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(is study aimed to explore the application value of three-dimensional (3D) convolutional neural networks (3D-CNN)-based
computed tomography (CT) image intelligent segmentation model in the identification of lesions of patients with hepatitis B
virus-associated acute-on-chronic liver failure (HBV-ACLF). A total of 30 patients with HBV-ACLF, 30 patients with chronic
HBV hospitalized in hospital, and 30 healthy volunteers were selected as subjects. Liver function and serum inflammatory factors
were measured in each group, and the 3D-CNN algorithmmodel was applied to CT imaging. (e results showed that the levels of
interleukin (IL)-6, IL-26, and IL-37 in the HBV-ACLF group were the highest, which were 128.43± 45.16 pg/mL,
1237.47± 536.22 pg/mL, and 50.83± 7.62 pg/mL, respectively. Total bilirubin (TBIL) (P � 0.035) and IL-26 (P � 0.013) were
independent predictors that affected the prognosis of HBV-ACLF patients. (e results of lesion segmentation showed that the
Dice coefficient of 3D-CNN low-density focus and enhanced focus segmentation was the highest (0.821± 0.07 and 0.773± 0.071),
and the marked area was close to the area manually drawn by the doctor. 3D CNNwas superior to other algorithms in the number
of nodular lesions detected (533), sensitivity (97.5%), and missed detection rate (0.52%) (P< 0.05). In short, IL-26 may become a
useful biomarker in the treatment of HBV-ACLF. (e 3D-CNN model improved the segmentation performance of lesions in CT
images of HBV-ACLF patients, which provided a reference for the diagnosis and prognosis of HBV-ACLF.

1. Introduction

Acute-on-chronic liver failure (ACLF) refers to the acute
deterioration of liver failure syndrome in patients with
chronic liver disease whose liver function is originally stable
under the action of various acute injury factors [1, 2]. Related
research pointed out that more than 30% of ACLF patients
are caused by infection, and the main cause of ACLF in
China is hepatitis B virus (HBV) infection [3]. (e patient’s
infection index has risen greatly, which is directly propor-
tional to the severity of the disease and the mortality rate.
(is type of infection is mainly caused by bacteria such as
Gram-negative bacilli. However, in recent years, with the
abuse of antibiotics and the increase in the types of

multidrug resistant bacteria, the infection range of HBV-
ACLF patients is gradually expanding [4]. Bacteria generally
induce inflammation through pathogen-associated molec-
ular patterns (PAMPs) and virulent factors [5]. Studies
found that the possible involvement in the pathogenesis of
HBV-ACLF includes immune damage, inflammation, and
cell apoptosis. It shows that the level of inflammatory factors
in serum will change when HBV-ACLF occurs [6, 7], and its
expression has potential clinical treatment and prognostic
evaluation value.

Image omics is a technology that deeply mines data
features from medical images through high-throughput
multidimensional analysis [8]. (e use of advanced image
analysis tools and various data statistics and analysis tools for
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accurate diagnosis provides a powerful tool for modern
medicine [9, 10]. In recent years, with the development of big
data and medical imaging, imaging omics has been widely
used in the prediction of the internal microscopic manifes-
tations, pathological manifestations, and gene expression of
clinical lesions [11]. Among them, computed tomography
(CT) is the most valuable examination method at present. CT
plain scan can describe the morphological characteristics of
the lesion and clarify the status of the lesion, while the en-
hanced CT scan can reflect the characteristics of the blood
supply of the lesion and the relationship with the surrounding
tissue structure [12]. However, it is not ideal for the seg-
mentation of low-density or nodular lesions in the liver of
HBV-associated ACLF patients. CT images have many slices,
and the size, location, and shape of low-density lesions are
inconsistent. Manual reading is time-consuming and labo-
rious, and there is no uniform standard for segmentation
results. It is easy to have inconsistent diagnosis results from
different doctors [13, 14]. (erefore, more intelligent algo-
rithms are needed for image segmentation.

Convolutional neural network (CNN) has demonstrated
more substantial effects and better clinical application
prospects than traditional shallow learning methods in
image segmentation and classification [15]. However, most
of them are based on 2D cross section for feature extraction,
and it is difficult to make full use of the data correlation in
the vertical axis [16]. On this basis, an automatic segmen-
tation algorithm based on 3D CNN for dual-channel 3D
dense connection network is proposed. Convolution kernels
of different sizes are used to extract multiscale features under
different scale receptive fields. (en, the densely connected
blocks of each channel were used for feature learning and
transmission. After the features were connected, they were
input to the classification layer to classify the target volume
element [17, 18], and finally the automatic segmentation of
the lesion was realized.

To sum up, the use of 3D-CNN model to optimize
medical CT images to assist physicians in detecting low-
density foci or nodular lesions in the liver of patients with
HBV-associated ACLF has become a hot topic of current
research by scholars. In this study, liver function and serum
inflammatory cytokine levels were detected in 30 HBV-as-
sociated ACLF patients, 30 CHB patients, and 30 healthy
volunteers. (e end-to-end neural network architecture was
designed based on 3D-CNN and applied to CT image
analysis, to comprehensively evaluate the application value
of 3D-CNN algorithm combined with CT imaging in the
level of inflammatory factors and prognosis of HBV-asso-
ciated ACLF patients.

2. Materials and Methods

2.1. Research Objects. A total of 30 patients with HBV-as-
sociated ACLF hospitalized in hospital from May 2019 to
May 2020 were collected, with an age range of 30–80 years.
Chronic active hepatitis B (CHB) patients were 30 cases,
aged 31–77 years. (irty healthy volunteers who underwent
physical examination in this hospital during the same period
were selected as healthy control group, aged 20–67 years.

Inclusion criteria for HBV-associated ACLF were as
follows: patients who were in line with the diagnostic
criteria of Guidelines for Diagnosis and Treatment of Liver
Failure published by Liver Failure and Artificial Liver
Research Group of Chinese Association of Infectious
Diseases in 2018 [19] and serum total bilirubin in patients
being 10 times or more than the normal value or increased
by 17.1 μmol/L/day. Exclusion criteria were as follows:
patients who had coinfection with other hepatitis viruses or
immunodeficiency viruses, patients with drug-induced
hepatitis and alcoholic liver, patients who had liver disease
caused by parasitic infection, patients with hyperthyroid-
ism, women in pregnancy or lactating period, and patients
with liver metastasis of primary liver cancer or malignant
tumor.

Inclusion criteria for CHB patients were the following:
patients who were in line with the diagnostic criteria of
Guidelines for Prevention and Treatment of chronic hepa-
titis B published by the Chinese Society of Liver Diseases and
the Chinese Society of Infectious Diseases in 2015 [20] and
the history of infection being more than six months. Ex-
clusion criteria were the following: patients complicated
with other viral hepatitis; patients with alcoholic liver, cir-
rhosis, drug-induced hepatitis, or fatty liver; patients with
genetic metabolic liver disease; patients with autoimmune
liver disease or parasitic liver disease; and patients with liver
metastasis of primary liver cancer or malignant tumor.

Inclusion criteria of healthy volunteers were the fol-
lowing: all examination indexes and biochemical indexes
being normal, and the patients not taking any drugs in the
past week. Exclusion criteria were the following: those with
organic diseases.

(is experiment had been approved by the ethics
committee of the hospital. All the experimental matters had
been informed to the subjects and their families, who had
signed informed consent.

2.2. Main Instruments and Reagents. Automatic blood co-
agulation analyzer was fromNanjing VEDENGMedical Co.,
Ltd. Centrifuge was from Nanjing Yiruoda Instrument
Equipment Co., Ltd. Low-temperature refrigerator was from
Jinan OLABO Instrument Equipment Co., Ltd. Microplate
reader was from Jinan Laobao Medical Equipment Co., Ltd.
Interleukin- (IL-) 26 kit was from Shanghai Yiyan Bio-
technology Co., Ltd. IL-6 kit was from Shanghai Tongwei
Industrial Co., Ltd. IL-27 kit was from Shanghai Jichun
Industrial Co., Ltd. Enzyme conjugate was from Shanghai
Rayzbio Biotechnology Co., Ltd. Termination fluid was from
Shanghai Acmec Biochemical Co., Ltd.

2.3. Liver Function and Inflammatory Factor Detection.
5mL of fasting venous blood was collected from all par-
ticipants in the morning. After the blood sample was co-
agulated, it was centrifuged at a frequency of 3,500 rpm for
10 minutes. If the sample did not show hemolysis or lipemia,
the upper serum was taken and stored in a refrigerator at
−80°C. Routine detections were implemented for alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
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serum total bilirubin (TBIL), prothrombin time (PT), and
activated partial thromboplastin time (APTT) using auto-
matic serum coagulation analyzer. IL-26 was measured by
double-antibody sandwich enzyme-linked immunosorbent
assay (ELISA). (e kit was taken out from the 4°C refrig-
erator and cooled to room temperature. (e distilled water
was diluted in a ratio of 1 : 20, and washing solution was
prepared. (e standard material was diluted to different
concentrations, and 100 μL of the tested serum sample was
injected into the well of the ELISA plate.(e plate was sealed
and left standing at 37°C for 1 hour; then, the plate was
thoroughly cleaned for five times and dried. 100 μL bio-
tinylated antibody was injected into each well, and the sealed
plates were stood at 37°C for 1 hour. (e plate was cleaned
five times and dried. 100 μL enzymatic conjugate was added
into each well, standing at 37°C for 15min. (e plate was
cleaned five times and dried. (en, 50 μL of substrates A and
B was added into each well, standing for 15 minutes at 37°C
in dark. One drop of terminating solution was added to each
well to terminate the experimental reaction. (e absorbance
was measured at 450 nm using a microplate analyzer. (e
operation for the determination of IL-6 and IL-27 was the
same as above.

2.4. CNN Algorithm. Convolutional network is a kind of
neural network structure, which is regarded as a special ar-
tificial neural network. (e input data is calculated through
the multilayer nonlinear mapping, and the prediction result is
output. Its essence is a regression optimization calculation,
which introduces a feedback layer into the traditional mul-
tilayer perception network structure to optimize the pre-
diction results. It mixes A convolutional layer-activation
layer, extracts image feature information, connects a pooling
layer for downsampling, and repeats it many times until the
image is minimized. (en, it connects a fully connected layer
to convert all feature images into feature vectors. Finally, the
result is obtained through the output layer.(e basic network
structure is shown in Figure 1.

(e convolutional layer extracts the feature information
of a certain area, and the image obtained after convolution is
the feature map. In the CNN, the convolutional layer has two
key characteristics of local connection and weight sharing.
(e meaning of local connection is that each point in the
back layer only connects the corresponding area in the front
layer. Weight sharing means that it inputs a picture and
scans it with a convolution kernel. (e number in the
convolution kernel is called the weight. Each position in this
picture is scanned by the same convolution kernel, so the
weight is the same; that is, it is shared.(e structure diagram
is roughly as shown in Figure 2.

In the CNN, the definition of the 3D convolutional layer
is as follows:
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convolution kernel moves in the layer of the neural network,
thereby obtaining a feature image of the next layer. (e
expression of the size of the image is as follows:
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Figure 1: Structure diagram of CNN.
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Oout �
Oin − Q + 2R

T
+ 1. (2)

Here, Oin is the size of the input feature image, Q is the
size of the corresponding convolution kernel, R is the
number of boundary zero padding, and T represents the
length of the convolution kernel when it moves. In the
neural network, there are two main types of pooling layers,
the largest pool and the average pool. (e calculation
method of the maximum pool is as follows:

I
j
n(a, b, c) � max

0≤e,f,g≤w
I

j−1
n (a · w + e, b · w + f, c · w + g) .

(3)

(e average pool is expressed as follows:
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Here, w is the size of pooling. After passing through the
pooling layer, the number of feature maps does not change,
and the size of the image is calculated by the following
equation:

Oout �
Oin − w

T
+ 1. (5)

Here, Oin is the size of the input feature image, w is the
pooling size, and T is the pooling step size. For the fully
connected layer, each neuron in it will be connected to the
previous layer, and the Softmax layer is often used as the
output layer of the CNN. Its expression is as follows:

I
N
u �

x
IN− 1

u


v
v�1x

IN−1
v

for u � 1, · · · , V. (6)

Here, V represents the total number of categories, N is
the total number of layers of the neural network, IN−1

V is the v

th node in the N − 1 th layer (usually a fully connected
layer), and IN

u represents the uth node in the Nth layer (i.e.,
the output layer). (e sum of the probabilities of all cate-
gories is 1.

Since most of the low-density areas of the liver occupy a
small area in the image, the channels in the network are
usually used to sample under the pooling layer to avoid
excessive loss of small information. (e convolution
module is employed to extract the information of this layer,
and then deconvolution is performed to generate cascade
with the feature image, which enables multilevel feature
learning, thereby helping to detect low-density areas of
different sizes.

2.5. 3D-CNN. 2D-CNNs mainly focus on 2D neighborhood
information, while 3D-CNN is calculated through three
dimensions and extracts features in 3D space. (e main
content of this study is applying 3D-CNN to the segmen-
tation of low-density lesions in the liver area.

CNNs are individually estimated according to the
neighborhood and context of each volume element in the
image, and feature extraction is completed by cascading a
series of convolution operations. 3D-CNN uses a 3D con-
volution kernel, facing the initial 3D data, which completes
the convolution calculation through the input layer and the
convolution kernel. After addition of the bias term, the
nonlinear excitation function is used to obtain the output
characteristic image.(e basic network structure is shown in
Figure 3.

(e calculation method is expressed as follows:

y
u
z−1 � g  q

u,v
z ⊗y

v
z−1 + d

u
z . (7)

Here, each qu,v
z is the learned hidden weight, u rep-

resents the number of convolution kernels (the dimension
of the output feature), v represents the dimension of the
input feature, yv

z−1 represents the output 3D feature map,
du

z represents the bias term, ⊗ is the convolution calcu-
lation, and g represents the nonlinear activation function.
In 3D-CNN, if features are input to the network layer with
a higher level, complex features will appear, which are
used for classification. (e end of the CNN is the clas-
sification layer, which is compared with the labels used for
classification. (is layer generally uses a normalized ex-
ponential function, which is defined and expressed as
follows:

xs �
r

Os


N
s r

Os
. (8)

Here, Os represents the output of the previous layer, s

represents the index number of the estimated category, N is
the number of categories in the layer, and xs represents the
ratio of the index of the estimated category at this time to the
sum of all category factors. With the help of Softmax, the
output value of each category is adjusted to the estimated
probability compared with it.

2.6. Low-Density Foci Segmentation Based on 3D-CNN.
(e low-density stove segmentation process based on 3D-
CNN is shown in Figure 4. In the training stage, the
training set image is input, and the volume elements are
normalized through preprocessing. (en, the features of
each dimension are learned and extracted. According to
the estimated conclusion and classification label, the
patches generated by the loss function in the training and
test set images are counted and then normalized. (e
categories of the volume elements are calculated through
the network model one by one, and the segmentation
result image is output.

2.7. CT Examination. A Brilliance 64-row helical scanner
(GE Company, USA) was employed for inspection. (e
layer thickness was 5mm, the spacing was 5mm, and the
reconstruction layer thickness was 0.625mm. (e tube
current was 380mA, the tube voltage was 125 kV, and the
collimator width was 0.625mm. In the enhanced scan,
80–100mL (350mg/100mL) of the contrast agent iohexol
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was injected at a flow rate of 3-4mL/s. Scanning phases
were 20–25 s in the arterial phase, 65–70 s in the venous
phase, and 180 s in the delayed phase. (e image data was
processed by the system’s own imaging workstation.

2.8. Statistical Analysis. SPSS 24.0 was used for statistical
analysis of all experimental data. (e continuous variables
conforming to normal distribution were represented as
mean± standard deviation (x± s), and the t-test was used
for comparison between groups. One-way analysis of
variance was used for comparison betweenmultiple groups.
Multivariate analysis was performed using logistic

regression equation analysis. (e correlation was assessed
by Pearson test. P< 0.05 was considered statistically
considerable.

3. Results

3.1. Comparison of the Levels of Inflammatory Factors among
the ree Groups of Objects. In Figure 5, IL-6, IL-26, and IL-
37 in the HBV-ACLF group were 128.43± 45.16 pg/mL,
1237.47± 536.22 pg/mL, and 50.83± 7.62 pg/mL, respec-
tively, which were higher than those of 89.17± 28.39 pg/mL,
689.14± 351.7 pg/mL, and 31.19± 5.82 pg/mL in CHB group
and those of the healthy group 58.45± 13.22 pg/mL,

Figure 3: Basic network structures of 3D-CNN.
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Label Loss
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CT image
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CT image
preprocessing

3D CNN

3D CNN

WeightDown-sampling
Training set

Test
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Figure 4: 3D-CNN’s low-density foci segmentation process.
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116.43± 56.29 pg/mL, and 14.14± 2.18 pg/mL, respectively.
(e differences were considerable (P< 0.05).

3.2. Prognostic Risk Factors of HBV-Associated ACLF
Patients. Table 1 shows the single-factor and multifactor lo-
gistic regression analysis. In the univariate analysis of the
prognosis of HBV-associated ACLF patients, TBIL (P � 0.004),
PT (P � 0.012), APTT (P � 0.005), and IL-26 (P< 0.001) were
considerable. In the multivariate analysis, TBIL (P � 0.035) and
IL-26 (P � 0.013) were independent predictors of the prognosis
of patients with HBV-associated ACLF.

3.3. Analysis of CT Image Low-Density Foci Segmentation
Results Based on ree Algorithms. In Figure 6, the machine
learning-based algorithms Deep Medic and Seg Net were
compared with the 3D-CNN model. According to the Dice
coefficient of the segmentation results, the Dice coefficient of
3D-CNN (0.884± 0.068) in the overall segmentation of low-
density stoves was slightly lower than DeepMedic algorithm
(0.900± 0.077) and higher than Seg Net algorithm
(0.846± 0.072). In the core segmentation of low-density foci,
the Dice coefficient of 3D-CNN was 0.821± 0.07, which was
higher than Deep Medic algorithm (0.763± 0.069) and Seg
Net algorithm (0.754± 0.076). In the segmentation of en-
hanced lesions, the Dice coefficient of 3D-CNN

(0.773± 0.071) was higher than that of Deep Medic algo-
rithm (0.731± 0.074) and Seg Net algorithm (0.694± 0.078),
and the difference was considerable (P< 0.05).

A 53-year-old male patient presented with intermittent
abdominal distension for two years with exacerbation and
yellowing of eyes and skin for two weeks. CTexamination two
years ago showed cirrhosis. (at time, the patient visited the
hospital due to abdominal distension and fatigue. HBsAg (+),
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Figure 5: Comparison of the levels of inflammatory factors among the three groups of objects. Note: ∗ indicates that the level of in-
flammatory factors in the HBV-ACLF group had a considerable difference compared with the CHB group and the HC group (P< 0.05).

Table 1: Prognostic risk factors of HBV-associated ACLF patients.

P Univariate analysis OR 95% CI P Multifactor analysis OR 95% CI
ALT (U/L) 0.291 1.000 0.987–1.000
AST (U/L) 0.698 1.000 0.995–1.000
TBIL (μmol/L) 0.004 1.0078 1.004–1.021 0.035 1.015 1.000–1.026
PT (s) 0.012 1.136 1.031–1.215 0.388 1.356 0.682–2.521
APTT (s) 0.005 1.043 1.008–1.098 0.891 1.002 0.936–1.054
IL-6 (pg/mL) 0.077 1.253 0.998–1.561 0.605 0.187 0.001–1.298
IL-26 (pg/mL) ≤0.001 1.004 0.936–1.006 0.013 1.005 1.000–1.006
IL-37 (pg/mL) 0.340 0.991 0.972–1.008 0.072 1.015 0.993–1.066
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Figure 6: Analysis of CT image low-density lesion segmentation
results based on three algorithms. Note: ∗ indicates that the Dice
coefficient of the 3D-CNNmodel was considerable compared to the
other two algorithms (P< 0.05).
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HBeAg (−), and HBV DNA 2.46×105 IU/mL were examined.
Figure 7 shows the results of segmentation of low-density foci
by different algorithm models. Green was the lesion area
marked by the doctor, and red was the lesion area automat-
ically marked by the three algorithm models. (e 3D-CNN
marked the area more closely to the area the doctor had
sketched by hand.

3.4. Comparison of CT Image Candidate Detection Results
Based on  ree Algorithms. (e results of candidate detec-
tion of nodular lesions using different algorithms are shown
in Figure 8. (e number of nodular lesions detected by 3D-
CNN was 533, which was higher than that of Deep Medic
algorithm (506) and Seg Net algorithm (482). Sensitivity
(97.5%) of 3D-CNN was higher than that of Deep Medic

(a) (b) (c)

Figure 7: Different algorithm models segmentation results of low-density foci. (a) (e CT image marked by the Deep Medic algorithm
model, (b) the CT image marked by the Seg Net algorithm model, and (c) the CT image marked by the 3D-CNN model.
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Figure 8: Comparison of CT image candidate detection results based on three algorithms. (a) (e comparison of the number of nodular
lesions detected by the three algorithms. (b) (e comparison of the sensitivity and missed detection rate of the three algorithms. Note:
∗indicates that the detection performance of the 3D-CNN model was considerable compared to the other two algorithms (P< 0.05).
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algorithm (95.6%) and Seg Net algorithm (93.8%).(emissed
detection rate (0.52%) of 3D-CNN was lower than that of
Deep Medic algorithm (0.76%) and the Seg Net algorithm
(1.25%), and the difference was considerable (P< 0.05).

4. Discussion

HBV-associated ACLF is a reaction after a series of injuries,
such as systemic immune disorders due to various in-
ducements of acute liver injury based on chronic liver
disease [21, 22]. It causes severe liver damage or failure.
HBV-ACLF can lead to rapid deterioration of liver function,
circulatory system, and organ dysfunction in the course of
disease development, which is of high mortality and poor
prognosis [23]. Many studies deemed that immune dys-
function is the main cause of ACLF. In the early stage,
immune overexcitation and continuous inflammatory re-
sponse cause a large number of liver cell necrosis [24, 25],
while inflammatory cell infiltration and microcirculation
disorder also exist. With the progress of the disease, liver
failure, toxin accumulation in the body, internal environ-
ment disorder, and other consequences gradually appear
[26]. In clinical practice, experts usually segment lesions
manually based on their professional knowledge and work
experience. (e method based on computer automatic
segmentation can effectively help doctors relieve working
pressure and quickly and accurately obtain the feedback of
the lesion area to doctors [27], which provides good diag-
nostic conditions and recommendations for treatment op-
tions. In clinical practice, CNN is usually used to build a
medical image segmentation algorithm model to assist
physicians to greatly improve the analysis effect of imaging
features [28]. In this study, liver function and serum in-
flammatory cytokine levels were detected in 30 HBV-ACLF
patients, 30 CHB patients, and 30 healthy volunteers. (e
end-to-end neural network architecture based on 3D-CNN
was designed and applied to CT image analysis.

(e results showed that the levels of IL-6, IL-26, and IL-37
were the highest in HBV-ACLF group, and TBIL and IL-26
were independent predictors of the prognosis of HBV-ACLF
patients. (e results of focal segmentation showed that the
Dice coefficient of low-density focal core and enhanced focal
segmentation was the highest in 3D CNN, and the labeled
regions were closer to the regions delineated manually by
doctors. Moreover, 3D CNNwas superior to other algorithms
in the number, sensitivity, and missed detection rate of
nodular lesions detected (P< 0.05). In short, IL-26 may be a
useful biomarker in the treatment of HBV-ACLF. (e 3D-
CNN model improved the segmentation performance of
lesions in CTimages of patients with HBV-ACLF, providing a
reference for the diagnosis and prognosis of HBV-ACLF.(is
is consistent with the research results of Osuna-Coutiño and
Martinez-Carranza [29]. 3D-CNNmodelmakes full use of the
interlayer information of CT images to improve the conti-
nuity of CT image segmentation. Hamidian et al. [30] pointed
out that 3D-CNN combined the advantages of 2D and 3D
models and significantly improved the segmentation per-
formance of themodel. It was found that TBIL and IL-26 were
independent predictors of prognosis in patients with

HBV-ACLF, and IL-26 may be a useful biomarker in the
treatment of HBV-ACLF.

5. Conclusion

In this study, an intelligent CT image segmentation model
based on 3D-CNN algorithm was established to integrate
2D and 3D models, which was applied to CT images of
HBV-ACLF patients. (e results showed that the 3D-CNN
algorithm model had ideal performance in CT image
segmentation of HBV-ACLF patients. However, there are
still some shortcomings in this study. (e experimental
results have certain limitations and one-sidedness, so it is
necessary to increase the sample size in the future and
conduct further exploration in this direction. In conclu-
sion, 3D-CNN model greatly improves the segmentation
performance of CT images of patients with HBV-ACLF,
which provides a reference for the diagnosis and prognosis
of HBV-ACLF.
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