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Abstract: Polycystic ovary syndrome (PCOS) is a common endocrine disorder among women. Moderate
aerobic exercise intervention is considered an initial treatment strategy for managing PCOS. Brain-
derived neurotrophic factor (BDNF) is an important molecular mediator and a beneficial response to
exercise. We aimed to investigate the expression pattern and underlying molecular mechanisms of this
neurotrophic factor during follicle development in ovarian tissues. The PCOS model was established by
subcutaneous injection of 60 mg/kg dehydroepiandrosterone (DHEA) into the neck of Sprague Dawley
rats for 35 consecutive days. PCOS rats then received aerobic exercise for 8 weeks. Body/ovarian
weight and peripheral serum hormone levels were observed. Immunohistochemistry combined with
Western blot analysis and fluorescence quantitative polymerase chain reaction were used to detect the
changes in BDNF-TrkB/p75NTR pathway, apoptosis, and inflammatory factors. We show that moderate
aerobic exercise not only reverses the PCOS phenotype but also activates the BDNF-TrkB pathway and
initiates downstream targets. p-TrkB upregulates and phosphorylates phosphatidylinositol 3-kinase
(PI3K) and protein kinase B (Akt) to inhibit apoptosis. In addition, aerobic exercise therapy reduces
the high expression of p75NTR in the ovarian tissue of PCOS rats and initiates the anti-apoptotic effect
from the downstream pathway of NF-κB/JNK. Our in vitro results state that treatment with BDNF
ameliorated dihydrotestosterone (DHT)-induced granulosa cells (GCs) apoptosis by provoking p-TrkB
activation and upregulating the PI3K/AKT pathway. The present study suggests that moderate aerobic
exercise regulates follicular dysfunction in PCOS-like rats. One possible mechanism is to initiate the
BDNF-mediated anti-apoptotic signaling pathway.

Keywords: aerobic exercise; brain-derived neurotrophic factor; apoptosis; neuroendocrine; polycystic
ovary syndrome

1. Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine disorder among women,
mainly characterized by hyperandrogenemia, hyperinsulinemia, and chronic anovula-
tion [1,2]. Because of the complex pathogenesis of PCOS, no mechanism-based treatments

J. Clin. Med. 2022, 11, 5584. https://doi.org/10.3390/jcm11195584 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11195584
https://doi.org/10.3390/jcm11195584
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-2868-5112
https://orcid.org/0000-0001-8366-7887
https://doi.org/10.3390/jcm11195584
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11195584?type=check_update&version=2


J. Clin. Med. 2022, 11, 5584 2 of 15

have been presented against it. However, previous studies support that elevated androgen
levels contribute to PCOS [3]. Previous studies show that hyperandrogenism has induced
oxidative stress (OS), ovarian fibrosis, chronic low-grade inflammation, mitochondrial
dysfunction, and excessive endoplasmic reticulum (ER) stress in the ovary that ultimately
affected follicle development [4–8]. Recent evidence has revealed that the pathophysiologi-
cal mechanisms of PCOS are associated with neuroendocrine impairments [9–11]. Thus,
increased androgen signaling in the brain and ovary may be a potential mechanism in the
pathophysiology of PCOS.

Regular physical activity can prevent or reduce the risk of many diseases [12]. Mod-
erate aerobic exercise is the preferred treatment for PCOS. Exercise can reduce androgen
and insulin levels in PCOS, improve the endocrine environment of the ovary, and play
an important role in promoting ovulation [13,14]. Our previous research has shown that
aerobic exercise can alleviate hyperandrogenism-induced ER stress and reverse ovarian
granulosa cells (GCs) apoptosis in PCOS-like rats [15]. In addition, exercise stimulates
the release of neurotransmitters and neurotrophins such as nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4/5 in an
activity-dependent manner [16,17]. They play an important role in regulating neuronal
survival and differentiation and in non-neuronal tissues such as ovarian follicles [18]. Some
studies have shown that endometriosis is associated with low follicular-fluid BDNF levels,
and diminished ovarian reserve is associated with increased follicular-fluid NGF levels [19].
In vitro treatment with an appropriate concentration of BDNF can promote oocyte matura-
tion and embryonic development [20]. In addition, BDNF affects the development of the
materno-fetal-placental unit in terms of differentiation, proliferation, and placental nutrient
transport [21]. However, it has also been reported in some studies that the BDNF levels
of PCOS patients in plasma and in follicular fluid were higher than values obtained in
healthy controls [22]. Subsequent findings suggest that chronic low-dose inflammation
in PCOS may interact with BDNF to contribute to the development of depression [23]. In
conclusion, BDNF signaling events have substantial roles in the ovary, and BDNF expres-
sion and levels have been linked with follicle organization during ovarian development,
follicle recruitment, and growth and oocyte maturation [24]. However, BDNF expression
patterns in non-neuronal tissues, such as the ovary, and the underlying mechanism of
oocyte maturation remain unclear.

BDNF binds to the high-affinity tropomyosin-related kinase receptor type B (TrkB) and
exerts its pro-survival effects by activating the downstream signaling pathways, including
the phosphatidylinositol 3-kinase (PI3K)-Akt pathway [25]. BDNF can also activate the
pan-neurotrophin low-affinity co-receptor p75 (p75NTR) [26–28]. In many species, BDNF
can affect oocyte maturation and early embryo development [29]. However, the role of
BDNF and its receptor in PCOS remains to be determined. In addition, the role of BDNF-
TrkB/p75NTR signaling in follicular development is limited and incompletely understood.
In particular, exercise has been shown to promote the expression of BDNF in hippocampus
and cerebral cortex [30]. Whether exercise can directly affect the expression of BDNF and
its receptors in ovarian tissues remains to be further explored. In this study, we explored
the potential mechanism by which moderate aerobic exercise may modulate follicular
dysfunction by increasing the expression of BDNF in PCOS. As our understanding of the
expression and underlying molecular mechanisms of these neurotrophic factors in the
human ovary grows, new diagnostic and therapeutic applications for the management of
patients with infertility and ovarian pathology, as well as improvement in oocyte quality,
will be developed.

2. Subjects and Methods
2.1. Animal Models and Groups

The Shanghai Xipuer-Bikai Laboratory Animal Co., Ltd. (Shanghai, China) provided
60 specific pathogen-free (SPF) Sprague Dawley® (SD) female rats (21 days old, 50–60 g).
All animal experiments were performed in accordance with the guidelines of the Insti-
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tutional Animal Care and Use Committee (IACUC) and approved by the Institutional
Research Animal Committee of Nanjing University. The rats were housed in closed cages
under controlled temperature (22 ± 2 ◦C) and light (12:12 h, light:dark). All SD rats were
initially divided into three groups: the control group (no treatment, n = 10), model group
(DHEA treatment, n = 10), and exercise group (DHEA treatment + treadmill training
treatment, n = 10). The PCOS rats were induced with dehydroepiandrosterone (DHEA)
(6 mg/100 g BW) for 35 consecutive days.

2.2. Implementation of Moderate Aerobic Exercise

After the PCOS model was established by DHEA subcutaneous injection, treadmill
aerobic training was conducted at 10:00 a.m. the next day. In the first week, adaptive
treadmill training was performed. Rats were trained at 5 m/min–10 m/min for 10 min on
the first day, and training length increased by 30 min per day, ending at up to 15 m/min
for 60 min on the sixth day. Then, seven-week regular exercise training was performed
at 15 m/min for 60 min per day (5 m/min for the first 5 min, 10 m/min for 10 min, and
15 m/min for the remaining 45 min), six days per week for eight weeks. Furthermore, at the
end of the 8-weeks treatment period, blood samples and tissues were collected immediately.

2.3. Isolation and Culture of Granulosa Cells (GCs)

In order to enhance multiple follicular development, 23-day-old immature female rats
were injected with pregnant mare serum gonadotropin (PMSG) (20 IU) 48 h in advance. The
rats were killed by cervical dislocation and were disinfected with 75% alcohol for 20 min.
The ovaries were quickly removed on a super-clean bench, and the follicles were punctured
with microscopic tweezers to release GCs. Cell debris was removed using 100 µm cell
strainers. The primary GCs was cultured in DMEM-F12 containing 10% fetal bovine serum
(FBS, Gibco, New York, NY, USA) and 1% penicillin-streptomycin solution (Gibco, New
York, NY, USA), in a cell incubator at 37 ◦C (95% relative humidity, 5% CO2). Cell growth
was monitored intermittently.

2.4. CCK8 Assay

GCs were seeded in 96-well plates (1 × 105 cells/well) for 48 h and then treated with
various concentrations of dihydrotestosterone (DHT) and BDNF (Cayman Chemical, Ann
Arbor, MI, USA) for the indicated times. Cell counting kit-8 (CCK-8) solution (10 µL; A311-02-
AA, Vazyme Biotech, Nanjing, China) was added to each well, followed by incubation for 4 h
at 37 ◦C. The absorbance at 450 nm was measured using a microplate reader.

2.5. Cell Apoptosis Assessment

Cell apoptosis was assessed using an Alexa Fluor 488-conjugated annexin V and propid-
ium iodide (PI) (C1062L, Beyotime, Shanghai, China) detection kit. Primary GCs were treated
with or without DHT, BDNF, and ANA-12, and then, 5 µL of PI and 10 µL of annexin V–FITC
was added to the cells. FITC–Annexin V-positive cells were considered apoptotic cells.

2.6. Hematoxylin and Eosin (H&E) Staining

Paraffin slides were stained with hematoxylin and eosin to examine the pathological
structural alterations of the rat ovary and hippocampus under an optical microscope (Leica
Microsystems, Weztlar, Germany).

2.7. Serum Hormone Measurement

The rats were anesthetized with 1% pentobarbital sodium (40 mg/kg, ip), and blood
was drawn from the superior vena cava. The serum was separated immediately and stored
at −80 ◦C for further determination of testosterone (T), luteinizing hormone (LH), and
follicle-stimulating hormone (FSH) levels through enzyme-linked immunosorbent assay
(ELISA) (Elabscience Biotechnology, Wuhan, China).
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2.8. Nissl Staining

Nissl staining was performed to assess neuronal survival. The sections were rinsed
in deionized water, dipped in a warm (50 ◦C) solution of 1% thionine for 45 min, and
differentiated with 70% alcohol for approximately 5 min.

2.9. ELISA

Serum was collected for detecting IL-1β using ELISA kits (Elabscience Biotechnology).
The ELISA provided a detection range ranging from 31.25 to 2000 pg/mL, and the sensitivity
of the ELISA kit was 18.75 pg/mL. According to the manufacturer’s instructions, 450 nm
was regarded as the most suitable wavelength for measuring absorbance.

2.10. Immunohistochemistry (IHC) and Immunofluorescence (IF)

After antigen retrieval, dewaxed and rehydrated sections were treated with 3% hydro-
gen peroxide and then 5% BSA and incubated overnight at 4 ◦C with primary antibody
BDNF (1:100, Wanleibio, Shenyang, China). Slides were then incubated with a secondary
goat anti-rabbit IgG horseradish peroxidase (HRP) at 37 ◦C for 30 min. Sections were
consequently stained with diaminobenzidine for 10 min, counterstained with hematoxylin
(Beyotime, Shanghai, China), covered with coverslips, and observed under an optical
microscope. The histology was quantified with Image Pro Plus 6.0 based on optical density.

The tissue steps and cell climbing pieces before the sections were incubated with
the primary antibody were the same for immunohistochemical staining. Sections were
incubated overnight at 4 ◦C with antibodies against BDNF (1:100, Wanleibio), TrkB (1:100,
Wanleibio), p75NTR (1:100, 55014-1-AP, Proteintech, Chicago, IL, USA), and Cleaved-
Caspase-3 (1:100, 66470-2-Ig, Proteintech) at a 1:100 dilution. Fluorescently labeled sec-
ondary antibodies were diluted (1:1000) and incubated in the dark at 25 ◦C for 2 h. Nuclei
were counterstained with 4′,6-diamidino-2-phenylindole (C1002, Beyotime) at a dilution of
1:2000 for 30 min. Images were photographed using an Olympus laser scanning confocal
microscope (FV3000, Tokyo, Japan). Fluorescence intensity was quantified using Image-Pro
Plus 6.0 (Media Cybernetics, Rockville, MD, USA).

3. TUNEL Analysis

TUNEL assays were performed to detect Bcl-2 and caspase 3 levels in ovary sections.
A Fluorescein (FITC) TUNEL Cell Apoptosis Detection Kit (G1501-100T, Servicebio, Wuhan,
China) was used in accordance with the manufacturer’s instructions. Slides treated with
DNase I for 30 min served as positive controls. DAPI was used to stain the nuclei.

3.1. Quantitative Real-Time PCR (qRT-PCR)

The total RNA was extracted from the GCs in the ovaries with TRIzol reagent (Bey-
otime), and the cDNA was synthesized with a reverse transcription kit (Vazyme, China).
Quantitative RT-PCR was performed with the ABI Viia7 real-time PCR system (ABI, Los
Angeles, CA, USA) by using the SYBR™ Green PCR Master Mix (Vazyme). Quantitative
RT-PCR was performed as follows: Stage 1, pre-denaturation (Rep: 1, 95 ◦C, 30 s); Stage 2,
circular reaction (Reps: 40, 95 ◦C, 10 s; 60 ◦C, 30 s); Stage 3, melting curve (Rep: 1, 95 ◦C,
10 s; 60 ◦C, 60 s; 95 ◦C, 15 s). The primers used in this study are shown in Table 1. The
critical threshold cycle (Ct) value was determined for each reaction for relative quantifica-
tion using the 2−∆∆Ct method. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used as an internal control.
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Table 1. Sequences of primers designed for RT-qPCR.

Genes Forward Reverse

BDNF 5′-GTGTGACAGTATTAGCGAGTGGG-3′ 5′-ACGATTGGGTAGTTCGGCATT-3′

TrkB 5′-GGCATCACCAACAGTCAGC-3′ 5′-GCATCCTTCAGGGTCTTCA-3′

p75NTR 5′-AGGGCACATACTCAGACGAA-3′ 5′-AGATGGAGCAATAGACAGGAAT-3′

FSHR 5′-CAACCTCCGATATCTGTTAATA-3′ 5′-CATTCTTACTCAGCCATACAGT-3′

Cyp11α1 5′-GGATGCGTCGATACTCTTCTCA-3′ 5′-GGACGATTCGGTCTTTCTTCCA-3′

Cyp19α1 5′-AACCCGAGCCTTTGGAGAA-3′ 5′-GGCCCGTCAGAGCTTTCA-3′

GAPDH 5′-AGGTCGTGTGAGGGATTG-3′ 5′-TTAGTAGTAGTAGGGGGGGTCA-3′

3.2. Western Blot

The tissue samples were homogenized through mechanical disruption in RIPA ly-
sis buffer (P0013B, Beyotime) containing 1 mM PierceTM phosphatase inhibitor (B15001,
Selleck, TX, USA) and 0.1% HaltTM protease inhibitor cocktail (B14001, Selleck). The gel
electrophoresis system of Bio-Rad (12% SDS polyacrylamide) was used to separate proteins
from samples that contained the same protein quantity (30 µg); the proteins were then
transferred onto the polyvinylidene difluoride membranes (IPVH00010, Merck Millipore,
Burlington, MA, USA). Target bands were incubated at 4 ◦C overnight with corresponding
primary antibodies against BDNF (1:500, WL0168, Wanleibio, Wuhan, China), TrkB (1:500,
WL00839, Wanleibio), p-TrkB (1:500, WL02988, Wanleibio), p75NTR (1:500, 55014-1-AP,
Proteintech, Chicago, IL, USA), PI3K (1:1000, 4292S, CST, Boston, MA, USA), p-PI3K (1:1000,
AF3242, Affinity, Boston, MA, USA), AKT (1:1000, 4691T, CST), p-AKT (1:1000, 4060T, CST),
NF-κB (1:1000, 8242S, CST), p-NF-κB (1:1000, 3033S, CST), JNK (1:1000, 9252T, CST), p-
JNK (1:1000, 4668S, CST), IL-1β (1:1000, ab9722, Abcam, Cambridge, UK), IL-6 (1:1000,
21865-1-AP, Proteintech), Bcl-2 (1:500, Wanleibio), Bax (1:1000, 50599-2-Ig, Proteintech),
cleaved caspase-3 (1:1000, 66470-2-Ig), AR (1:1000, ab52615, Abcam), FSHR (1:1000, BS5724,
Bioworld, Nanjing, China), Cyp11α1 (1:1000, BS6578, Bioworld), Cyp19α1 (1:1000, BS6580,
Bioworld), and GAPDH (1:5000, Bioworld), followed by the addition of HRP-labeled sec-
ondary antibodies. The blots were visualized using chemiluminescent detection (Merck
Millipore, NJ, USA). Densitometric analysis was performed with Image J.

3.3. Statistical Analysis

Values were expressed as the mean ± SEM. All statistical analyses were performed
with GraphPad (Prism 7.0). Multiple comparisons were implemented through one- and
two-way ANOVA followed by Tukey’s post-hoc test. Binary variables were compared
using a t-test, and a p-value < 0.05 was regarded as statistically significant.

4. Results
4.1. Effects of Moderate Aerobic Exercise on Ovarian Dysfunction in DHEA-Induced PCOS Rats

In this study, the bodyweight of rats induced with DHEA was higher than that in the
control group, but after 8 weeks of aerobic (treadmill) exercise, their weight was significantly
reduced (Figure 1A). The ovarian weight of PCOS rats also markedly increased after the
exercise treatment (Figure 1B). In addition, compared to the control group, the ovaries in
PCOS rats had more atypical follicles but almost no corpus luteum. However, multiple
immature follicles were substantially reduced after exercise treatment, whereas the number
of corpus luteum evidently increased (Figure 1C). Furthermore, the elevated T and LH/FSH
levels in PCOS rats declined to normal levels after the exercise treatment (Figure 1D,E). The
estrus cycle of all rats was continuously observed for two cycles (10 days). The results show
that the rats in the PCOS group lost their regular estrus cycle. After exercise intervention,
the estrus cycle returned to normal (Figure 1F). Notable changes were also observed
in genes related to follicular development after 8 weeks. AR, Cyp11α1, and Cyp19α1
levels increased, while FSHR levels decreased in the ovaries of PCOS rats (Figure 2A,I).
In addition, fasting blood sugar (FBG) was measured using a glucometer, and compared
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with the control group, the FBG levels in the PCOS group were increased. Relative to the
PCOS group, the PCOS + exercise group had decreased FBG levels. However, there was no
statistical difference (Table 2).
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Figure 1. Aerobic exercise reversed the PCOS phenotype. Rats received DHEA for the induction of
polycystic ovarian syndrome, together with or without exercise treatment. (A) Rat body weights
were measured in each group after 8 weeks of exercise treatment. (B) Average weight of both
ovaries was measured. (C) Ovarian and follicular morphology was assessed by H&E staining (10×).
(D,E) Serum T and LH/FSH levels were analyzed using enzyme-linked immunosorbent assay kits.
(F) The estrus cycle of all rats in the experimental group was continuously shown. n = 10 in each
group. Data are shown as mean± SEM. ** p < 0.05. CL, corpus luteum; CF, cystic follicles; P, proestrus;
E, estrus; M, metestrus; D, diestrus.

Table 2. The levels of FBG in three experimental groups.

Group FBG p

Ctrl 3.76 ± 0.47 -
PCOS 4.68 ± 1.20 0.095

PCOS + Exercise 4.04 ± 0.62 0.253
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Figure 2. Ovarian dysfunction is improved after treatment with aerobic exercise in DHEA-induced
PCOS rats. Rats received DHEA for the induction of polycystic ovarian syndrome, together with or
without exercise treatment. (A–E) The levels of AR, Cyp11α1, and Cyp19α1 were measured with
immunohistochemical staining. (B–F) These bar charts show the quantitative analysis. (G,H) The
expression of AR, Cyp11α1, and Cyp19α1 in ovaries was assessed by Western blot assay. (I) mRNA
expression of AR, Cyp11α1, and Cyp19α1 factors was analyzed by real-time PCR. n = 10 in each
group. Data are shown as mean ± SEM. ** p < 0.05, vs. control group; ## p < 0.01, vs. PCOS group.

4.2. Location and Expression of BDNF in the Hippocampus of PCOS Rats after Moderate
Aerobic Exercise

The effects of exercise in the brain are most apparent in the hippocampus [31], and thus,
H&E and Nissl staining were conducted to explore the effects of aerobic treadmill exercise
in the hippocampus of DHEA-induced PCOS rats. Compared with the control group, Nissl
stains in the hippocampal CA1, CA3, and DG regions of PCOS rats were lighter. After
treadmill running, neurons were orderly and densely arranged in the hippocampal regions,
and the number of neurons in hippocampal DG and CA3 areas was notably enhanced,
similar to the hippocampal regions of the control group (Figure S1A,B).

Analysis of immunofluorescence data showed that the BDNF level in the PCOS group
was significantly lower than that in the other groups. A significant rise in BDNF in the
PCOS group was observed after 8 weeks of exercising (Figure S1C,D). Western blot analysis
showed that the expression of BDNF, TrkB, and p-TrkB proteins decreased and p75NTR
proteins increased in the hippocampus of the PCOS group compared to the control group.
After the treadmill exercise, the above phenomenon was corrected (Figure S1E,F).

4.3. Location and Expression of BDNF, TrkB, and p75NTR in Ovarian Follicles of PCOS Rats after
Moderate Aerobic Exercise

BDNF and its receptors are thought to be key regulatory proteins in the development of
the ovary and ovarian regulation in a follicle-stage-dependent manner [32,33]. To detect the
location and expression of BDNF, TrkB, and p75NTR in the ovary, immunohistochemistry
and double-labeling immunofluorescence were performed. BDNF could be detected in
granulosa and membranous cell layers in the ovarian follicle. However, the expression
levels of BDNF and TrkB in the PCOS group were lower than those in the control group,
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but the expression levels of p75NTR were higher. After 8 weeks of aerobic exercise, the
PCOS group had substantially enhanced BDNF and TrkB expression, but with decreased
levels of p75NTR (Figure 3A–E).
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Figure 3. The expression of BDNF, TrkB, and p75NTR in ovarian follicles of PCOS rats after aerobic
exercise. Rats received DHEA for the induction of polycystic ovarian syndrome, together with or
without exercise treatment. (A,B) The expression levels of BDNF in ovarian follicles at different stages
were analyzed by immunohistochemistry. (C,D) The expression levels of BDNF in ovarian follicles
were analyzed by immunofluorescence. (E,F) The co-expression of TrkB and p75NTR in ovarian
follicles at different stages was detected by immunofluorescence double labeling. n = 10 in each
group. Data are shown as mean ± SEM. ** p < 0.05, vs. control group; ## p < 0.01, vs. PCOS group.

4.4. Activated BDNF Signaling in the Ovary of DHEA-Induced PCOS Rats

The expression levels of p75NTR, TrkB, and BDNF can be modulated with response to
stimuli through lowering p75NTR or ameliorating BDNF-TrkB signaling [28]. To further
confirm that aerobic exercise could activate BDNF signaling in the ovary of DHEA-induced
PCOS rats, we analyzed the mRNA and protein expression levels of BDNF, TrkB, and
p75NTR in the ovarian tissue from different groups. Based on RT-qPCR and Western blot
analysis, the expression level of BDNF in the PCOS group was lower than that in the other
groups. Moreover, the expression pattern of TrkB was similar to BDNF, but that of p75NTR
was higher in the PCOS group after 8 weeks of aerobic exercise.

BDNF expression was substantially enhanced, accompanied by the upregulated phos-
phorylation of TrkB (p-TrkB) (Figure 4A–C). In addition, the level of p75NTR significantly
decreased in rats after exercising (Figure 4F,H).

TrkB and p75NTR are known to engage in disparate signaling pathways downstream
of ligand activation. TrkB promotes PI3K/AKT, while p75NTR stimulates NF-κB and JNK
pathways. Consistently, Western blot analysis confirmed that PI3K and p-AKT markedly
decreased in the PCOS group after 8 weeks of aerobic exercise, and the expression levels of
PI3K and p-AKT in the ovarian tissue of rats were significantly upregulated (Figure 4D,E).
Furthermore, both NF-κB and JNK pathways were activated in DHEA-induced rats. Treat-
ment with aerobic exercise significantly reduced the expression of phosphorylated protein
levels in NF-κB (p-NF-κB) and JNK (p-JNK) pathways (Figure 4G,I).
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Figure 4. Aerobic exercise activated BDNF signaling in the ovary of DHEA-induced PCOS rats. Rats
received DHEA for the induction of polycystic ovarian syndrome, together with or without exercise
treatment. (A) mRNA expression of BDNF, TrkB, and p75NTR factors in ovarian tissue was analyzed
by real-time PCR. (B,C) The expression of BDNF, TrkB, and p75NTR in ovarian tissue was assessed
by Western blot assay. (D,E) The expression of PI3K, AKT, and p-AKT in ovarian tissue was assessed
by Western blot assay. (F–I) The expression of p75NTR, NF-κB, p-NF-κB, JNK, and p-JNK in ovarian
tissue was assessed by Western blot assay. n = 10 in each group. Data are shown as mean ± SEM.
** p < 0.05, vs. control group; ## p < 0.01, vs. PCOS group.

4.5. Moderate Aerobic Exercise Reduced Apoptosis and Inflammation of Ovarian Tissue in PCOS Rats

A TUNEL assay was performed to examine the apoptosis of ovarian tissues in each
group. The number of TUNEL-positive cells was significantly higher in the PCOS group
than in the control group, but the PCOS + exercise group had fewer TUNEL-positive cells
than the PCOS group. In addition, double immunofluorescence staining showed that
aerobic exercise increased the expression of anti-apoptotic protein Bcl-2 and decreased
the level of cleaved caspase-3 in ovarian tissue of PCOS rats (Figure 5A,D). Consistently,
Western blot results demonstrate that hyperandrogenism significantly increased levels of
cleaved caspase-3 and Bax and decreased the anti-apoptotic protein Bcl-2 in ovarian tissues
compared to the control group. However, levels of cleaved caspase-3 and Bax in ovarian
tissues of rats treated with aerobic exercise were remarkably reduced, while the level of
Bcl-2 increased (Figure 5E,F). We observed greater production of IL-1β in serum samples of
each group. The concentration of serum IL-1β (pg/mL) in the PCOS group was greater
than that in the control group. After exercise therapy, the serum IL-1β level was decreased
significantly in the PCOS + exercise group (Figure 5G). Moreover, the protein levels of
inflammatory cytokines (IL-10, IL-6, IL-1β) in ovarian tissue significantly decreased after
aerobic exercise therapy (Figure 5H,I). Our findings indicate that aerobic exercise therapy
is capable of suppressing DHEA-induced apoptosis and inflammation in the PCOS model.
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Figure 5. Aerobic exercise reduced DHEA-induced apoptosis and inflammatory response in PCOS
rats. Rats received DHEA for the induction of polycystic ovarian syndrome, together with or without
exercise treatment. (A–D) Fluorescence co-staining results of TUNEL Caspase3 and Bcl-2 in ovarian
tissues of rats in each group. (E,F) The expression of cleaved caspase-3, Bax, and Bcl-2 in ovarian
tissue of each group by Western blot. (G) Quantification of ELISA demonstrated the relative content
level of IL-1β in each group. (H,I) The expression of inflammatory factors IL-6 and IL-1β in ovarian
tissue of each group by Western blot. n = 10 in each group. Data are shown as mean ± SEM.
** p < 0.05, vs. control group; ## p < 0.01, vs. PCOS group.

4.6. BDNF Possibly Alleviates DHT-Induced GC Apoptosis by Upregulating the PI3K/AKT Pathway

Our previous research showed that hyperandrogenism can induce ovarian GCs pyrop-
tosis [7]. Our data showed that BDNF in PCOS rats increased significantly after exercise.
Thus, GCs were treated with 5 µM DHT and various BDNF concentrations (0, 10, 100,
1000 ng/mL) for 48 h, and GCs viability after BDNF treatment was analyzed using CCK-8.
As expected, the cell viability was rescued after BDNF treatment (Figure S2A,B). To test
this hypothesis of BDNF/TrkB signaling, we used the inhibitor for TrkB receptor ANA-12.
Results from immunofluorescence and Western blotting assays show that the provoking
action of BDNF was abolished in the presence of ANA-12 with diminished expression of
p-TrkB compared with DHT + BDNF group (Figure S2C–F).

To further confirm the anti-apoptotic effect of BDNF is dependent on the activation of
the PI3K/AKT pathway, we used PI3K inhibitor LY294002 in in vitro studies. The apoptosis
rate of GCs was also analyzed by PI and FITC-Annexin V staining.

As expected, BDNF treatment reversed DHT-induced apoptosis of GCs, and PI3K
inhibitor LY294002 eliminated the anti-apoptotic effect of BDNF (Figure 6A). Moreover,
BDNF treatment exerted an anti-apoptotic effect on DHT-induced GCs, and cleaved caspase-
3 level was decreased using immunofluorescence assay (Figure 6B,C). In addition, Western
blotting analysis showed that BDNF treatment caused increased expression of p-PI3K and
p-AKT, but LY294002 inhibits their expression in GCs (Figure 6D,E).
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Figure 6. BDNF possibly alleviates DHT-induced GCs apoptosis by upregulating the PI3K/AKT
pathway. DHT-induced GCs were treated with BDNF and LY294002 with or without DHT. (A) GCs
were incubated with annexin V-FITC and PI. The cells were imaged for apoptosis detection using a
FV3000 Olympus microscope. (B,C) Apoptosis protein expression of cleaved caspase-3 was analyzed
and quantified using Image-J software (60×). (D,E) The expression levels of PI3K, p-PI3K, AKT, and
p-AKT were detected by Western blot assay. Data are shown as mean ± SEM. ** p < 0.05, vs. DMSO
group; ## p < 0.01, vs. DHT group; && p < 0.01, vs. DHT + BDNF group.

5. Discussion

Follicular dysplasia in PCOS patients may be caused by abnormal endocrine and
paracrine factors and changes in follicular microenvironment. Recently, a growing number
of studies have shown that neurotrophins and their receptors are also expressed throughout
the reproductive system [34]. BDNF is a neurotrophic protein first discovered in the pig
brain by scientists in 1982. It is mainly expressed in the central nervous system, with
the highest content in the hippocampus and cortex. Studies on the role of BDNF and its
receptor in the ovaries of humans and other mammals are increasing. It is inferred that
BDNF may be a physiological regulator promoting follicle development, granulosa cell
proliferation, and oocyte maturation [24,35]. BDNF is typically synthesized as a large
precursor protein (pro-BDNF), which exhibits exclusive binding to p75NTR. Pro-BDNF can
be cleaved to form mature BDNF (m-BDNF), and both are biologically active. Mature BDNF
signals through its high-affinity receptor TrkB [36,37]. However, the interactions between
BDNF-TrkB and pro-BDNF-p75NTR are complex and can be modified at various levels
(alternative forms, alternative receptors/signaling pathways). Therefore, the underlying
mechanism is not fully understood and should be further explored.

Exercise can enhance the expression of BDNF. Exercise plays an important role in the
prevention and treatment of PCOS as a non-drug intervention method. In addition, exercise
requires high intensity, duration, and muscle group allocation. Moderate exercises are benefi-
cial for most women and could improve fertility for those with anovulatory disorders such as
PCOS [38,39]. There was also a study showing that acute high-intensity intermittent exercise
increased serum BDNF concentration and attenuated the emotional states of tension, depres-
sion, and anger [40]. The findings suggested exercise as a strategy to attenuate the deleterious
sensations occasioned by ovarian hormonal fluctuations and regulate ovarian function. In this
study, we first established that DHEA is a major androgen precursor. Hyperandrogenism-
induced PCOS rats showed weight gain, ovarian weight loss and polycystic changes, and
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hormone disturbance. When the rats were subjected to treadmill exercise (6 d/wk, 1 h/d at a
pace of 15/min for 8 week), PCOS rats lost body weight, ovarian morphology returned to
normal, and hormone disturbance was corrected. The intensity of the exercise was based on
References [41,42]. This is consistent with previous studies that showed moderate exercise
may help to recover optimal hormonal balance and restore ovulation in overweight and obese
women with PCOS [43]. Moderate aerobic exercise can improve follicular dysfunction in
PCOS rats, which may be associated with the increased expression of BDNF. Interestingly, we
found that BDNF and its receptors TrkB and p75NTR were not only expressed throughout
ovarian follicle development but also in the hippocampus after exercise. BDNF is inferred
to cross the blood–brain barrier in a bidirectional manner [44,45]. Moreover, the level of
circulating BDNF further increased, but in addition to the brain, BDNF was also released in
the skeletal muscles, PBMCs, vascular endothelial cells, and platelets [46,47]. Nevertheless,
we considered that our study mainly focused on the changes in the PCOS model rats after
they received exercise training, rather than explaining the effect of exercise. Although the
experimental purpose has been reached, due to the lack of the control + exercise group, the
comparison between the changes in the control group after exercise and the changes in the
model group after exercise is still inconclusive, which is also the limitation of this study. In
addition, the understanding of BDNF is still in its infancy, and further exploration of the
candidate sources and release mechanisms of BDNF in exercise is needed. In addition to its
well-established neurotrophic action, BDNF also possesses anti-apoptosis, anti-oxidation, and
autophagy-suppressing qualities [48,49].

Previous studies have shown that neurotrophic factors directly regulate the function
of somatic and granulosa cells in the ovary by binding to corresponding receptors rather
than regulating the development of primary to secondary follicles through the ovarian
nerves [50,51]. Moreover, studies have shown that BDNF in the ovary is secreted by
cumulus and granulosa cells; therefore, the concentration of BDNF must be related to
the proliferation of follicular granulosa cells. The BDNF level decreased when granulosa
cells were apoptotic [52], and in this study, DHEA-induced PCOS rats showed increased
expression of apoptotic proteins (cleaved caspase-3/Bax) and decreased expression of
anti-apoptotic B-cell lymphoma 2 (Bcl-2) in the ovary. The results are consistent with
previous findings that the beneficial effects of BDNF involve the induction of anti-oxidative
thioredoxin, with the resultant expression of Bcl-2. In addition, the number of TUNEL-
positive cells was significantly higher in the ovarian tissue of PCOS rats. After 8 weeks of
aerobic exercise therapy, the PCOS phenotype was reversed, the expression of apoptotic
proteins was downregulated, and the anti-apoptotic protein was upregulated in the ovary.
We infer that aerobic exercise increases BDNF, plays an anti-apoptotic role, and corrects
ovarian dysfunction. We analyzed the mRNA and protein expression level of BDNF, TrkB,
and p75NTR in ovarian tissues and found that the activation of the BDNF-TrkB pathway
initiated downstream targets. p-TrkB upregulates and phosphorylates phosphatidylinositol
3-kinase (PI3K) and Akt to inhibit apoptosis. Moderate aerobic exercise therapy may
also reduce the high expression of p75NTR in the ovarian tissue of PCOS rats, initiate
the anti-apoptotic effect mediated by the downstream pathway of NF-κB/JNK, and thus
reduce apoptosis of ovarian oocytes and granulosa cells. In addition, the protein levels
of inflammatory cytokines (IL-6 and IL-1β) in ovarian tissue of PCOS rats significantly
decreased after aerobic exercise therapy. However, it remains completely unclear whether
aerobic exercise benefits BDNF in the process of exerting anti-inflammatory effects. These
findings suggest that BDNF could be a candidate neurotrophic factor capable of improving
follicular dysfunction.

In conclusion, we show that low levels of BDNF in the ovarian follicle of PCOS rats may
be the potential cause of follicular development disorders. Moderate aerobic exercise can
enhance the expression of BDNF and initiate the BDNF-mediated anti-apoptotic signaling
pathway, thus reversing the ovarian phenotype of PCOS. Exercise plays an important role
in the prevention and treatment of PCOS as a non-drug intervention method. However, the
limitations of this study included that the exercise protocol was relatively simple, as the rats
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were only trained on a treadmill and not engaged in other types of aerobic exercise, such as
swimming or voluntary wheel running. There is also a lack of studies evaluating exercise
in this study. In addition, the temporal and spatial differences in the expression of BDNF
and its receptor during ovarian and follicular development suggest that the physiological
functions of the BDNF signaling pathway vary in follicles at different developmental stages.
Presently, the mechanism for signal transduction of BDNF and its receptors in oocytes,
follicular granulosa, and stromal cells is not completely clear. Thus, the expression of
BDNF in follicles at various stages, whether as pathogenesis of PCOS or just a biochemical
indicator, in the pathophysiological process of PCOS, need to be further studied. From a
clinical point of view, due to the high prevalence of PCOS in reproductive-aged women,
it is important that future studies about the effectiveness of lifestyle interventions in this
PCOS patient population are robustly designed to better provide new ideas for future
clinical practice guidelines/recommendations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11195584/s1, Figure S1: Aerobic exercise increased the ex-
pression of BDNF and its receptor in the hippocampus; Figure S2: BDNF treatment increased the cell
viability of DHT-induced GCs and provoked p-TrkB activation.
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