating from
point 1 to point F, based on the scheme detailed above.
The navigation based on the scenario screen (S NAV)
only performs stimulation sequences at points 1, 2, and
3 (destination-based sequences), where stimulation marker
localizations vary according to the image background. For H
NAVnavigation, the scenario screens and routes are the same
as in S NAV. Nonetheless, an eventuality (obstacle) occurs at
point 3A (between 2 and 3) and then the joystick-like screen
is shown. Several fixed displacement stimulation sequences
are run with this screen to sort the obstacle, and the previous
navigation path is resumed to reach point 3 where scenario
screen is displayed again.

The robotic navigation system is currently under active
development in our research team.

2.2. Scenario Screen Development. Figure 1 shows the three
components of the scenario screen: stimulation screen,
stimulus generator, and pattern recognition system. In this
section, the first two components are detailed.
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Figure 1: Schematic diagram of a robotic wheelchair navigation system where the scenario screen is utilized for the navigation command.
See text for the description.
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Figure 2: Scenario screen navigation scheme. Each green circle represents where the wheelchair stops to generate the scenario screen. The
green lines are the paths followed by the wheelchair. The red point (3A) is where an obstacle interrupts the navigation. The dotted red line
represents a fixed displacement commanded navigation.
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(a) Stimulation screen with no stimulus presentation (b) Stimulation screen showing a single marker stim-
ulus

Figure 3: Scenario screen. In this instance, eight markers are arranged in landmarks as follows: five on the floor, two on wall signs, and one
on a door. Four markers placed at corners were reserved for other tasks. The background is an unprocessed RGB image of a corridor in the
research building.

2.2.1. Design and Implementation. The scenario screen is a
P300 speller variant that enables users to select a destination
of navigation. Figure 3 shows the scenario screen evaluated
in this work. As it can be seen, two were the major varia-
tions implemented. First, it incorporates the current scene
information into the stimulation screen through an RGB
image background that depicts the wheelchair navigation
perspective, instead of using the conventional solid color
background or a virtual-real combination. In this case the
image corresponded to an RGB 1024 × 825 pixel snapshot
of the research building hall at the University, photographed
with a 2.2Mpx mobile phone camera, with no preprocess-
ing. Second, only twelve stimulation markers, grouped into
navigation and auxiliary, replaced the original 36 characters.
Using the Unicode fisheye character, the eight navigation
markers were located over the most relevant landmarks,
in this case: three markers for the main corridor, two for
the secondary corridor, one for the door, and two for the
wall signals. The four auxiliary markers also used Unicode
characters, each having a static placement on screen corners.
Their placement, meaning, and encoding are as follows: top
left: “open menu” task; bottom left: “call to a predefined
contact”; top right: “close stimulation screen”; bottom right:
“return to previous wheelchair location.” For this work’s
purposes, all the stimulation markers were manually located.
The scenario screen was implemented by modifying the
NativeOpenViBEP300 spellerGUI [40].The 6×6 stimulation
matrix was enlarged to 9×9. Except for the twelve stimulation
markers, the 81 available labels of the enlarged matrix were
not displayed and all the label backgrounds were set to
zero opacity to make GUI canvas visible, with the image
background set within [41]. Thus, users see the stimulation
screen as shown in Figure 3.

2.2.2. Stimulus Presentation. Nonflashing and flashing color
scheme were blue/green with RGB encoding (0, 0, 255) and(0, 255, 0), respectively, as used in [15, 16]. The font size of
the twelve stimulation markers was fixed to 120 points for
both states.These customizations were made with OpenViBE
designer tool v0.14 [40].

2.2.3. Sequence Generator Development. A new stimulus/
target sequence generator engine was developed to deal
with the shortcomings of its OpenViBE P300 speller stim-
ulus generator counterpart. The stimulator engine devel-
oped implemented the following features: pseudorandom ISI,
single marker stimulus mode, and a strategy to avoid two
consecutive stimulations of the same marker. In order to
perform the stimulus presentation, this engine interfaced
with OpenViBE designer core through proper native Open-
ViBE ID directives. Furthermore, the stimulus generation
was implemented with two modules: the first of them was
a Python script that computed and stored a large set of
paired stimulus-timing sequences, while the second module
was a lua script executed by OpenViBE designer during the
acquisition process; it loads the stored stimulation sequences
and implements the scenario screen stimulation paradigm
described in the following sections. Figure 3(b) shows the
single marker stimuli as seen by users.

2.3. Scenario Screen Paradigm. This section describes the
paradigm to evaluate the ERP elicitation capabilities of
scenario screen. EEG acquisition setup and subject selection
are also detailed.

2.3.1. Scenario Screen Stimulation Paradigm. Following the
OpenViBE nomenclature, a trial was a random flashing
sequence of the 12 available scenario screen stimulation
markers. All flash durations were 0.125 s.The ISI produced by
a stimulus generator took values among 0.12, 0.14, 0.16, 0.18,
0.20, and 0.22 s. Intertrial Interval (ITI) was set to 0.5 s. In this
form, a repetition (Figure 4: S4) was the sequence of 10 trials
performed to select one marker. All repetitions run in copy
mode indicate the target to subject by blinking it five times at
1.0Hz (Figure 4: S3). Finally the Interrepetition Interval was
set to 5.0 s.

The initial stimulation screen state is shown in Figure 4:
S0. To indicate task starting time, the twelve available stim-
ulation markers were turned to green during 5 s (Figure 4:
S1) after which they all returned to blue. 20 s baseline EEG
was acquired (Figure 4: S2); previously the subjects were



6 Computational and Mathematical Methods in Medicine

t

[Signal]
[Start]

[Baseline A]

[Single stim]

[End]
[Baseline B]

[Target]

S0
S1

S2
S3

S4

S5

S6

· · ·

[Repetition: 1 · · · k]

[Trial: 1 · · · 10]

Figure 4: Stimulation sequence repetition.The sequences outline how each stimulation screen state is shown to the user. 𝑆𝑖 represents de 𝑖th
state and 𝑘 = {3, 5, 6, 6} the number of repetitions.

Subject i

1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 11 17i ii iii

Block I Block II Block III Block IV

Train i-subject

Train i-LASSO

Test i-LASSO

Figure 5: The four blocks which comprise the acquisition session for the 𝑖th subject. Each color filled square represents a repetition.

instructed to stay calm and to remain with open eyes but
blink and breathe normally. Subjects performed four blocks
of 𝑘 = {3, 5, 6, 6} repetitions as Figures 5 and 4: S3 and
Figure 4: S4 show.Once the last repetition of the current block
was accomplished, the block’s ending indication was shown
with 5 s of green markers (Figure 4: S5).Then, another 20 s of
baseline EEG was recorded (Figure 4: S6).

Block order was preserved for all subjects. Block I was
used to train subjects on the correct usage of the scenario
screen; thus the data from this block was not considered for
analysis purposes. Data from Blocks II, III, and IV provided
a set of 17 repetitions for analysis; see Figure 5. Given that all
these 17 repetitions were performed in copy mode, a pseu-
dorandom strategy that only allowed each of the available
markers to be selected as the target once or twice was imple-
mented in the developed stimulus generator engine. Finally,
resting time within blocks was from 30 to 60 s during which
the subjects answered the questionnaire previously detailed.

2.3.2. Experimental Setup. EEG recordings utilized eight
gold surface passive electrodes (Fz, C3, Cz, C4, P3, Pz,
P4, and Oz) fixed to an extended 10–20 g.tec cap (Guger
Technologies�).The reference was the joint A1-A2 connected
through a pair of gold earlobe clip electrodes. A gold cup
electrode at right mastoid was the ground. In all cases the

electrode-gel–skin impedance was lower than 10 kΩ [33, 42].
A g.USBamp biosignal amplifier (Guger Technologies) was
used for the recordings with the following configuration:
512.0Hz sample rate, 8th-order 0.1–30.0Hz passband, and
4th-order 58.0–62.0Hz notch Butterworth hardware filters.
For this configuration, theOpenViBE acquisition server v0.14
tool was used [40].

Nineteen able-bodied subjects (20–35 years) participated
in the experiment; 15 of them had no previous experience
in BCI usage. All subjects gave their informed consent by
signing the corresponding form and were asked to have at
least six hours of sleep the night before the study. Exclusion
criteria were intake of stimulant or depressive substances
within the six previous hours to the study, any pathological
or psychological condition, and light flashing sensitivity.
Subjects sat in front of a 22󸀠󸀠 LCD in a comfortable position.
They were asked to always blink normally and move only if it
was necessary. Eyes–LCD distance was approximately 1.2m.
They were instructed on how to use the scenario screen and
also to countmentally howmany times the target flashed [42].

2.4. Data Analysis. Data from each subject was separately
analyzed in two stages:

(i) Global P300 elicitation: the 17 target coherent aver-
ages of each subject were compared with their
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corresponding nontarget counterpart. A waveform
analysis of target averages searching P300 features
and statistical tests of difference between target and
nontarget averages were performed.

(ii) Evaluation of the automatic target/nontarget detec-
tion: a classifier was trained for each subject for auto-
matic labeling of the target and nontarget stimulation
markers. Trained classifiers labeled unseen data and
their performances metrics were reported, namely,
sensitivity, specificity, and accuracy. The behavior
of these metrics was analyzed with respect to the
number of trials used to make the decisions; group
and individual analysis are reported.

2.4.1. Preprocessing Data. The same offline preprocessing was
applied for the two analysis stages. The EEG signals were
filtered with a 40th-order 1.5–10.0Hz FIR passband filter
designed with a Chebyshev window. Event-related epochs
of 307 samples (600ms) were extracted from signals. Each
epoch was detrended and normalized to zero mean and unit
variance.

2.4.2. Global P300 Elicitation. Each subject’s target and non-
target coherent grand averages were computed using the
full data set (Blocks II, III, and IV) combining the eight
electrode epochs. A waveform analysis was performed on the
target averages observing for the occurrence of character-
istic P300 features, such as the peak within 150–450ms, in
addition to N100, N200, and P200 ERP. Two tailed corrected
Mann–Whitney 𝑈 tests (MWUT) were computed for each
pair in order to test whether there were differences between
target average and its nontarget counterpart. Those statistical
comparisons were computed using a window spanning 150 to
450ms after stimulus onset, averageswhere typically the P300
appears [5, 43–45]; two tailed corrected 𝑝 values are reported.
2.4.3. Automatic Target Detection: Classifier Training. Feature
vectors x were obtained directly from the preprocessed
epochs; each of them were decimated by a factor of two
and concatenated giving vectors of 1228 features (𝑑). These
vectors were arranged by temporal repetition occurrence,
stimulation marker ID, and temporal trial occurrence.

Let {(x𝑖, 𝑦𝑖) : x𝑖 ∈ R𝑑, 𝑦𝑖 ∈ {−1, 1}} be the training data
set, where x𝑖 is the 𝑖th feature vector and 𝑦𝑖 is its correspond-
ing target or nontarget label.TheLeast Absolute Shrinkage and
SelectionOperator (LASSO) is a LinearDiscriminantAnalysis
(LDA) variation that uses the 𝑙1–norm as regularizer:

𝛽LASSO
= argmin
𝛽

{{{
𝑁∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝑑∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

+ √𝜆 𝑑∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨}}} .
(1)

The sparsity parameter 𝜆 needs to be adjusted; however,
the optimal 𝜆 can be estimated through a cross-validation
process. LASSO approach is preferred since some 𝛽 com-
ponents become equal to zero according to the sparsity

parameter 𝜆 ∈ (0, 1]. Thus, it is also considered a feature
selection method [46–48].

Let the reduced feature vector x correspond to the
nonzero features of w = 𝛽LASSO. The score denoted by 𝑠(x)
is computed with the discrimination function (see (2)) [49–
51] that measures the feature vector membership to the target
or nontarget class, as a distance to the regression hyperplane:

𝑠 (x) = w𝑇x + 𝑏. (2)

ALASSO-LDAwas trained for each subject using the data
from their corresponding Blocks II and III as Figure 5 shows.
No class balancing method was utilized (Python machine
learning library: scikit–learn LASSO through LARS method
and sparsity parameter 𝜆 was estimated by cross-validation
[52]). Target labelingwas performed in two stages: (1) to score
the feature vectors x (see (2)) of a given repetition and (2) to
select the target through a voting scheme based on the score
accumulation (see (3)) [49, 51, 53]:

target = argmax{ 𝐿∑
𝑙=1

w𝑇x(𝑚,𝑙) : 𝑚 ∈ {1, . . . , 12}} , (3)

where x(𝑚,𝑙) is the feature vector associated with the 𝑚th
stimulation marker on the 𝑙th trial over a given repetition.
Note that the bias 𝑏 of (2) was not considered for calculation
since it is constant across all feature vectors [50, 51].

2.4.4. Automatic Target Detection: Classifier Performance
Evaluation. Unseen epochs from the last nine repetitions of
Blocks III and IV were labeled as target and nontarget via
trained LASSO-LDA and voting scheme described above.
Three were the metrics for classifier evaluation: sensitivity,
also known as true positive rate, hit rate, or recall, specificity
or true negative rate, and accuracy or the fraction of data
correctly classified [53]. These metrics were reported for user
sample and individually with respect to the number of trials
scored (𝑙).
3. Results and Discussion

3.1. Stimulation Screen Design and Development. A seven-
item questionnaire was answered by users after the stim-
ulation session. Closed-form yes/no questions asked about
stimulus perception, discomforts, losing attention, and stim-
ulus sequence patterns. The responses reflected that none of
the users perceived tearing, pain, or any discomfort related
to stimulation, even in large stimulus sequences (19.7 ±0.3min for the four blocks). Also, all stimulation markers
with the blue/green color scheme were perceptible in any
circumstance. Five of the novice BCI subjects reported
failing to perceive some target flashes or getting somnolent,
both circumstances at the end of the last block, which
probably affected the classification performance, but not
the global coherent averages. This somnolence phenomenon
was, probably, caused by the copy mode static scenario
screen that provides no feedback to users. Consequently,
the P300 elicitation and its detection rate were affected.
Decision tomaintain the same background image andmarker



8 Computational and Mathematical Methods in Medicine

P300 area

Target averages

Nontarget averages

x: time (ms)
y: normalized units

Subject 6 

Subject 10 

Subject 14 

Subject 2 

Subject 7 

Subject 11 

Subject 15

Subject 3

Subject 5 

Subject 9 

Subject 13 

Subject 17 

Subject 1 Subject 0 

Subject 4 

Subject 8 

Subject 12 

Subject 16 

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

100 200 300 400 500 6000
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5

400300 5000 100 600200 400300 5000 100 600200 300 400100 200 500 6000

400300 5000 100 600200 300 400100 200 500 6000 300 400100 200 500 6000 300 400100 200 500 6000

300 400100 200 500 6000300 400100 200 500 6000300 400100 200 500 6000400300 5000 100 600200

300 400100 200 500 6000 100 200 300 400 500 6000 100 200 300 400 500 6000 400300 5000 100 600200

300 400100 200 500 6000 100 200 300 400 500 6000
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.15
−0.10
−0.05

0.00
0.05
0.10

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.4

−0.2

0.0

0.2

0.4

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

−0.4

−0.2

0.0

0.2

0.4

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

Figure 6: Each subject target (red) and nontarget (black) coherent grand average plots.𝑋-axis is the 0–600ms span, and𝑌-axis is the average
amplitude in 𝜇V; these averages were computed with 𝑧-scored epochs (mean: 0 and SD: 1). The green filled areas are the 150–450ms span.

distribution in performing the evaluation for all subjects was
taken to avoid biases due to these factors. With the evidence
that scenario screens are useful, there is confidence for
implementing scenario and marker changes as described in
Section 2.1. Regarding the stimulus generator developed, no
subject reported having perceived target or stimulus patterns.
Furthermore, they also reported perceiving the ISI variability
that likely causedmore expectation.Therefore, our developed
target and stimulus sequences generators demonstrated being
usable since they were comfortable for users. In addition,
whileOpenViBEwas sufficient for scenario screen evaluation,
it currently presents limitations for implementing a free-
mode scenario screen session (the actual implementation for
navigation is developed over a different architecture).

These results overcame the red/white color scheme used
in [41] where four of eight subjects reported some type of
discomfort. This red/white scheme was said to present no

clearly perceptible stimulus when the markers were placed
over bright image areas. A further analysis of the nativeOpen-
ViBE stimulus generator showed that its sequences always
alternated row and column stimulus for square arranged
stimulation markers [41]. Furthermore, the scenario screen
used a high resolution real image background with the twelve
available stimulus perfectly perceivable; furthermore, the
stimulation markers’ meaning depends on where they were
located over the image background.

3.2. Global P300 Elicitation. Paired target and nontarget great
coherent averages plots from each of the 18 subjects are shown
in Figure 6. One subject was discarded as he slept during two
blocks of the experiment. The target averages, in all cases,
were different from their respective nontarget averages. 72%
of the target averages (subjects 1, 2, 4–8, 10–15, and 17) pre-
sented positive peakswithin 150–450ms (Figure 6 green filled
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area) that are consistent with a P300 elicitation. Furthermore,
these peaks are preceded by a negative peak around 200ms
that may be associated with the N200 elicitation. Four subject
target averages (0, 3, 6, and 16) had other features not directly
associated with expected P300 elicitation, but their respective
target and nontarget averages are still different, as is the case
for subjects (2, 3, 5, 7, 8, and 17) who had a negative peak
within 400–550ms that might be related to the long latency
N400. However, further analysis should be done to identify
the meaning of these negative deflections. Those results were
consistent with the findings reported by [18, 54, 55]. Finally,
subject 9 target average waveform is noisy and does not
represent a typical P300 elicitation, yet it is different with
respect to its nontarget average counterpart.

The stimulus generator engine developed, particularly,
the pseudorandom ISI feature, showed effectiveness on visual
steady-state periodic components reduction, as is shown in
Figure 6. Except for subject 9, all the coherent grand averages
do not have steady-state artifacts taking into account the fact
that the preprocessing used a passband 40th FIR filter within
1.5–10.0Hz; in contrast, when the native OpenViBE stimulus
generatorwas used [41] those filter parameterswere 100th and
0.1–2.0Hz due to the ISI-related components.

Selecting P300 of each subject as the highest peak within
150–450ms on the target coherent averages (see Figure 6
green areas), all these magnitudes were contrasted with their
nontarget analogues by a signed rankWilcoxon test obtaining
a statistical difference (𝑊 = 0.0; 𝑝 < 0.001) which suggests
that attending the target marker generates a different brain
response. Furthermore, the median latency of those P300
peaks was 310 (217–337) ms which corresponds to P300 span
and is consistent with the results reported in [54–56].

In regard to the statistical analysis of the paired wave-
forms, it was found that target coherent averages are statisti-
cally different from their nontarget pairs (MWUT;𝑝 < 0.005)
considering the 150–450ms spans, except for the fourth
subject. Summarizing, the target perception elicits a response
within (150–450)ms differentiable from the nontarget stim-
ulation. To put it differently, the stimulation screen with an
image in the background and whose stimulation markers are
asymmetrically arranged elicits an adequate response when
the subjects perceive the target stimulation in 94% of the
cases.

3.3. Target Detection in Scenario Screen

3.3.1. Target Detection Performance Analysis over the Subject
Sample. Sample median sensitivity, specificity, and accuracy
[57, 58] with respect to number of trials (𝑙) accumulated
for the score calculation are summarized in Table 2. These
performance metrics were calculated using the unseen nine
repetition data of each subject. More precisely, the sensitivity
or true positive rate was the metric related to the proportion
of target markers correctly classified. From the 6th scored
trial (𝑙 = 6) the sample median was above 0.75 sensitivity
which is the minimum accepted on P300 spelling tasks [2,
4, 6, 8]. Moreover, from the 7th trial (𝑙 = 7), 0.7 sensitivity
was found for 75% of the subjects regardless of the fact that
78%of themhad no experience on the task.This is graphically

shown in the boxplots of Figure 7(a) where it is seen that the
target detection is improved and also the dispersion becomes
lower as more trials were scored.This was consistent with the
conventional P300 speller knowledge [5, 16, 59], but using
a stimulation screen with a snapshot background and no
orthographic or semantic stimulation markers.

The performance of five commonly used classifiers for
conventional P300 spelling task (LASSO-LDA, shrinkage-
LDA, Linear-SVM, Radial Basis Function SVM, and
SWLDA) were evaluated for the scenario screen [60]. For
this study all the hyperparameters of each classifier were
appropriately optimized.No statistical differenceswere found
among the five classifier performances but LASSO-LDA
presented a lower variance nevertheless. Thus, only LASSO-
LDA was utilized in this work; a reduction from 4 to 2 in
the decimation factor with respect to [60] was implemented
reflected in lower variances in the subject sample sensitivity as
Figure 7 shows. Additionally, partial coherent averages as fea-
ture vectors and linear-SVM were tested for P300 detection
[41], although the sensitivity was at least 0.7 in most of the
cases using 10 trials; the target marker detection rates shown
in Table 2 are higher even from five scored trials (𝑙 = 5).

In terms of specificity or true negative rate which was the
metric related to the proportion of well labeled nontargets
shown in Table 2, the median specificity was higher than 0.97
from 𝑙 = 5 which means that 3 false targets were detected.
Figure 7(b) shows the corresponding specificity boxplots
with respect to the number of scored trials. From 𝑙 = 7,
75% of the subjects got at most 3 misclassified nontargets.
Table 2 also shows the accuracies which might be considered
good given that they are always higher than 0.85; however,
this is a biased measure given the unbalanced number of
target and nontarget feature vectors. For this reason we
prefer measuring the performance in terms of sensitivity and
specificity. Additionally, when ten scores are accumulated
(𝑙 = 10) the average time to perform a detection is 40 s
(12 × 10 × [.125 + .17] + 9 × 0.5); these values correspond
to the number of available target markers, number of trials,
IS, average ISI, number of ITI, and ITI.

On the other hand, the summarized performances of
the screens with image backgrounds reported in [30, 31]
suggested that a row/column stimulation mode was feasible
for symmetrically arranged stimulation markers. However,
when this stimulation mode was used in a scenario screen
[41], a minimum distance constraint among stimulation
markers was used to avoid peripheral stimulus perception
of nontargets. In this work, that constraint was no longer
necessary because of the single marker mode usage and the
high performances obtained.

In sum, the scenario screen was capable of eliciting
detectable P300 through LASSO-LDA with performances
higher than 0.75 from 𝑙 = 6. The highest median perfor-
mances were obtained accumulating all the trails (𝑙 = 10),
with 1.0 (0.78–1.00) and 1.0 (0.98–1.00) being the median
sensitivity and specificity, respectively. Thus, the scenario
screen resulted in a very suitable P300 speller variation for
selecting the path for a wheelchair, even when more than
78% of the subjects had no experience in P300 spelling
tasks. These results were consistent with [5, 18, 28, 29], even
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Table 2: Subject sample median sensitivities, specificities, and accuracies with respect to the number of trials scored 𝑙 = {1, . . . , 10}. IQR:
interquartile range.

𝑙 trials Sensitivity (IQR) Specificity (IQR) Accuracy (IQR)
(1) 0.33 (0.22–0.44) 0.94 (0.93–0.95) 0.89 (0.87–0.91)
(2) 0.44 (0.22–0.64) 0.95 (0.93–0.97) 0.91 (0.87–0.94)
(3) 0.56 (0.25–0.75) 0.96 (0.93–0.98) 0.93 (0.88–0.96)
(4) 0.56 (0.47–0.78) 0.96 (0.95–0.98) 0.93 (0.91–0.96)
(5) 0.67 (0.56–0.78) 0.97 (0.96–0.98) 0.94 (0.93–0.96)
(6) 0.78 (0.56–0.89) 0.98 (0.96–0.99) 0.96 (0.93–0.98)
(7) 0.89 (0.67–1.00) 0.99 (0.97–1.00) 0.98 (0.94–1.00)
(8) 0.89 (0.67–1.00) 0.99 (0.97–1.00) 0.98 (0.94–1.00)
(9) 0.89 (0.69–1.00) 0.99 (0.97–1.00) 0.98 (0.95–1.00)
(10) 1.00 (0.78–1.00) 1.00 (0.98–1.00) 1.00 (0.96–1.00)
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Figure 7: Sensitivity and specificity performances with respect to the number of trials.

when the scenario screen stimulation markers did not use an
orthographic or semantic scheme; thus the implicit findings
reported in [30, 31] in terms of stimulation screen evaluation
and target marker detection were also complemented.

3.3.2. Individual Analysis of the Target Detection Perfor-
mances. Taking into account the 44% of the subjects(0, 3, 4, 5, 8, 11, 13, 14)who reached a plateauwith at least two
1.0 sensitivity points (see Figure 8), the median sensitivities
for 𝑙 equal to five, six, and seven are, respectively, 0.78
(0.64–0.81), 0.94 (0.89–1.00), and 1.00 (0.97–1.00) which are
high performances even with 𝑙 = 5. For all these subjects
the number of trials might be reduced to seven with no
performance cost; this repetition shortening would imply
a 27.5% time reduction. Moreover 28% of subjects reached
high performances with seven scored trials, despite their
inexperience on P300 spelling tasks. On the other hand,
the 39% of the subjects (1, 7, 9, 12, 15, 16, 17) that had not
reached a plateau, got a median sensitivity of 0.78 (0.67–0.89)
with seven trials scored; furthermore, the lower quartile

included the minimum performance for spelling tasks that
was consistent with the findings reported in [5, 18, 28, 29].

In regard to the three lowest sensitivity performances
(subjects 2, 6, and 10) whose average was 0.48 (SD = 0.1),
all these subjects presented a performance consistently low
despite the number of scored trials. Although this behavior
might be associated with subjects’ wrongly executed task,
when LASSO-LDA was substituted by a Linear Support
Vector Machine (Linear-SVM) for subject 2, the detection
rate had improved up to 57% in terms of sensitivity. That
behavior suggested that a customized classifier selection is
likely to improve the detection rates [54, 55, 60]. A similar
case was subject 15 whose performance had improved when
a Radial Basis Function SVM was utilized. A whole behavior
comparison between LASSO-LDA and the best classifier of
subjects 2 and 15 with respect to the number of scored trials
is shown in Figure 9. Notwithstanding other four classifiers
(Linear-SVM, Radial Basis Function SVM, Shrinkage-LDA,
and SWLDA) tested in subjects 6 and 10, no sensitivity
improvement was reached. However as Figure 8 shows
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Figure 8: Individual sensitivities with respect to the number of trials scored 𝑙 = {1, . . . , 10}. Green filled area represents sensitivities greater
than 0.9, while yellow areas represent those within [0.7, 0.9).

subjects 6 and 10 had sensitivities of 0.67 and 0.56 with six
and eight scored trials, respectively. These results reinforced
the necessity of an exhaustive customization of the pattern
recognition method.

Performing a similar analysis for the specificity, the results
obtained for all subjects were high, always greater than
0.92, which implied that only a small amount of nontargets
were labeled as targets (Figure 10 and Table 2). Median
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Table 3: Individual sensitivity, specificity, and accuracy achieved when ten trials are scored (𝑙 = 10). 𝑗 and 𝑘 are, respectively, the number of
correctly classified targets and nontargets. Meanwhile, the correctly labeled target and nontarget count is𝑚. AUROC: area under the receiver
operating characteristic curve [37]. SD: standard deviation.

Subject Sensitivity (𝑗-correct) Specificity (𝑘-correct) Mean AUROC (SD) Accuracy (𝑚-correct)
17 1.00 (9) 1.00 (99) 0.98 (0.02) 1.00 (108)
11 1.00 (9) 1.00 (99) 0.99 (0.01) 1.00 (108)
3 1.00 (9) 1.00 (99) 1.00 (0.00) 1.00 (108)
4 1.00 (9) 1.00 (99) 1.00 (0.01) 1.00 (108)
5 1.00 (9) 1.00 (99) 1.00 (0.00) 1.00 (108)
7 1.00 (9) 1.00 (99) 0.98 (0.02) 1.00 (108)
8 1.00 (9) 1.00 (99) 1.00 (0.01) 1.00 (108)
12 1.00 (9) 1.00 (99) 1.00 (0.00) 1.00 (108)
13 1.00 (9) 1.00 (99) 0.85 (0.09) 1.00 (108)
14 1.00 (9) 1.00 (99) 0.99 (0.01) 1.00 (108)
0 1.00 (9) 1.00 (99) 0.96 (0.05) 1.00 (108)
9 0.78 (7) 0.98 (97) 0.95 (0.06) 0.96 (104)
16 0.78 (7) 0.98 (97) 0.91 (0.05) 0.96 (104)
15 0.78 (7) 0.98 (97) 0.95 (0.03) 0.96 (104)
1 0.78 (7) 0.98 (97) 0.86 (0.06) 0.96 (104)
2 0.56 (5) 0.96 (95) 0.92 (0.04) 0.93 (100)
10 0.44 (4) 0.95 (94) 0.87 (0.06) 0.91 (98)
6 0.44 (4) 0.95 (94) 0.87 (0.07) 0.91 (98)

misclassified number of targets for 𝑙 = 10 was 1.5 (1.0–3.75);
this result, on the scenario screen, meant that the destination
was not correct.

When ten scored trials were considered, 11 of 18 subjects
(61%) accomplished the correct selection of 100% of the
targets, despite eight of them (44%) having no previous
experience on P300 spelling task. This is summarized in

Table 3. Additionally, four subjects (22%) detected correctly
seven of nine targets while three subjects (17%) detected
between four and five. However, when LSVM and RSVM are,
respectively, used for subjects 2 and 15, there was a global
correct target improvement due to 72% of the subjects having
a sensitivity higher than 0.87. In contrast, only subjects 6 and
10 (11%) had four of nine correctly detected targets. Although
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Figure 10: Individual specificities with respect to the number of trials scored 𝑙 = {1, . . . , 10}. Green filled area represents specificities greater
than 0.95.

those two subjects presented a target coherent grand average
with P300 features and their target and nontarget averages
were statistically different, none reached the minimum per-
formance. Yet, subject 4 had no statistical differences between
his coherent averages; he reached 1.0 in both sensitivity and
specificity. Furthermore, subject 9 (see Figure 6) had a target

coherent average with no P300 features but he was capable of
correctly selecting seven of nine trials nevertheless, therefore
reachingmore than theminimumperformances for the tasks.
In conclusion, those four cases showed that a global P300
elicitation was not necessarily related to the target detection
performance. In regard to accuracy, metric defined in [53],
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Tables 2 and 3 show accuracies higher than 0.87 from single
trial (𝑙 = 1); additionally, the AUROC with ten trials (𝑙 = 10)
is higher than 0.87 ± 0.07 for all subjects.

All recordings were performed in realistic conditions
with no sound isolation; therefore, subjects were prone to
listen to distracting noises, for instance, voices, fan noise,
alarms, or phones. Yet, 89% of the subjects accomplished the
correct selection of more than seven targets (sensitivity >
0.75) and discriminated at least 97 nontargets (specificity >
0.97). Furthermore, 12 of the 16 highest performances (75%)
were obtained by unexperienced subjects. Hence the P300
stimulation screen variation with an image background of
asymmetrically arranged stimulation markers seems reliable
for a contextual and real-time generated stimulation screen
for commanding a robotic navigation system of a wheelchair
using destination-based stimulus sequences.

4. Conclusions

A stimulation screen with an image background whose stim-
ulation markers were asymmetrically arranged and a stim-
ulation sequence generator were developed and evaluated.
Using this stimulator, target coherent grand averages were
statistically different from their corresponding nontarget
averages, except for one subject, who nonetheless reached
high sensitivity and specificity. It was also corroborated
that target and nontarget averages within 150–450ms are
statistically different.

The scenario screen and its stimulus sequencer showed
that they are feasible for use on the wheelchair navigation
task for destination-based sequences given that 89% of
subjects were able to select the target with high performances.
Regardless of the fact that 78% of the subjects had no previous
experience in using BCI systems, 72% of the sample reached
high sensitivity and specificity performances. In addition,
only two unexperienced subjects had performances lower
than 0.7. LASSO-LDA altogether with the voting scheme was
able to detect the target markers with high performances
in almost all subjects. Further analysis of LASSO feature
selection is needed to explain why in some cases a direct
relationship between the P300 global elicitation and the
correct target detection rates cannot be established. Notwith-
standing the fact that LASSO-LDA approach had the highest
performances on 89% of the subjects, an individualized
classifier method might still be considered.

The occasional occurrence of clusters of stimulation
markers on a particular scenario screen might contribute
to false target detection due to the target and nontargets
nearness. An error analysis of those clusters is required in
order to verify spatial correlations between the misclassified
targets and the true targets. More importantly, the misclassi-
fied targets might not have a high impact on the wheelchair
navigation task when they are near the true targets; the
navigation route and final wheelchair position will be close to
the desired one.That is to say,misclassified targetsmight have
lower impact on the navigation accomplishment than their
misclassified counterparts on the conventional P300 spelling
task where amistake distorts themessage orthographically or
semantically [5, 11, 14, 18, 25, 29, 33, 54].

Although all the recordings were performed under real-
istic conditions, high target and nontarget detection per-
formances were achieved on most subjects. Causes that
might impact the performances were task misunderstanding
and confusion with the scenario screen usage due to its
eight markers with the same character or due to loss of
attention. Only two subjects had performances lower than 0.7
sensitivity. These two subjects were able to select correctly 4
of 9 targets which are not directly associated with a random
selection given the amount of data (number of epochs and
stimulation markers) to be processed to get a target.

Despite the fact that almost all subjects had no discomfort
in using the scenario screen, some of them reported somno-
lence and failing to perceive some targets on the fourth block.
This somnolence might be linked to no provision of feedback
to the user. This is in accordance with results of other works
that relate the ERP elicitation to user motivation [39, 61]. In
regard to the stimulation screen features, a blue/green stimuli
color scheme seems the correct election since no subject
reports discomfort related to stimulus attention, in contrast
to the previous reported red/white scheme [41].

Although Escolano et al. [30, 31] reported two stimulation
screens with image background, those were implemented
differently from scenario screen as described in Introduction.
Nonetheless, both reports had an entirely distinct aim with
respect to this paper; that is, they were focused on the evalu-
ation of navigation not on the stimulation screen evaluation
nor the stimulus presentation features that improve the target
detection.

Finally, the stimulus sequence generator developed sub-
stitutes the native OpenViBE sequencer overcoming its lim-
itations at implementing the single marker stimulus mode.
OtherOpenViBE inconveniences, which did not compromise
the realization of the evaluations reported herein, indicate
that other software architectures should be used for a release
version of the navigation control.
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[38] I. Käthner, S. C.Wriessnegger, G. R.Müller-Putz, A. Kübler, and
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[44] P. Aricò, F. Aloise, F. Schettini, S. Salinari, D. Mattia, and F. Cin-
cotti, “Influence of P300 latency jitter on event related potential-
based brain-computer interface performance,” Journal of Neural
Engineering, vol. 11, no. 3, Article ID 035008, 2014.

[45] J. Polich, “Updating P300: an integrative theory of P3a and P3b,”
Clinical Neurophysiology, vol. 118, no. 10, pp. 2128–2148, 2007.

[46] R. Tibshirani, “Regression shrinkage and selection via the lasso:
a retrospective,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 73, no. 3, pp. 273–282, 2011.

[47] R. Tibshirani, “Regression shrinkage and selection via the lasso:
A retrospective,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 58, pp. 267–288, 1994.

[48] R. Tomioka and K.-R. Müller, “A regularized discriminative
framework for EEG analysis with application to brain-computer
interface,” NeuroImage, vol. 49, no. 1, pp. 415–432, 2010.

[49] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, New York, NY, USA, 2006.

[50] D. J. Krusienski, E.W. Sellers, F. Cabestaing et al., “A comparison
of classification techniques for the P300 Speller,” Journal of
Neural Engineering, vol. 3, no. 4, pp. 299–305, 2006.

[51] D. J. Krusienski and J. J. Shih, “Control of a visual keyboard
using an electrocorticographic brain-computer interface,” Neu-
rorehabilitation and Neural Repair, vol. 25, no. 4, pp. 323–331,
2011.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[53] T. Fawcett, “An introduction to ROC analysis,” Pattern Recogni-
tion Letters, vol. 27, no. 8, pp. 861–874, 2006.

[54] F. Aloise, F. Schettini, P. Aricò, S. Salinari, F. Babiloni, and F.
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