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SUMMARY

The problem of human trust is one of the most fundamental problems in applied
artificial intelligence in drug discovery. In silico models have been widely used to
accelerate the process of drug discovery in recent years. However, most of these
models can only give reliable predictions within a limited chemical space that the
training set covers (applicability domain). Predictions of samples falling outside
the applicability domain are unreliable and sometimes dangerous for the drug-
design decision-making process. Uncertainty quantification accordingly has
drawn great attention to enable autonomous drug designing. By quantifying
the confidence level of model predictions, the reliability of the predictions can
be quantitatively represented to assist researchers in their molecular reasoning
and experimental design. Here we summarize the state-of-the-art approaches
to uncertainty quantification and underline how they can be used for drug design
and discovery projects. Furthermore, we also outline four representative applica-
tion scenarios of uncertainty quantification in drug discovery.

INTRODUCTION

Artificial intelligence (AI) and other data-driven approaches are reshaping drug discovery and design pro-

cesses. For tasks with large amounts of training data, supervised learning can effectively map the relation-

ship between inputs and outputs. A typical scenario is predicting protein structure based on primary

sequence, where AlphaFold2 (Jumper et al., 2021) is believed to have solved this half-century problem

(Buel and Walters, 2022). However, in most drug design tasks, the amounts of available training data are

often limited (Altae-Tran et al., 2017). The inconsistency between the distribution of training data and

test data may cause the model to produce unreliable outputs, which may have adverse consequences

on decision-making procedure of drug design (Begoli et al., 2019). Unfortunately, classical deep learning

(DL) models do not provide confidence estimation for their outputs. For regression tasks, the output is a

single deterministic value without any uncertainty measurement. For classification tasks, the output is a

probability distribution, which can be taken as the prediction confidence to some extent but is often poorly

calibrated (Mervin et al., 2020). To illustrate this more vividly, we built a toy dataset, in which x is a real num-

ber ranging from 0 to 20 and y is a binarized label indicating whether 1+ sinðxÞ
2 is larger than 0.5 (y = 1), or

otherwise (y = 0). As shown in Figure 1A, the toy dataset is split into the training part (x < 12) and the

test part (xS12). A neural network with 2 hidden layers and the Softmax output layer was trained on the

training set. Figure 1B shows the probabilities given by the model on the training set and the test set.

As shown, the model is well fitted on the training part, but gives overconfident false prediction on the

test part. It is observed that the probability solely given by the Softmax function cannot be taken as the con-

fidence of the prediction reliably. Thus, novel UQ strategies that are more effective, well-calibrated, and

compatible with the different structures of neural networks are highly demanded. (Mervin et al., 2021a).

Evaluating the quality of a UQ method is tricky owing to the requirement of taking application scenarios

and objectives of users into consideration, but in general, the ranking and calibration ability of UQmethods

are the most two aspects that we are concerned. Ranking ability is intended to characterize the correlation

between uncertainty and error. A UQmethod with an ideal ranking ability should assign higher uncertainty

values to predictions with larger errors. For regression tasks, appropriate correlation coefficients (e.g.,

Spearman correlation coefficient) can be used to quantitatively describe the correlation between predic-

tion error and uncertainty. For classification tasks, it is expected that the wrong predicted samples could

be intelligently prioritized by uncertainty. Specifically, the samples that are incorrectly and correctly classi-

fied can be regarded as positives and negatives, respectively, and then the ranking ability of UQ methods
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Figure 1. The probability given by the Softmax function cannot be taken as the confidence of the prediction

reliably

(A) A toy dataset is built for illustration, in which x is a real number ranging from 0 to 20 and y is a binarized label indicating

whether 12+
1
2 sinðxÞ is larger than 0.5 (y =1), or otherwise (y =0). The dataset is split into the training part (x < 12) and the test

part (xR 12). A neural network with 2 hidden layers and the Softmax output layer was trained on the training set.

(B) The figure shows the probability given by the model on the training set and the test set. As it can be seen, the model is

well fitted on the training part, but gives overconfident false predictions on the test part.
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can be quantified by auROC (area under the receiver operating characteristic curve) or auPRC (area under

the precision�recall curve). Calibration ability is intended to characterize the ability to indicate the error

distribution. For example, under the regression setting, it is expected that a UQ model could precisely es-

timate the variance of the error distribution, which is useful and important for confidence interval

estimation.

In the chemistry community, there have been some concepts similar to uncertainty quantification for a long

time, among which the most common one is the definition of the AD (applicability domain) (Sheridan, 2012,

2013, 2015) of QSAR (quantitative structure-activity relationship) models. In the following content, we will

clearly specify the relationship between the two in this review to avoid confusion. UQ and AD share the

same purpose: to help researchers determine whether the prediction result of a sample is reliable. Predic-

tions for compounds outside the application domain will be thought to be less reliable (corresponding to

higher uncertainty), and vice versa. Thus, UQ and AD are closely linked. Compared with UQ, traditional

applicability domain definition methods are more input-oriented, generally considering the feature space

or sub-feature space of samples, less considering the structure of the model itself. Correspondingly, the

concept of UQ is broader and can refer to all the methods used to determine whether a prediction is reli-

able or not in general. As a result, AD definitionmethods are conceptually covered by UQ. Here, some clas-

sical AD definition methods are classified as similarity-based UQ methods and will be introduced in the

‘‘similarity-based approaches’’ section.

In this article, we intend to give a review of the concept, methods, and applications of UQ in the current

drug design and discovery paradigm. It is worth noting that we will not thoroughly cover the available

UQ strategies out of the context of drug design, especially considering that the review of Abdar et al. (Ab-

dar et al. (2021) has conducted this job. Instead, we pay more attention to specific application cases of UQ

and explain the underlying principles of the methods used, and we hope this review will give insights and

practical guidance for deploying trustworthy AI models in drug design.
SOURCES OF UNCERTAINTY IN DRUG DISCOVERY

According to different sources, uncertainty can be broadly divided into three categories: approxima-

tion, aleatoric and epistemic uncertainties (Kiureghian and Ditlevsen, 2009). Approximation uncertainty
2 iScience 25, 104814, August 19, 2022



Figure 2. Illustration of aleatoric uncertainty and epistemic uncertainty

The fitted model is represented as a black solid line and the observed data are represented as red points. The blue area

means the 95% confidence interval (uncertainty measurement).

(A) A probabilistic neural network is built to provide a confidence interval of the prediction. The model assigns a lower

aleatoric uncertainty to the data points in a regular pattern (low noise data), and a higher aleatoric uncertainty to the data

points in a random pattern (high noise data).

(B) A Gaussian Regression Process model is used to provide a confidence interval of the prediction. The predictions in the

space with no (or lack of) observed data points are assigned higher epistemic uncertainty, but the predictions in the space

with observed data points are assigned lower epistemic uncertainty.
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accounts for the errors caused by the incompetence of simplistic models to fit complex data, such

as the error made by a linear model fitting a sinusoidal curve (Tagasovska and Lopez-Paz, 2019).

However, because deep neural networks are known to be universal approximators, approximation un-

certainty is always assumed to be negligible. More details are directed to a study by Lazic et al., which

provides an introduction to sources of uncertainty, including the approximation uncertainty (Lazic and

Williams, 2021). In this section, we will focus on the introduction of aleatoric and epistemic

uncertainties.

Aleatoric uncertainty

Aleatoric uncertainty (derived from the Latin alea, which means the rolling of dice) describes the intrinsic

random nature (noise) of data to be modeled (Tagasovska and Lopez-Paz, 2019). In Figure 2A, the fitted

model is represented as a black solid line, and the observed data are represented as red points. As it

can be seen, the model assigns a lower aleatoric uncertainty to the data points in a regular pattern (low

noise data), and a higher aleatoric uncertainty to the data points in a random pattern (high noise data).

As an inherent attribute of data, aleatoric uncertainty cannot be reduced by collecting more training

data. In drug discovery projects, the data noise is always derived from the different experimental measure-

ments that are complicated by two main sources of error: systematic error and random error (Kolmar and

Grulke, 2021). Hence, aleatoric uncertainty is often used to estimate whether the maximal performance of a

model has been reached (i.e., when models approximate experimental error) (Beker et al., 2020), which will

be detailed in the ‘‘improving model accuracy and robustness’’ section.

Epistemic uncertainty

Epistemic uncertainty (derived from Greek episteme, which means ‘‘knowledge’’) represents the errors

associated with the lack of knowledge of the trained model in certain regions of the sample space (e.g.,

the chemical space outside AD of the model) (Tagasovska and Lopez-Paz, 2019). As shown in Figure 2B,

the predictions in the space with no (or lack of) observed data points are assigned higher epistemic uncer-

tainty, but the predictions in the space with observed data points are assigned lower epistemic uncertainty.

Hence, unlike aleatoric uncertainty, epistemic uncertainty can be neutralized by collecting the data in those

low-density regions. Samples with higher epistemic uncertainty can provide more informative insights into

models (e.g., novel structure-activity relationship). Therefore, epistemic uncertainty can be used to guide

experiment design to annotate data with less experimental cost while maximizing a model’s performance

gain (Ding et al., 2021). The corresponding application is referred to as active learning (AL), which will be

detailed in the ‘‘active learning’’ section.
iScience 25, 104814, August 19, 2022 3



Table 1. The summary of the uncertainty quantification methods

UQ methods Core idea Representative methodsa Example applicationsa

Similarity-based If a test sample is too dissimilar

to training samples, the

corresponding prediction

is likely to be unreliable.

1. Box Bounding (Netzeva et al., 2005)

2. Convex Hull (Jaworska et al., 2005)

3. DM (Sheridan et al., 2004)

4. SDC score (Liu et al., 2018)

5. NNAS (Allen et al., 2020)

1. Virtual screening (Berenger and
Yamanishi, 2019)

2. Anticancer peptide activity prediction
(Chen et al., 2021)

3. SARS-CoV 2 inhibitor prediction
(Gawriljuk et al., 2021)

4. Toxicity prediction (Jiang et al., 2021)

Bayesian Parameters and outputs are

treated as random variables

and maximum a posteriori (MAP)

estimation is adopted according

to Bayes’ theorem.

1. VI (MC-dropout) (Gal and
Ghahramani, 2016)

2. BNN (Goan and Fookes, 2020)

3. GP-MGK (Xiang et al., 2021)

4. MVE (Nix and Weigend, 1994)

5. Bayesian GCN (Ryu et al., 2019)

1. Molecular property prediction
(Zhang and Lee, 2019)

2. Virtual screening (Ryu et al., 2019)

3. Protein-ligand interaction prediction
(Kim et al., 2021)

Ensemble-

based

The consistency of the predictions

from various base models is an

estimate of confidence.

1. Bootstrapping (Scalia et al., 2020)

2. RF (Sheridan, 2012)

3. DeltaDelta (Jimenez-Luna et al., 2019)

4. Deep ensemble (Lakshminarayanan
et al., 2017)

5. MC-dropout (Gal and
Ghahramani, 2016)

1. Drug-likeness prediction
(Beker et al., 2020)

2. Molecular property prediction
(Scalia et al., 2020)

3. Lead optimization (Jimenez-Luna
et al., 2019)

aThe representative methods and example applications are not exhaustive.
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METHODS OF UNCERTAINTY QUANTIFICATION

A large number of UQmethods have been deployed in drug discovery projects. Here, we put forward a new

taxonomy to track the development path of various UQ methods. By focusing on the theoretical founda-

tions of these UQ methods, we categorize them into three types: similarity-based, Bayesian, and

ensemble-based approaches. For clarity, we summarized their core ideas, representative methods, and

example applications in Table 1. These UQmethods and associated concepts are reviewed in the following

sections.
Similarity-based approaches

Similarity-based approaches basically adopt the concept that if a test sample is too dissimilar to training

samples, the corresponding prediction is likely to be unreliable. In practice, users should first choose or

define a method to measure the distance between the test samples and the training samples, and then

the distance can be regarded as the estimated uncertainty of the prediction. Some of these approaches

have been widely used to define the AD for QSAR models.

A simple similarity-based approach named Bounding Box defines a range of acceptable values for each

descriptor based on the distribution of its values in the training set (Netzeva et al., 2005). For a query sam-

ple, if the value of at least one descriptor falls out of the defined range, the sample is regarded as ‘‘out-of-

distribution.’’ The more descriptors that break the criteria, the more uncertain the prediction is. Instead of

directly using the raw descriptor, sometimes a reduced-dimension strategy, like PCA (principal compo-

nents analysis), will be performed first to reduce the feature space (Carrio et al., 2014). The lower bound

and the upper bound of the acceptable range is usually decided by the minimum and maximum value

of the descriptor in the training set, but sometimes the top and bottom 5th percentiles are used. Another

similarity-based approach considers the activity space similarity rather than feature space (Keefer et al.,

2013). It is assumed that if the predicted value of a query sample is not consistent with the labels of the

structurally similar training samples, which indicates that the SAR (structure-activity relationship) landscape

is not smooth, the prediction is then considered unreliable. Generally, these approaches suffer from the

shortcoming of too strong assumption for the distribution of features (independent variables x) or labels
4 iScience 25, 104814, August 19, 2022



ll
OPEN ACCESS

iScience
Review
(independent variable y). For example, most of these methods assume that features are independent of

each other, and can only provide binarized or discrete uncertainty estimation (reliable or unreliable) results,

which limits their application.

Different from the methods mentioned above, another kind of similarity-based approach considers the

overall distance between samples, usually called the distance-to-model (DM) method. The application

of the DM method should define the distance between two samples xðiÞ and xðjÞ first, which depends on

the format of features. If features are Boolean vectors, Tanimoto similarity (also called Jaccard index) DT

is often used:

DT

�
xðiÞ; xðjÞ� =

P
xðiÞ
m xðjÞ

mP
xðiÞ
m xðiÞ

m +
P

xðjÞ
m xðjÞ

m � P
xðiÞ
m xðjÞ

m

(Equation 1)

where xðiÞm is the m-th feature value of molecule xðiÞ. If xðiÞ is a continuous vector, Euclidean distance DE is

often used:

DE

�
xðiÞ; xðjÞ� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m = 1

�
xðiÞ
m � xðjÞ

m

�2vuut (Equation 2)

whereM is the total feature length. Once it has decided how to calculate the distance between samples, we

can further define the distance between a test sample and the training set, which can be further taken as

predictive uncertainty. Many strategies can be applied in this procedure, for example, the average distance

to the nearest k training samples (Sheridan et al., 2004) or the distance to the representative average of the

training set (Berenger and Yamanishi, 2019). The threshold for defining AD can be decided by analyzing the

training data distribution (Sahigara et al., 2013).

Instead of computing distances, some methods define an acceptable high-dimensional range and assume

that the query sample within this range can be readily predicted. An example is the Convex Hull strategy,

which defines the smallest convex area that covers the training points (Jaworska et al., 2005). It can also be

taken as an extension of the Bounding Box method.

Recently, some more complex similarity-based approaches have emerged. For example, the SDC score

proposed by Liu et al. (Liu et al., 2018; Liu and Wallqvist, 2019) uses the contribution of all training mole-

cules to estimate the reliability of a prediction, in which the training sample contribution is weighted

down exponentially by the distance.

It is noticed that the above-mentioned similarity-based approaches are highly dependent on how to

feature samples. However, by engineering raw features, DL models could project samples into a

mission-specific latent space in which distances can also be treated as an uncertainty metric. Janet et al.

tested this idea on two diverse chemical datasets and found that latent space distance outperformed other

well-established uncertainty metrics without any additional training cost (Janet et al., 2019). In a similar way,

Allen et al. proposed NNAS (neural network activation similarity), a kind of latent space distance, to in-

crease prediction confidence in toxicity safety evaluation. They found that NNAS outperformed Tanimoto

similarity and RFS (random forest similarity) regarding similarity searching (Allen et al., 2020).
Bayesian approaches

The training process of a neural network can be taken as learning the optimal parameters q for a probabi-

listic model pðY jX;qÞ. Frequentists and Bayesians adopt different strategies for solving this problem, and

their differences are visualized in Figure 3. As shown in Figures 3A and 3C, for frequentists, the parameters

are fixed but with unknown quantities, and can be estimated by the maximum likelihood estimation (MLE).

This corresponds to the standard training protocol that minimizes the empirical loss (Nix and Weigend,

1994; Scalia et al., 2020). On the other hand, as shown in Figures 3B and 3D, Bayesians treat parameters

as random variables and adopt maximum a posteriori (MAP) estimation or directly give the posterior dis-

tribution of parameters according to Bayes’ theorem. This is called the Bayesian neural network (BNN),

where model weights and outputs are both distributions instead of determined values (Goan and Fookes,

2020). Different from the standard neural network, BNN has the advantage of directly capturing the uncer-

tainty of the prediction (Olivier et al., 2021). To briefly show this, assuming that model parameters follow the

prior distribution pðqÞ (e.g., a normal distribution), and model likelihood is pðY jX;qÞ, where X refers to the
iScience 25, 104814, August 19, 2022 5



Figure 3. Comparison between the traditional neural network and Bayesian neural network

The outputs and parameters of the traditional neural network are deterministic values (A and C), while in the Bayesian

neural network they are distributions (B and D).
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feature vectors and Y refers to the label vector, we obtain the posterior distribution pðqjX;YÞ according to

the concept of Bayesian inference Equation (3):

pðqjX;Y Þ =
pðqÞpðY jX ; qÞR
pðqÞpðY jX ; qÞdq (Equation 3)

where ðX;YÞ corresponds to the training set as ‘‘seen’’ by the model, and the posterior distribution

pðqjX;YÞ is the joint probability distribution of model weights learned (conditioned) by fitting the training

set. Once the distribution of model weights is determined, for a query sample x�, its prediction by �, a dis-

tribution, can be calculated using Equation (4):

pðby �jx�;X ;Y Þ =

Z
pðby �jx�; qÞpðqjX ;Y Þdq (Equation 4)

where the final prediction pðby �jx�;X;YÞ could be understood as a ‘‘weighted sum’’ of each prediction

pðby �jx�; qÞ for each set of possible model weights q, and the probability of q depends on the training set

ðX;YÞ. For regression tasks, as by � is a variable following a distribution instead of a deterministic number

in the Bayesian neural network, we can now define the uncertainty of by � as its variance, which can be calcu-

lated according to Equation (5):

var½by �jx�;X ;Y �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Total Uncertainty

= Eq�pðqjX ;Y Þ½var½by �jx�; q��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aleatoric Uncertainty

+ varq�pðqjX ;Y Þ½E½by �jx�; q��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Epistemic Uncertainty

(Equation 5)

It can be seen that the total uncertainty is decomposed into the former term aleatoric uncertainty and the

latter term epistemic uncertainty, which has been introduced in the ‘‘sources of uncertainty in drug discov-

ery’’ section. Directly using Equation (5) to calculate var½by �jx�;X;Y � (total uncertainty) faces two problems.

First, it is required to define the likelihood pðyjx;qÞ. For regression tasks, mean-variance estimation (MVE) is

often used (Nix and Weigend, 1994). In MVE, the output of a neural network (with determined model

weights q) is defined as a Gaussian distribution, and the task of the neural network is to give the mean

mðx�; qÞ and variance vðx�; qÞ of the distribution:

½mðx�; qÞ; vðx�; qÞ� = fqðx�Þ (Equation 6)
� � � �
pðby jx ; qÞ = Nðmðx ; qÞ; vðx ; qÞÞ (Equation 7)

where fqðx�Þ refers to the model output. In practice, the output layer of the neural network is branched into

two predictions (a 2-dimensions vector), themean mðx�; qÞ and the variance vðx�;qÞ. Owing to the non-nega-

tivity of variance, we generally predict its log value. In addition to this minimal modification on model

output layer, the loss function should be changed as the form shown as Equation (9), which is obtained

by performing MAP inference on Gaussian probability density function [Equation (8)].

pðyjx; qÞ =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p vðx; qÞp exp

 
� ½y � mðx; qÞ�2

2vðx; qÞ

!
(Equation 8)
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where y is the true label of the sample x.

LðqÞf1

N

XN
i = 1

 
½yi � mðxi; qÞ �2

2vðxi; qÞ +
1

2
ln½vðxi; qÞ �

!
(Equation 9)

where N is the number of training samples, and yi is the true label of i-th training sample xi. In MVE, labels

are assumed to carry underlying Gaussian errors that indicate the noise in the labels. Pytorch (Paszke et al.,

2019), a popular deep-learning python library, has implemented a function (torch.nn.functional.gaus-

sian_nll_loss, version 1.11.0) for conveniently calculating MVE loss.

The second problem is that the posterior distribution pðqjX ;YÞ cannot be calculated analytically owing to

the intractable calculation of pðY jXÞ. Some strategies are often used to make an approximation, for

example, variational inference (VI) (Blei et al., 2017), which constructs a variational distribution qðqÞ to

approximate pðqjX;YÞ by minimizing the Kullback-Leibler divergence between qðqÞ and pðqjX ; Y Þ. VI
methods constitute a standard technique in Bayesian modeling. However, its high computational cost still

limits its application. Thus, some approximate ways have been implemented to circumvent its computa-

tional intractability, such as an ensemble that consists in training the same network multiple times with

random initialization. The process of training a model could be deemed as taking a sampling of the real

distribution of model weights pðqjX;YÞ. Here, these approximate ways are classified as ‘‘Ensemble-based

approaches’’ and will be detailed and introduced in next section.

After the acquisition of sampled weights from qðqÞ, var½by �jx�;X;Y � can be approximated as Equation (10),

as proposed by Kendall et al. (Kendall and Gal, 2017):

var½by �jx�;X ;Y �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Total Uncertainty

z
1

T

XT
t = 1

vðx�; qtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Aleatoric Uncertainty

+
1

T

XT
t = 1

mðx�; qtÞ2 �
 
1

T

XT
t = 1

mðx�; qtÞ
!2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Epistemic Uncertainty

(Equation 10)

where fqtgTt = 1 � qðqÞ are sampled model weights. Zhang et al. benchmarked this approach in the context

of molecular property prediction based on 6 datasets (Zhang and Lee, 2019). Results showed that the total

uncertainty is a better estimate of error than any single source of uncertainty. Scalia et al. drew the same

conclusion in a recent benchmarking test of molecular property prediction, again highlighting the impor-

tance of considering both sources of uncertainty (Scalia et al., 2020).

For classification problems, label y� can be expressed as:

y� ˛ ½e1;.ec ;.; eC � (Equation 11)

where ec is a one-hot encoded vector whose c-th element is 1 and other positions are zeros. For example,

for a typical binary classification problem, y� can be either [0, 1] or [1, 0]. The likelihood function, or the pre-

dicted probability of the model that the sample belongs to the c-th class, is given by:

pðy = ec jx; qÞ =
exp

�
f ðcÞq ðxÞ

�
PC

i = 1exp
�
f ðiÞq ðxÞ

� = pc (Equation 12)

where f
ðcÞ
q ðxÞ is the c-th element of the pre-activated model output and the probability vector

p = ½p1.;pc ;.;pC � = softmaxðfqðxÞÞ is the final output.

There exist several different methods for UQ in classification settings. Here we introduce two of them. The

first was proposed by Kwon et al. (Kwon et al., 2020) which aimed at calculating the total variance of pre-

diction as we have conducted in the regression setting:

var½by �jx�;X ;Y �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Total Uncertainty

z
1

T

XT
t = 1

�
diag

�
pt

� � �
pt

��
pt

�T�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aleatoric Uncertainty

+
1

T

XT
t = 1

�
pt � p

��
pt � p

�T
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Epistemic Uncertainty

(Equation 13)

where p = 1
T

PT
t = 1

pt is the predictive mean and pt = softmaxðfqtðx�ÞÞ is the prediction of a single model whose

weights are sampled from qðqÞ, as is conducted in Equation (10). Ryu et al. applied this method to develop a
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Bayesian graph convolutional network (GCN) for molecular property prediction (Ryu et al., 2019). They

demonstrated that the usage of Bayesian GCN in quantifying prediction uncertainty improves the virtual

screening accuracy and can quantitatively evaluate training data quality. Kim et al. also used this method

to develop a Bayesian neural network for protein-ligand interaction prediction, which showed better per-

formance than previous baselines (Kim et al., 2021). Beker et al. applied this method for decomposing the

total error within predictions of drug-likeness into the aleatoric and epistemic components (Beker et al.,

2020).

For the second method, instead of variance, the entropy of p is used to quantify the uncertainty of prob-

ability distribution (Shannon, 1948).

H
�
p
�
= �

XC
c = 1

pc log 2pc (Equation 14)

However, the entropy of a single model output does not distinguish between aleatoric and epistemic un-

certainties. To achieve this goal, Smith et al. (Smith and Gal, 2018) proposed that the predictive entropy

H½pðby �jx�;X;Y Þ� can be taken as the total uncertainty, the expected entropy Eq�pðqjX ;YÞ½H½pðby �jx�; qÞ�� as
the aleatoric uncertainty, and the mutual information MI½by �; qjx�;X;Y � as the epistemic uncertainty.

Once the ensemble fpðby �jx�; qtÞgTt = 1 has obtained, these terms can be approximated as the following

equation:

MI½by �
; qjx�;X;Y �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Epistemic Uncertainty

= H
�
pðby �jx�;X ;Y Þ 	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total Uncertainty

� Eq�pðqjX;YÞ
�
H
�
pðby �jx�; qÞ 	 	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aleatoric Uncertainty

zH

"
1

T

XT
t = 1

pt

#
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Total Uncertainty

� 1

T

XT
t = 1

H
�
pt

	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Aleatoric Uncertainty

(Equation 15)

Yildirim et al. used this method to filter out false positive predictions in the semantic segmentation of

particle instances in EM images (Yildirim and Cole, 2021).

Except for BNN, the Gaussian process (GP) is another classical Bayesian machine-learning approach that

can provide native uncertainty for its predictions (Williams and Rasmussen, 1996). The most obvious simi-

larity between GP and BNN is that the predictions of these models are both probabilistic and can be used

to infer predictive uncertainty or compute empirical confidence intervals. Taking regression as an example,

Gaussian Process Regression (GPR) models the inputs and outputs using Equation (16):

y = f ðxÞ+ ε (Equation 16)

where f is a latent function and ε is a noise term, which is typically assumed to be normally distributed with

zero mean and noise variance s2n. Instead of explicitly modeling f using the neural network architecture, as

is conducted in BNN, in GPR the latent function f is supposed to be drawn from a Gaussian Process prior

with mean function mð $Þ and covariance function kð $Þ. Same as the MVE method [Equation (7)], in GPR the

predictive distribution of by � for a test sample x� also follows a Gaussian distribution:

pðby �jx�;X ;YÞ = N �m�; s
2
�
�

(Equation 17)

in which the mean m� and variance s2� can be calculated using Equations (18) and (19):

m� = kT�
�
K + s2

nI
�� 1

Y (Equation 18)

2 T� 2
�� 1 2
s� = k�� � k� K + snI k� + sn (Equation 19)

where K = kðX;XÞ, k� = kðX; x�Þ and k�� = kðx�; x�Þ. This process equals marginalizing over the infinite

possible latent functions f : The same as Equation (5), here s2� can be taken as the uncertainty of the pre-

diction. As a non-parametric model (function form of f is not specified), GP is more flexible than BNN,

but suffers the burden of storing training data points for computing the covariance matrix (Li et al.,

2021). The machine-learning package scikit-learn (Pedregosa et al., 2011) provides a convenient API for

building GP models.

The application of GP in computational chemistry and chemoinformatics has been well studied (De-

ringer et al., 2021). DiFranzo et al. proposed a nearest neighbor Gaussian process model for QSAR

modeling. They found that the variance of model output provides calibrated uncertainty estimation
8 iScience 25, 104814, August 19, 2022



Figure 4. Illustration of ensemble-based UQ methods

(A) Data perturbation. Sub-models are trained based on different subsets of the original training set.

(B) Features perturbation. Sub-models are trained based on different subsets of the original sample features.

(C) Outputs perturbation. The output of the model is no longer a deterministic value, but a difference.

(D) Weights perturbation. The sub-models are generated by keeping dropout open in the prediction process.

ll
OPEN ACCESS

iScience
Review
(DiFranzo et al., 2020). Musil et al. presented a scheme based on subsampling and sparse GP regres-

sion for fast and reliable uncertainty estimation in the task of atomic and molecular property prediction

(Musil et al., 2019). Xiang et al. proposed a GP model with a hybrid kernel, GP-MGK, for molecular

property prediction (Xiang et al., 2021). They found that GP-MGK outperformed D-MPNN, a kind of

graph convolutional neural network, regarding uncertainty quantification. These examples have

demonstrated the usefulness of GP in chemical modeling and uncertainty estimation. However, more

benchmarking tests are still needed for the comparison of GP with other state-of-the-art deep learning

models (Hirschfeld et al., 2020).

Ensemble-based approaches

It has long been observed that ensemble learning improves predictive performance (Dietterich, 2000).

Except for this, however, ensemble learning can also be used for UQ (Lakshminarayanan et al., 2017).

Ensemble learning aims at constructing multiple similar but different base learners. In general, the predic-

tions of the base learners are integrated into the final prediction (e.g., mean, median, and so forth) and their

variance of them is deemed as an estimate of epistemic uncertainty. Here, we take random forest

(for regression) as an example to illustrate the usage of ensemble-based UQ approaches in practice. For

a query sample x�, the prediction by � is provided as the average of the predictions of all decision trees

(base learners) fby �
1; by �

2;.; by �
Tg, and the uncertainty of this sample Uðx�Þ can be provided by the variance

of the predictions of all decision trees.

by �
=

1

T

XT
t = 1

by �
t (Equation 20)

T

Uðx�Þ =
1

T

X
t = 1

�by �
t � by ��2 (Equation 21)

where T is the number of decision trees . Different base learners will tend to output similar prediction

values when the inputs are similar to the observed training data because each base learner’s weights,

even if different, are optimized for those data. In contrast, as inputs become less similar to the training

data, the outputs of each base learner tend to be more sensitive to the specificities of the suboptimal

solution reached, thus the higher variance (Scalia et al., 2020). Given this, it seems clear that diversity in

the base learners should be promoted for uncertainty improvement. The general idea for promoting

diversity is to introduce randomness into the training process, and the commonly used methods could

be categorized into four styles: data, features, outputs, and weights perturbations. For clarity, they are

visualized in Figure 4. These perturbation methods and associated UQ methods are reviewed in the

following sections.
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Data perturbation

Dataset perturbation is usually based on sampling. Given an initial dataset, different subsets could be

sampled and then used to train different base learners for increasing diversity (Figure 4A). For example,

bootstrapping (also referred to as bagging) is a popular technique where base learners are trained on

different bootstrap samples of the original training set (Scalia et al., 2020). Dataset perturbation is highly

efficient with some types of base learners such as neural networks that are sensitive to training data, but

it may also impair the predictive performance of neural networks owing to the shrinkage of training data.

Features perturbation

For ML models, training samples are always represented by a set of attributes (e.g., molecular descriptors

or molecular fingerprints) that could be thought of as a feature space, and different feature subspaces

could provide various perspectives on samples. As shown in Figure 4B, features perturbation aims at

describing samples from different feature subspaces to increase the diversity of the trained base learners.

One of the most representative models is random forest (Saxe et al., 2021). The diversity of the base

learners in the RF algorithm not only derives from data perturbation (bootstrap sampling), but also from

features perturbation. Accordingly, the generalization ability of the final model could be improved and

the variance of the predictions of these base learners could be regarded as predictive uncertainty (Sheri-

dan, 2012).

Some data augmentation methods used in deep learning also share similarities with features perturbation.

For example, considering that SMILES (Simplified molecular input line entry system) of a molecule are not

unique, Kimber et al. used different SMILES to represent the same molecule for data augmentation, where

SMILES are the input format of their model (Kimber et al., 2021). Similar to features perturbation, different

SMILES can provide different perspectives on the same molecule. Based on this data augmentation

method, they found that in addition to the benefit in the model performance, the variance of the predic-

tions of the SMILES corresponding to the same molecule could also be taken as an estimate of uncertainty.

Outputs perturbation

Outputs perturbation (Figure 4C) enhances diversity by replacing the original task with other related tasks.

For example, DeltaDelta, a pairwise difference regression model proposed by Jimenez-Luna et al., re-

places the absolute activity (pIC50) of a ligand with the activity difference (DpIC50) between a pair of ligands

as output (Jimenez-Luna et al., 2019). For DeltaDelta, a predicted pIC50 value of a new ligand could be

recovered by first predicting the DpIC50 between the new ligand and any previously seen (pIC50 known)

reference ligand, and then adding back in the pIC50 value of the reference molecule. By conducting this

prediction procedure for all reference ligands and the new ligand, multiple predicted values of its pIC50

could be obtained and the variance of these predicted values could be regarded as an estimate of the un-

certainty. Tynes et al. transferred this idea to molecular property prediction and observed similar results

(Tynes et al., 2021).

Weights perturbation

Compared with other perturbation methods, weights perturbation methods force the base learners to get

different weights more directly. Two representative examples are Deep Ensemble (Lakshminarayanan

et al., 2017) and MC-dropout (Gal and Ghahramani, 2016; Kendall and Gal, 2017). Deep Ensemble is de-

signed to train multiple base learners of the same structure with random initialization of model weights.

Thus, different solutions can be easily reached by the base learners given their non-convexity and the sub-

optimal optimization strategies employed. MC-dropout consists in training a network with dropout before

every layer and then, in the inference process, keeping dropout open to sample multiple outputs with

different random masks (Figure 4D). Owing to the model-agnostic nature and ease of implementation,

weights perturbation methods can be considered state-of-the-art for epistemic UQ in neural networks (Sol-

eimany et al., 2021).
APPLICATION OF UNCERTAINTY QUANTIFICATION IN DRUG DISCOVERY

Estimation of model maximum achievable accuracy

The performance of in silico models depends on the quality of the training data (Saxe et al., 2021), and in

most drug discovery projects, the labels of training data are always defined by experimental measurements

with inherent variability (Kolmar and Grulke, 2021). As a result, the intrinsic label uncertainty or noise in the
10 iScience 25, 104814, August 19, 2022
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training data determines the maximum achievable accuracy (MAA) of models (Kramer et al., 2012). Esti-

mating the MAA of models based on the currently available data is highly instructive for follow-up machine

learning studies. For example, if the accuracy of a model has approached the possible MAA, we should pay

more attention to expanding the dataset or improving the quality of the training data rather than consid-

ering more sophisticated model architecture.

Given the close relationship between the label uncertainty of training data and the MAA of models

described above, the problem of how to estimate the MAA of a model can be divided into two sub-prob-

lems: (1) How to estimate the label uncertainty in the currently available data, and (2) how to quantify the

relationship between the label uncertainty and the MAA. A previous work by Kramer et al. provided the

paradigm for the first sub-problem (Kramer et al., 2012). They first extracted all the high-quality Ki data

from the ChEMBL database (Gaulton et al., 2012) through a series of data filtering steps. After that, they

analyzed the differences between the published Ki measurements of identical protein-ligand systems to

estimate the experimental error in the Ki data. Their experimental (or label) uncertainty estimation yielded

a mean error of 0.44 pKi units with a standard deviation of 0.54 pKi units, which means that if the average

error of a model based on heterogeneous (i.e., various laboratories, assay conditions, assay methods) sour-

ces of data are less than 0.44 pKi units, it is very likely that the model is overtrained. This work inspired a

series of follow-up similar studies, such as quantitative estimation of label uncertainty in IC50 (Kalliokoski

et al., 2013) and cytotoxicity data set (Cortes-Ciriano and Bender, 2016).

For the second sub-problem, several studies have attempted to artificially add simulated noises (usually

sampled from normal distributions with different variances) to the labels of dataset to study the correlation

between the label uncertainty of modeling data and model performance (Kolmar and Grulke, 2021; Sher-

idan et al., 2020). In this way, the originally unknown data noise is turned into a controllable variable with a

known value. Kolmar et al. added 15 levels of simulated Gaussian distributed random error to 8 different

QSAR datasets, and systematically evaluated the impact of random errors in the datasets on model perfor-

mance using 5 different algorithms (Kolmar and Grulke, 2021). They found that the model performance did

deteriorate with the introduction of label noise, and different kinds of machine learning models show vary-

ing degrees of robustness to noise.

In addition to directly estimating the average error of data, another strategy to infer the MAA of models is

uncertainty quantification. Specifically, in the Bayesian system, total uncertainty can be divided into alea-

toric and epistemic uncertainty according to different sources. The former is the result of irreducible and

inherent data noise. The latter is caused by the insufficiency of knowledge provided by the training set.

A more detailed description of them has been provided in the ‘‘sources of uncertainty in drug discovery’’

section. Therefore, the proportion of predicted aleatoric uncertainty in the total predicted uncertainty can

be used to estimate whether a model has reached the possible MAA. Beker et al. systematically evaluated

the performance of various AI models on the prediction of molecular drug-likeness using different types of

molecular descriptors (Beker et al., 2020), where Deep Ensemble is used for uncertainty quantification.

Based on the result that total uncertainty is comparable with its aleatoric contribution, they infer that the

classification accuracy reported in their work (0.93) is probably the upper limit achievable with the current

collection of known drugs.
Active learning

Owing to the time- and resource-intensive nature of biological and chemical experiments, how to generate

new data to improve model performance more efficiently is a key problem in drug discovery (Yu et al.,

2021). To address this issue, active learning (AL), an uncertainty-guided algorithm, has begun to show

promise and has increasingly been used (Ding et al., 2021; Gong et al., 2021; Jansen et al., 2019; Yang

et al., 2021). In AL, a model is typically initialized with a limited training set (e.g., currently available sam-

ples). Then, batches of unlabeled samples are iteratively selected based on a pre-defined query strategy

(also referred to as selection function), labeled through associated experiments, and gradually added to

the training set. The model is subsequently retrained using this expanded training set, with the expectation

of more gains in prediction results on a held-out test set.

The query strategy is usually referred to a sampling method to decide which samples should be

selected and labeled for each iteration, which is one of the most important components of AL. Depending

on the query strategy used, AL could be divided into three categories: exploration-oriented AL,
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exploitation-oriented AL, and hybrid AL (Ren et al., 2020). Exploration-oriented AL aims to select samples

with the greatest predictive uncertainty. These samples may possess novel structures relative to their coun-

terparts in the original training set. As a result, the AD of the retrained model could be enlarged effectively

owing to the introduction of novel SAR. For example, Ding et al. explored the effectiveness of four UQ

methods in exploration-oriented AL through a case study on the plasma exposure of orally administered

drugs, and they found that the query strategy based on entropy is the most sample-efficient strategy

(Ding et al., 2021). Besides, through complete experimental verification, their work also highlighted the

effectiveness of the exploration-oriented AL in expanding the AD of models and guiding the experiment

design.

Instead of selecting samples based on uncertainty, exploitation-oriented AL provides a framework to

discover high-performing compounds (e.g., those with more favorable molecular properties) from a large

search space by selecting the unlabeled samples with the highest scores in the iterative process. A typical

application scenario of exploitation-oriented AL is structure-based virtual screening (VS) (Neves et al.,

2018). As virtual libraries continue to grow [e.g., ZINC (Sterling and Irwin, 2015) now contains roughly 1

billion molecules], the computational resources necessary to conduct exhaustive virtual screening cam-

paigns on these libraries are inaccessible to many academic researchers. Given this, combined with the

AL algorithm, Graff et al. proposed aQSARmodel to predict molecules’ docking scores, which could enrich

most of the molecules with high docking scores when only a few molecules were docked (Graff et al., 2021).

However, they found that the chemical diversity of the molecules enriched by the QSAR model with purely

exploitation-oriented AL is extremely low. To increase the chemical diversity, they employed a hybrid AL

query strategy that incorporates both predicted docking scores and uncertainties to guide sample selec-

tion in the iterative process, which shows the unique status of UQ in the application of AL. Because of its

flexibility in adjusting exploration-exploitation trade-off, hybrid AL query strategies (e.g., upper confidence

bound) have gradually become the most widely used sampling methods in AL.
Virtual screening

High-throughput virtual screening has emerged as an important approach to identifying hit compounds

from large chemical libraries (Shoichet, 2004). Among different types of VS strategies, DL-based VS has

shown a promising hit rate and high throughput (Neves et al., 2018). In a typical workflow of DL-based

VS, the drug-like compounds from a library are scored by a DL model, in which the top-scored ones are

selected for further experimental verification. However, most commonly used chemical libraries cover

extensive chemical space, most of which do not contain compounds with well-studied structures. It may

cause a model to give overconfident predictions, accounting for the limited enrichment ability of conven-

tional DL-based VS models. Incorporating UQ into the selection process to ensure the robustness of pre-

dictions is an intuitive way to deal with this problem. For example, if the DL model is trained to predict the

pIC50 value (referred as by ) and corresponding uncertainty (referred as bu), Equation (22) can be used to pri-

oritize compounds instead of directly using the descending order of by :
a = by � bbu (Equation 22)

where b is a user-defined parameter deciding the extent of uncertainty penalty, and a is the acquisition

score. It should be noticed that the common practice is using pIC50 values as modeling tasks instead of

the raw IC50 values. Compared with that of IC50 values, the distribution of pIC50 values in biological datasets

is more in line with the Gaussian distribution, thus the conversion from IC50 to pIC50 can be taken as a kind

of label scaling, making the prediction for both target values and uncertainties more accurate for machine-

learning models.

Hie et al. valid the effectiveness of this strategy based on the task of modeling compound-kinase interac-

tion (Hie et al., 2020). In this study, GP was used to conduct uncertainty quantification for model prediction.

Compared with the predictions without uncertainty, they found that the one with UQ can prioritize inter-

actions with lower Kd, while ignoring uncertainty will lead to higher false positive results. A retrospective

virtual screening study by Soleimany et al. (Soleimany et al. (2021) also showed that filtering the results

based on estimated uncertainty can increase the hit rate. In PIGNet, a DL-based drug-target interaction

prediction model, MC-dropout is used to quantify the uncertainty and filter unreliable positive predictions

(Moon et al., 2022). Except for considering the uncertainty in an explicit way as shown in Equation (14), some

studies proposed that constructing the VS model using a BNN framework to eliminate the model uncer-

tainty during prediction can also improve the VS model accuracy (Kim et al., 2021; Ryu et al., 2019).
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Improving model accuracy and robustness

Most strategies we have introduced so far treat UQ as an independent module in the workflow of themodel

establishment. An important reason is that we hope to make a trade-off between model accuracy and

explanation. It is less favorable to obtain model explanation at the expense of accuracy dropping. How-

ever, recent studies have shown that building models with the consideration of uncertainty may have a

beneficial side effect of further improving the model accuracy. These kinds of models are called uncer-

tainty-aware models. A typical example is MVE which has been introduced in Section 3.2. By changing

the loss function, MVE is able to capture the aleatoric uncertainty inherent in data with heteroscedastic as-

sumptions. It means that for data regions with high noise, the model can assign large uncertainty instead of

overfitting them. Kwon et al. compared the MVE loss function with traditional mean squared error (MSE)

loss in the task of reaction yield prediction (Kwon et al., 2022). They found that MVE loss slightly outper-

formedMSE loss regardingmodel prediction performance. Previously, we also observed a similar phenom-

enon in a work on building a hybrid uncertainty quantification method (Wang et al., 2021).

For regression problems, well-calibrated uncertainty can be treated as the variance of the error, thus there

is an intuitive way to combine predictions and uncertainties into a more informative format, for example,

the confidence interval. However, for classification problems, it is not easy to integrate these two parts

together. To this end, it is essential to build an uncertainty-aware classification model architecture that

could provide well-calibrated probabilities and avoid giving overconfident predictions for out-of-distribu-

tion samples. Han et al. recently proposed GNN-SNGP which can reduce overconfident misprediction by

applying Gaussian Process and Spectral Normalization into model architecture (Han et al., 2021). Results on

CardioTox, a cardiotoxicity dataset with a significant distribution shift, showed that GNN-SNGP can

improve model accuracy and provide well-calibrated predictions. Mervin et al. presented a novel pro-

tein-ligand interaction classifier using Probabilistic Random Forest (PRF). In PRF, the original bioactivity

value (e.g., Ki = 8mM) is converted to a probability (e.g., 0.63) as a label using the cumulative distribution

function of a normal distribution to show how possible the compound can bind to a target. In this way, the

labels are considered following as probability distribution rather than as deterministic values, and uncer-

tainty of bioactivity labels are aleatorically introduced into model construction. Bioactivity prediction

benchmarking tests showed that PRF outperformed traditional random forest regarding several common

classification evaluation metrics, such as F1-score and balanced accuracy (Mervin et al., 2021b).
CONCLUSION AND PERSPECTIVE

In this review article, the background and sources of uncertainty are introduced first. Then three kinds of

uncertainty quantification methods with different philosophical reasoning and four typical application sce-

narios where UQ is indispensable are explored in detail. We hope this content will be helpful and enlight-

ening to readers who are not embedded in this field.

Current UQ also faces technical challenges. There is no consensus on optimal UQ methods. For different

downstream tasks and task scenarios, the most appropriate UQ method is not consistent. Many UQ

methods do not come as readily usable, but need to be tailored to each application scenario. Thus,

designing benchmarking datasets with different degrees of domain shift is an urgent need for a fair

and comprehensive comparison between different UQ methods. Different ML model architectures

should also be benchmarked for the UQ methods that serve as an independent module, which will

enable users to choose UQ methods more conveniently according to the specific model architecture

they used in their projects. In the development process, uncertainty-aware models should be compared

with conventional deep learning models without uncertainty measurements regarding accuracy and

robustness to explore the potential benefits. In addition, many researches on UQ often focus on theo-

retical proof while ignoring practical considerations, which is one of the most concerned aspects of users.

Therefore, it is highly recommended that subsequent UQ studies should summarize the differences from

conventional ML models in the deployment process, and demonstrate the practicability of the proposed

UQ methods with some applied case studies (e.g., virtual screening), as Soleimany et al. did in their work

(Soleimany et al., 2021). Moreover, some UQ methods do not differentiate between aleatoric and

epistemic uncertainty, which play different roles in the uncertainty domain. For example, aleatoric uncer-

tainty can be used to infer model maximum achievable accuracy while epistemic uncertainty is able to

guide sample selection in an AL setting. Thus, UQ methods that mix up these two types of uncertainty

will be less ideal and their applications are limited. Finally, most of the UQ methods do not show evident

calibration ability, especially for out-of-domain samples. Considering the ability is vital in inferring the
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label range of test samples, more emphasis should be placed on the improvement of calibration ability

when developing novel UQ methods.

According to the above discussion, an ideal UQmethod requires the following properties: (1) supported by

a solid theoretical foundation or a reasonable assumption, (2) easy to deploy, (3) disentangling aleatoric

from epistemic uncertainty, (4) improvement on model accuracy, (5) possessing calibration ability, (6) low

computational burden, although full compliance with these requirements may be difficult to achieve. Over-

all, we still have a long way to go in terms of UQ, before AI can play a more substantial role in decision mak-

ing at different stages of drug development.
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