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1  |   INTRODUCTION

Brain metastasis (BM) has been becoming a concerned and 
urgent public health problem,1,2 of which the annual incidence 
is between 8.3 and 14.3 per 100 000 population.3 However, 
datum above collected prior to the advent of modern imaging 
techniques, the extent of BM is rather likely to be underesti-
mated. In 2009, over 250 000 patients were diagnosed with 
BM in the United States.4 Once diagnosed with BM, the me-
dian survival of untreated patients is shorter than 2 months, 
while patients who were treated with surgery, chemotherapy 
and radiotherapy could be extended to 4-6 months.5,6 Even 

so, the prognosis for patients with BM is still dismal. BM is 
becoming a main threatening factor for cancer patient sur-
vival while extracranial cancer has been controlled to some 
extent.

Lung cancer, breast cancer, and melanoma are the most 
common causes of BM and they account for 67%-80% 
BM clinical cases.7 Once these primary tumors become 
metastatic, risks of BM will increase rapidly. About 30%-
50% of lung cancer, particularly nonsmall cell lung cancer 
(NSCLC), will develop BM during the course of their dis-
eases.8 Among metastatic breast cancer patients, approx-
imately 10%-16% patients develop symptomatic BM and 
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Abstract
Brain metastasis is an important cause of morbidity and mortality in cancer patients. 
Hence, the need to develop improved therapies to prevent and treat metastasis to the 
brain is becoming urgent. Recent studies in this area are bringing about some ad-
vanced progress on brain metastasis. It was concluded that the occurrence and poor 
prognosis of brain metastasis have been mostly attributed to the exclusion of antican-
cer drugs from the brain by the blood-brain barrier. And several highly potent new 
generation targeted drugs with enhanced CNS distribution have been developed con-
stantly. However, the noted “seed and soil” hypothesis also suggests that the out-
come of metastasis depends on the relationship between unique tumor cells and the 
specific organ microenvironment. Moreover, increasing studies in multiple tumor 
types demonstrated that brain metastasis has great molecular differences between 
primary tumors and extracranial metastasis to a large extent. Here, the authors sum-
marized the most common malignancies that could lead to brain metastasis—lung 
cancer, breast cancer and melanoma and their related mutated factors. Only by com-
prehending a deeper understanding of the molecular mechanisms, more effective 
brain-specific therapies will be developed for brain metastasis.
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another 10% patients are found to have asymptomatic brain 
involvement in postmortem.9 In addition, the melanoma 
which ranked third is calculated that more than half of pa-
tients with metastatic melanoma will develop BM since the 
rapidly changing systemic treatment in this disease.10 BM 
possesses distinct pathological patterns due to its different 
sources of tissues. The high incidence and lethality of BM 
makes it urgent to explore the mechanisms of BM and to 
find predictable drugs which are becoming the raring di-
rection to research.

2  |   THE HYPOTHESIS ABOUT 
THE ORIGIN OF BM

In 1889, Stephen Paget proposed the “seed and soil” hy-
pothesis. He concluded that the nonrandom pattern of 
metastasis was not accidental case, indeed. Certain tumor 
cells (namely the “seed”) had a specific affinity for the mi-
croenvironment of certain organs (namely the “soil”). In 
other words, metastasis resulted only when the seed and 
soil were appropriate.11 Based on the hypothesis, the re-
lationship between “seed and soil” hypothesis and BM 
are indispensable. The study of organ-specific metastasis 
to the brain has been gradually gaining recognition nowa-
days. Nevertheless, a lot of brain-derived factors are de-
veloped in recent studies, including secreted proteins and 
microRNA-containing exosomes which alter the brain 
microenvironment to facilitate the survival and growth of 
BM.12,13 Extracellular vesicles (EVs) including exosomes, 
mediate cell to cell communication with the delivery of 
their contents and then adjust multiple factors of malig-
nancy in cancer cells.14,15 The EVs which released from 
brain metastatic cancer cells could induce tight junction 
proteins like N-cadherin or actin filaments located by mis-
take, and that may lead to the destruction of the cell to cell 
connection. Hence, secreted factors would be messenger to 
maintain the long-distance communication and help meta-
static cancers affect alterations in distant sites to build the 
premetastatic niches.

3  |   THE BBB PENETRATION AND 
BM

The brain microenvironment has highly selective blood-brain 
barrier (BBB), high-energy consumption, and high-nutrition 
demands. All of these specific characteristics contributed 
to its unique physiological status.16 The BBB is a protec-
tive network consisting of endothelial cells and support-
ing components which balance the central nervous system 
(CNS) microenvironment frequently. Due to the features 
of brain microvessels endothelium, BBB owns continuous 

tight junctions, decreased pinocytosis activity, and overex-
pressed efflux pumps.17 The BBB could enhance the abilities 
of surrounding extracellular matrix (ECM), basal membrane, 
astrocyte, and pericytes end-foot, in order to guard effec-
tively against the free exchange of substances between the 
interstitial fluid of the brain and the blood.18 To research 
the distinction of BBB, some findings report the method to 
establish in vitro BBB model using primary rat’s astrocytes 
and microvascular endothelia cells, and through measuring 
trans-endothelial electrical resistance (TEER) value, which 
show more closely to the characteristics of the BBB in vivo 
to identify the model.19

Blood-brain barrier is a lipid membrane, so as we know 
only small lipid-soluble molecules whose diameter is <1.8 nm 
and molecular weights <400 Da may permeate brain mi-
crovessels normally.20 Therefore, the BBB limits the access 
of large molecules from the blood to the brain, especially sev-
eral chemotherapeutic agents because of the tight structure.21 
The impermeable nature of the BBB may become an obstacle 
during treatment. In addition, the BBB anchors various ATP 
binding cassette efflux transporters including P-glycoprotein 
(P-gp), breast cancer resistance protein (BCRP) and other 
cancer resistance proteins, which bind to structurally diverse 
drugs and make them ineffective.22 These structures exist 
biochemically, morphologically and functionally heteroge-
neous in disparate regions of the brain and they always lead to 
the failure of BM treatment with chemotherapeutic drugs,23 
so further mechanism still remains to be studied.

However, growing evidences have shown that BM could 
disrupt the BBB integrity. Sodium fluorescein, a hydrosoluble 
molecule and excluded from the brain with an intact BBB 24 was 
found in brain once the diameter of brain metastasis exceeded 
0.5 mm.25 Additionally, the permeability of the BBB ambient 
the tumor area increased in a time-dependent manner and posi-
tively related with tumor size.26 Tumor cells in the perivascular 
space could render endothelial altered, and lead to the leakage 
through the BBB.27 Some ultrastructural studies concluded that 
brain tumors destroy adjacent endothelium.28 Several clinical 
studies also support the disruption of the BBB by BM. For ex-
ample, leaky blood vessels would be found through electron 
microscopy,29 and increased blood vessel permeability would 
be detected by positron emission tomography.30

When BBB was disrupted, significant responses to che-
motherapy are reported. That is to say, the disruption of BBB 
may enable the delivery of drugs. Rosner studied 100 breast 
cancer patients with symptomatic BM which treated with mul-
tifarious chemotherapies, its brain-specific objective response 
rate surprisingly rises to 50%.31 Meanwhile, radiation is also 
known to disrupt the BBB,32 but finally this way could not 
achieve good prognosis. At this point, the combined therapy 
was taken into consideration. Trastuzumab, like most other 
monoclonal antibodies, could not cross the intact BBB,33 and 
was actually 421 times lower in cerebrospinal fluid (CSF) 
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than that in serum before any local therapy.34 However after 
radiotherapy, the ratio dramatically increased to 79/1. So the 
blood-tumor barrier (BTB) is leakier than the intact BBB. If 
chemotherapy and radiation therapy were combined, it could 
allow delivery in brain lesions especially at advanced stages of 
disease.35 Nowadays, numerous techniques are developed to 
improve the delivery of therapeutics across the BBB, just like 
chemical modification of the drug,36 temporary disruption of 
the BBB 37 and so on. Fortunately, strategies to reinforce the 
delivery of therapeutics into the CNS have been popularly 
pursued and are initiated to undergo clinical evaluation.

4  |   THE MECHANISM OF BRAIN 
METASTASIS

4.1  |  Angiogenesis and brain metastasis

4.1.1  |  Vascular endothelial growth 
factor pathway
Vascular endothelial growth factor signaling plays an im-
portant role in angiogenesis and vascular permeability.38 
In fact, angiogenesis is essential for efficient colonization 
and growth of cancer cells in the brain. As reported, brain 
metastatic growth of brain-tropic tumor cells would decrease 
when the activity of VEGF receptor was inhibited.39 When 
VEGF expression in colon cancer cells and lung adenocar-
cinoma cells were inhibited, the incidence of BM and devel-
oped blood vessels significantly decreased.40 Furthermore, 
Transfection of melanoma cells with antisense VEGF cod-
ing DNA (cDNA) could reduce the formation of BM.41 
Overexpression of VEGF in melanoma cells accelerated the 
progress of BM.42 Angiogenic pathways, such as phosphati-
dylinositol 3-kinase (PI3K) and mammalian target of rapa-
mycin (mTOR) signaling pathway which mediated by VEGF 
also play an important role in BM.43,44 The higher level of 
phosphorylated Akt (p-Akt), and lower level of the pathway 
negative regulator phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN) were determined among clinical 
melanoma brain metastasis (MBM) patients.45 Relatively, the 
same phenomenon has not found among cancer patients that 
have other distant organ metastasis like lung and liver. The 
secretion of VEGF could be mediated by hypoxia inducible 
factor 1-alpha (HIF-1α), and that plays a critical role in neo-
vascularization.46 As known, once Akt was phosphorylated, 
several downstream pathways that strongly related to tumor 
metastasis would be activated. The gene Snail could be up-
regulated in metastatic cells, and activated by a number of 
pathways, including HIF-1, Notch and nuclear factor kappa 
B (NF-κB). Meanwhile, Snail regulates the transcription and 
expression of E-cadherin, and further promote Epithelial-
mesenchymal transition (EMT) and cell invasion.47 During 

the tumor metastasis, nutrients and oxygen are mainly sup-
ported by the generation of blood vessels. The increase of 
HIF-1α can promote the transcription of VEGF and acceler-
ate the process of BM.48 Hence, these results informed that 
VEGF expression is necessary for the production of BM.

Clinical researchers found that patients with BM will bene-
fit from the employ of VEGFR kinase inhibitor like vatalanib, 
cediranib or VEGF antibody like bevacizumab. Several phase 
I and II studies related to bevacizumab are in various stages of 
development. Whether using bevacizumab alone or combined 
with other antineoplastic agents are both tested in BM from 
breast cancer and melanoma. Meanwhile, other drugs like 
lapatinib and pazopanib are able to prevent the formation of 
metastasis by brain-tropism breast cancer cells.49,50 Certainly, 
the cross-talk between the human epidermal growth factor re-
ceptor-2 (HER-2) and VEGF pathways also attracted some 
researchers’ attention. The dual combination of anti-VEGF 
therapy and HER-2 inhibition, such as trastuzumab accom-
pany with lapatinib, showed the best efficacy in preclinical 
models of breast cancer brain metastasis (BCBM).51 Sunitinib 
is a small molecule and tyrosine kinase inhibitor (TKI), which 
targets the VEGF receptors 1-3 and the platelet-derived 
growth factor (PDGF) receptors A and B. Attributed to its ex-
cellent BBB penetration, well prognosis would be achieved.52 
Other antiangiogenic agents are undergoing experiments in 
clinical patients, and some of tested drugs may further expand 
the function of VEGF inhibitors in BM therapy.

4.1.2  |  Epidermal growth factor 
receptor pathway
The epidermal growth factor receptor (EGFR) is closely re-
lated to the HER-2 receptor, and both are belong to the ErbB 
family. As known, EGFR mutations, being deemed to be a 
biological marker of NSCLC in recent decades, account for 
10%-25% of NSCLC.53 As a result of its constitutive activa-
tion of EGFR signaling and oncogenic transformation, EGFR 
was confirmed to be an independent risk factor and served 
as a crucial role.54 So, it is meaningful to evaluate metastatic 
characteristics in patients with EGFR mutation during clini-
cal screening and treatment.55

Epidermal growth factor receptor is also a vital member 
of receptor tyrosine kinase (RTKs). Therefore, it certainly 
has cross-talk with numerous biological effects induced by 
VEGF. A clinical research involving 52 BCBMs patients 
and 12 matched primary breast cancers indicates that the 
expression of p-Akt, p-S6, and lack of PTEN was observed 
as 75%, 69%, and 25% separately for BCBMs and as 67%, 
58%, 83% for primary breast cancers.56 Both EGFR and 
PTEN alterations were closely associated with primary 
triple-negative breast cancer (TNBC) and high risk of brain 
relapse.57 On the other hand, RAS/Raf/ERK is also related 
to EGFR. More than 60% of brain metastatic melanoma 
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patients have BRAF mutations accompanied by the activa-
tion of mitogen-activated protein kinase (MAPK) pathway. 
In addition, the growth of MBM cells could be more effec-
tively inhibited in vitro if combined treatment of MAPK 
(BRAF) inhibitor vemurafenib and mTOR inhibitor temsi-
rolimus.58 In EGFR-mutated NSCLC, EGFR could induce 
MET phosphorylation through the RAS/ERK/p38MAPK 
pathway, and then enhance NSCLC invasion and even me-
tastasis to brain.59 In summary, multi-target combination 
therapy focus on tumor angiogenesis will be better for BM 
therapy in a manner. The first-generation EGFR TKIs, 
gefitinib and erlotinib exhibit variability and short-term 
effect after long-term clinical practice. Poor capability to 
penetrate the BBB may be the dominating cause.60,61 The 
afatinib, second-generation EGFR TKI, was accessed to a 
phase II study of BCBM, but failed to show more benefits 
during the course of treatment.62 According to the above 
results, lots of researchers put forward the subtle relation-
ship between BBB permeability and tumor-resistance pro-
tein that could remove toxins, drugs, or chemotherapies 
from the CNS. It would be a primary reason of failure to 
some extent.63 Besides, the EGFR T790M mutation could 
be another important mechanism for resistance to EGFR 
TKIs.64 Repeated biopsy showed that it may be responsi-
ble for half of acquired resistance cases.65 Several third-
generation EGFR TKIs have been developed particularly 
target the T790M mutation, including HM61713, EGF816, 
and ASP8273, with response rates ranging from 31% to 
54%.66 The objective response rate (ORR) of osimertinib 
is over 60%, which has been confirmed in a phase I study 

and two phase II studies. Its median progression-free sur-
vival (PFS) is 11 months for T790M-positive NSCLC. 
Therefore, it is promising to take efforts to develop spe-
cific brain penetrant EGFR inhibitors. Whole-brain radia-
tion therapy (WBRT) combined with EGFR TKIs appears 
to be a safe way. However it should be adequately stud-
ied.67 Figure 1 provides angiogenesis and brain metastasis, 
including classic pathway and representative drugs.

4.2  |  Signaling kinase and brain metastasis

4.2.1  |  Anaplastic lymphoma kinase 
(ALK) rearranged
Approximately 5% of NSCLC patients had the rearrange-
ment in the anaplastic lymphoma kinase (ALK) gene.68 The 
incidence of BM in patients with ALK+ NSCLC ranges from 
20% to 30%, which could be compared with those observed 
in EGFR-mutated NSCLC patients.69,70 Furthermore, ALK-
rearranged NSCLC patients who have not treated with ALK 
therapy, exhibited a high incidence of CNS metastasis from 
approximately 45%-70%, implying that BM is the most com-
mon pattern in ALK+ NSCLC with therapy failure.71,72 The 
production of anaplastic lymphoma kinase with the echino-
derm microtubule-associated protein-like 4 (EML4-ALK) 
fusion tyrosine kinase is the most common changes.73 The 
promoter of EML4 is located upstream of the intracellular 
tyrosine kinase of ALK, resulting in activation of the fusion 
gene and expressing the EML4-ALK fusion protein. ALK 
experiences autophosphorylation in the absence of ligand, 

F I G U R E   1   The Molecular 
Mechanism of Angiogenesis Regulating 
Brain Metastasis and its Representative 
Molecules
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and then activates downstream cell signaling pathways lead-
ing to malignant transformation of cells.74

The EML4-ALK fusion gene can directly phosphorylate 
signal transducer and activator of transcription 3 (STAT3) 
or activate janus-family tyrosine kinase 3 (JAK3), while re-
sulting in the activation of STAT3 indirectly. Through up-
regulating anti-apoptotic molecules such as b-cell leukemia 2 
protein (BCL-2) and b-cell leukemia XL protein (BCL-XL), 
STAT3 regulates cell cycle and inhibits cell apoptosis.75 The 
ALK fusion protein also plays a role of linker molecule which 
interacts with downstream molecules during signal transduc-
tion. Its specific amino acid residues respectively bind to 
intracytoplasmic insulin receptor substrate 1 (IRS1), v-src sar-
coma [Schmidt-Ruppin A-2] viral oncogene homolog [avian] 
(SRC) and SRC homology 2 domain-containing (SHC), and 
sequentially activate Ras/ERK pathway, simultaneously acti-
vate mTOR and its downstream ribosomal protein S6 kinase 
(p70S6K) and S6 ribosomal protein (S6RP), in final stim-
ulate gene transcription and promote ribosome formation.76 
Besides STAT3 and extracellular signal-regulated kinase 
(ERK), PI3K also took part in regulation of ALK+ NSCLC 
survival and anti-apoptosis. Activated Akt1/2 could phos-
phorylate forkhead box O3 (FOXO3), so that the apoptotic 

gene was inhibited. And this cascade reaction would promote 
cell survival and accelerate cell cycle from G1 to S phase 
through upregulating cyclin D2 at the same time. In addition, 
phosphorylation of eukaryotic initiation factor 4E (eIF4E) 
and other transcription factors can upregulate the expression 
of anti-apoptosis-related genes to promote cell survival.77

Crizotinib, the first generation TKI, was approved by the 
food and drug administration (FDA) for treating NSCLC 
patients who have the ALK gene rearrangement. The drug 
could induce rapid tumor regression and the majority of pa-
tients’ ORR up to 53%.78 However, after long-time therapy, 
most of patients develop resistance in <1 year.79

Considering the limited activities of early generations of 
ALK TKIs, the FDA approved ceritinib, a second-generation 
ALK TKI in 2014, especially for the patients who have expe-
rienced treatment with or who are intolerant of crizotinib.80 
Ceritinib is known to be an inhibitor of ALK and insulin-like 
growth factor-1 (IGF-1). Statistical evaluation of 124 patients 
with BM in Phase I clinical study, showed the overall re-
sponse rate was 69% and that is about 19% higher than using 
ALK inhibitor alone.81 When it comes to the efficacy of cer-
itinib for intracranial metastasis, its brain-to-blood exposure 
ratio is about 15% according to the preclinical rat model.82 

F I G U R E   2   The Molecular Illustration 
of ALK Controlling Brain Metastasis
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Alectinib is also a highly selective, second-generation ALK 
inhibitor. Preclinical experiments have demonstrated that it is 
able to block mutated forms of ALK.83 In addition, two phase 
II studies about alectinib containing 50 cases suffering CNS 
disease showed a response rate of 57%-69%.84 This potent 
antineoplastic activity of alectinib is probably due to its high 
penetration into the brain, and more importantly alectinib 
was assured not to be transported by P-gp.85 Of course, other 
ALK-targeting drugs are in various stages of development 
like AP26113 and PF-06463922. They have been specifically 
designed to have outstanding CNS penetration, and are antic-
ipated to be applied in future.86,87 Figure 2 provides ALK and 
brain metastasis, including occurrence, development, and 
some representative drugs.

4.2.2  |  Mutation in BRAF leading to the 
MAPK pathway
As stated above, the relationship between MAPK pathway 
and BM is inextricably connected. Numerous studies have 
demonstrated that about half patients with advanced mela-
noma have BRAF mutation, and in some studies the mutation 
rate even reaches as high as 60%.88 Actually, the occurrence 
of BRAF mutations increases the risk of BM at first diagnosis 
of metastatic disease.89 It is well-known that V600E is the 
most common mutation in BRAF which leads to the MAPK 
signaling pathway aberrantly activated.90 At the same time, 
the activation of many bypass pathways and transcription 
factors enable the progression of BM becoming more rapid 
and uncontrollable.

As the “seed and soil” hypothesis mentioned before, brain-
derived signals promote the adhesion of melanoma cells to 
intracranial blood vessels, and foster melanoma metastasis 
formation. During this process, the role of chemokines and 
their cognate receptors cannot be ignored.91 Izraely discov-
ered that brain-metastasizing melanoma cells expressed re-
ally higher level of C-C motif chemokine receptor 4 (CCR4). 
Moreover, “brain-derived soluble factors” could upregulate 
CCR4 expression in melanoma cells and facilitate the mi-
gration of brain-metastasizing melanoma cells specifically.92 
Recently, a crucial relationship between several altered C-C 
motif receptor 4 (CCR4) ligands, including C-C motif ligand 
4/17/22 (CCL4/17/22) and poor clinical outcomes have been 
observed. The changes may influence the establishment of 
MBM through adjusting cytokine and receptor signaling.93

The BBB presents a powerful shield that tumor cells 
must cross to construct residence in the brain. The pres-
ence of heparanase (HPSE) could increase melanoma cells 
invading into brain tissues.94 Suppressing HPSE RNA ex-
pression has been shown to inhibit melanoma migration, 
invasion, and adhesion.95 Moreover, astrocytes lately were 
confirmed its significant bidirectional relationship to mel-
anoma cell. Brain-metastasizing melanoma cells would 

stimulate astrocytes to express the pro-inflammatory in-
terleukin 23 (IL-23) cytokine which in turn stimulate 
the secretion of matrix metalloproteinase-2 (MMP-2).96 
Nevertheless, STAT3 regulates the expression of MMP-
2, both human brain metastatic melanoma cells and tissue 
biopsies show increased STAT3 activity compared to cu-
taneous melanoma cells.97 Therefore, increased MMP-2 
secretion by IL-23 signaling can be mediated through 
STAT3 to mediate the degradation of extracellular matrix 
and facilitate extravasation. Metastasizing melanoma cells 
obtain blood supply in two ways generally, one is keeping 
close contact to microvessels and another is perivascular 
growth by vessel co-option.98 For example, the activation 
of STAT3 would stimulate vascular remodeling and pro-
mote BM through increased expression of basic fibroblast 
growth factor (bFGF), VEGF, and MMP-2.97 Connexin 26 
(Cx26) is also involved in vessel co-option during MBM.99

Last but not least, the function of PI3K/Akt must be 
mentioned in the process of MBM. Analysis of patients 
with melanoma of BRAFV600E or NRAS mutated showed 
the loss of PTEN would suppress MBM and reduce over-
all survival (OS) of patients.100 In general, the PI3K/Akt 
pathway is closely related to several key steps in MBM and 
significantly regulates cell adhesion, extravasation, degra-
dation of extracellular matrix proteins and angiogenesis. 
These mechanisms also contain the cross-talk of CCR4, 
HSPE, VEGF, STAT3, and Cx26/43. On account of the 
V600E-mutated of BRAF, vemurafenib and dabrafenib, as 
two BRAFV600E inhibitors are currently approved for clin-
ical use. Vemurafenib is a specific inhibitor of BRAFV600E 
mutated protein, which get 70% response rate with im-
proved PFS and OS in BRAFV600E mutated metastatic mel-
anoma patients.101 Similar to some other anticancer agents, 
treatment of BRAFV600E positive metastatic melanoma 
with vemurafenib showed good clinical responses at initial 
stage. However, most of the patients ultimately relapsed 
because of acquired resistance.102 The mean ratio of CSF/
plasma vemurafenib concentration is only 0.98%±0.84%, 
indicating the poor ability to penetrate BBB.103 Under the 
circumstances, combined stereotactic radiosurgery (SRS) 
with BRAF inhibitors therapy were proposed and get in-
creased overall survival of patients indeed.104

Another BRAFV600E inhibitor, Dabrafenib, has also 
shown curative effect for melanoma patients with BM. BRAF 
inhibitors dabrafenib combined with mitogen-activated ex-
tracellular signal-regulated kinase (MEK) inhibitors like 
trametinib could increase anti-tumor activity and reduce side-
effect.105,106 In conclusion, targeted therapy such as small 
molecule kinase inhibitors have achieved outstanding devel-
opment, but still needs to pay more attention and take more 
effort on investigation and preferable application in clinic. 
Figure 3 provides BRAF mutation and brain metastasis, in-
cluding Mutagenic factors and therapeutic drugs.
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4.2.3  |  The cyclin-dependent kinase 4/6 
(CDK-4/6) pathway
Serin/threonin kinases CDKs, especially their activat-
ing regulatory subunits cyclins, control cell cycle.107 
Promitotic signals induce increased expression of D-type 
cyclins and cause CDK4 and CDK6 complex activated, 
and then the cyclin D1-CDK4/6 complex could phos-
phorylate retinoblastoma protein (pRb), p130, and p107 
which decrease their inhibition of E2F transcription fac-
tor family, finally allowing transcription of genes that 
control the cell cycle.108 Recent studies focused on breast 
cancer brain metastasis (BCBM) and found its increased 
E2F expression often activates Wnt or NF-κB pathways 
to promote EMT. Moreover, increasing PI3K/Akt/mTOR 
activity, modulating apoptosis, altering Rho/Rac pathway 
would promote angiogenesis finally.109,110 The CDK4/6-
DUB3 axis may act as an important regulatory mecha-
nism of BCBM. Deubiquitinase 3 (DUB3) is a novel 
target of CDK4/6, so that CDK4/6-mediated activation is 
crucial for the deubiquitination or stabilization of Snail1. 

The axis may regulate the possibility of BCBM to some 
extent.111

The first generation of CDK inhibitors showed modest 
clinical activity but considerable toxicity. Through constant 
technical improvement, selective small molecule CDK in-
hibitors have come out. Three compounds have reached 
the clinical stage: abemaciclib, ribociclib, and palbociclib. 
Recently, these drugs have been exploring the potential role 
in patients with estrogen receptor (ER) positive BCBM.112 
A phase II study is evaluating the safety and activity of abe-
maciclib in hormone receptor (HR) positive BCBM and lung 
cancer or melanoma with BM.113 Vimentin and Snail, known 
as the EMT markers, could be downregulated with palbo-
ciclib treatment,114 supporting its inhibition of migration 
and invasion of breast cancer cells. Ribociclib is also being 
developed along a similar pathway to palbociclib, so FDA 
named it”breakthrough therapy” based on lots of experiments 
results. Therefore, the existing reactions give us courage to 
do more researches in HR+/HER2− advanced breast cancer 
sequentially.115 However, CDK4/6 inhibitors seem to need 
a more intact pRb pathway as a mechanism of action, and 

F I G U R E   3   The Role of BRAF Mutation in Brain Metastasis
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sometimes that may potentially limit the use in advanced 
breast cancers. Given the complexity of the cell cycle regulat-
ing pathways, more efforts should be devoted to confirm the 
role of CDK4/6 inhibitors in the treatment of BCBM patients 
furthermore. Figure 4 provides CDK-4/6 and brain metasta-
sis, including a series of mutagenic factors and therapeutic 
drugs.

4.3  |  Immunity and metastasis

Nowadays, immune checkpoint inhibitors have already been 
used successfully in a wide variety of malignancies. FDA cur-
rently approved it to apply in metastatic melanoma, NSCLC 
and renal cell carcinoma. Brain was traditionally considered 
as an immunologically privileged site. Nevertheless, inves-
tigators found activated T-cells can dramatically cross the 
BBB and patrol the CNS.116,117 These observations inspired 
us to take advantage of the characteristic of T-cell and to 

study more about immunotherapies. In conclusion, immuno-
therapies consists of programmed cell death-1 (PD-1), pro-
grammed death-ligand 1 (PD-L1) and monoclonal antibodies 
primarily against the epitopes of cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4).

An anti-CTLA-4 antibody named ipilimumab was ap-
proved by the FDA for treating patients with advanced mel-
anoma in 2011.118 When ipilimumab cooperated with SRS, 
a median survival was increased from 4.9 to 21.3 months, 
along with a 2-year survival rate from 19.7% to 47.2%.119 
Intracranial disease control rates are reported as 10% and 
24% in patients with stable BM and those with asymptomatic 
BM respectively.120 Nivolumab and pembrolizumab, both of 
them against PD-1, have gained durable clinical response in 
patients with advanced melanoma and metastatic NSCLC. 
In fact, PD-L1 possess 52% high expression in BM, and it 
is in accordance with 32% in matched primary tumor tis-
sue. In other words, BM indeed closely correlates with high 
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expression of PD-L1.121 Therefore, it was hypothesized that 
CTLA-4 and PD-1 could play complementary or synergis-
tic role in the enhancement of immune function. Fortunately, 
recent studies indicated that combined treatment of ipilim-
umab and nivolumab achieved more rapid and deeper clinical 
responses compared with previous experiences using either 
agent alone in phase I study.122 Although the primary clinical 
effect has been proved, the CNS antitumor activity of PD-1 
inhibitors needs to be further explored deeply. Figure 5 pro-
vides CDK-4/6 and brain metastasis, including PD-1/PD-L1 
immunotherapy.

4.4  |  Targeting the genes strongly related 
to BM

4.4.1  |  ST6GALNAC5
ST6GALNAC5 is a 2,6-sialyltransferase that modify cell 
surface glycoproteins and gangliosides. The ST6GALNAC5 
gene is specifically expressed in mouse brain tissues, pri-
marily in the forebrain and cerebellum.123 It was identified 
as one of the overexpressed genes in breast cancer cells 
which tend to develop BM in previous reports. Small in-
terfering RNA (siRNA) directed against ST6GALNAC5 
could decreased the adhesion of tumor cells to brain en-
dothelial cells and impaired their ability to transmigrate the 
BBB in vitro. Above all, statistical analysis showed that 
ST6GALNAC5 only closely connected with BM but not 
with lung metastasis or bone metastasis.124 Utilizing the 
established CD34+ derived human BBB model in vitro, 
they found ST6GALNAC5 cDNA expression leads to a 
decrease of the interaction between MDA-MB-231 and 
the CD34+ derived human BBB model.125 In consequence, 

ST6GALNAC5 does not seem to be a mediator which 
promotes breast cancer cell interaction with the human 
BBB. Therefore, considering the tight relation between 
ST6GALNAC5 and BM, I think more detailed mechanism 
should be searched furthermore and the better targeted 
drugs will be engineered.

4.4.2  |  SERPINS
In recent studies, a new small gene whose expression is 
closely related to brain metastatic phenotypes was discov-
ered both in lung and breast cancer models.126 SERPIN I1, 
encoding the plasminogen activator (PA) inhibitor neuro-
serpin (NS), is commonly expressed in the brain. The PA 
could degrade the thrombus through activating the fibrino-
lytic enzyme, and take part in other neuro-matrix reactions at 
the same time.127 Under normal circumstances, neurons will 
overexpress NS to resist the adverse reactions that derived 
from over secretion of plasma enzymes. The brain microen-
vironment would maintain integrant balance via this manner.

However, the balance sometimes be disrupted when dis-
ease occurred. The overexpression of anti-PA serpins in brain 
metastatic cells from lung cancer or breast cancer often in-
duces plasmin generation and presents high possibility to me-
tastasis conclusively. Therefore, the anti-PA serpins provide 
a common mechanism for the initiation of BM in lung and 
breast cancer to some extent, and it will keep cancer cells 
away from death signals and facilitate vascular co-option. 
Most of all, the serpins are also specifically associated with 
BM, not other metastatic organs. As we thought, the inci-
dence of BM was significantly reduced after interfering with 
serpins in tumor cells, while the transfer rate of other organs 
was not affected.126

F I G U R E   5   Immunity and Brain Metastasis. The role of immune check point inhibitors PD-1/PD-L1 in cancer cells results in new therapies 
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4.4.3  |  COX2
Cyclo-oxygen-ase 2 (COX2) is a tumor-associated gene 
and closely related to the development of several tumors. 
The brain metastatic activity of brain metastatic derivative 2 
(BrM2) cells was experimentally decreased by RNA interfer-
ence (RNAi)-mediated knockdown of COX2 expression.124 
Therefore, COX2 was probably indicated to be a mediator in 
brain and lung metastasis.

In the research of effect of 21 matrix metalloproteinases 
on brain metastasis-free survival of breast cancer, only ma-
trix metalloproteinase-1(MMP-1) is significantly correlated 
with BM.128 MMP-1 has highly expressed in brain metastatic 
cells and is able to degrade claudin and occludin but not 
ZO-1, which are critical factors of BBB. Moreover, COX2 
overexpresses in many aggressive cancer cells, and its prod-
uct prostaglandin could directly upregulate the expression of 
MMP-1.129 And prostaglandin is indeed capable to increase 
permeability of BBB due to the upregulation of MMP-1. 
So a COX2 inhibitor (NS398) could effectively block both 
MMP-1 expression and BBB permeability simultaneously.128 
Thus, the critical role of COX2-PGs-MMP1 axis is essential 
in BCBM, and a COX2 inhibitor could be used for preventing 
BM.

5  |   CONCLUSIONS

Brain metastasis is a complicated process because of the 
heterogeneity between cancer cells and the microenviron-
ment. Meanwhile, the regulation of signal pathways is also 
diverse and interactive. In conclusion, VEGF or EGFR 
plays an important role in regulating the pivotal switch of 
BM in tumor angiogenesis. In addition, lung cancer, mela-
noma, and breast cancer with high BM probability have 
respective molecular mechanisms, such as ALK rearrange-
ment, BRAF mutation, and D1-CDK4/6 complex forma-
tion. And the tumor immunotherapy has also gradually 
been applied to the treatment of BM. Besides, several target 
genes specifically associated with BM have been reported 
recently. Indeed, the need for the clinical treatment of BM 
is strongly supported by a growing literature demonstrating 
many unique molecular features.

However, CNS disease progression always escapes the 
extracranial disease control. And the more important is that 
our present knowledge on brain is not so clear that molecular 
mechanism of BM cannot be elucidated actually. In our opin-
ion, further clinical trials should be thought about to combine 
targeted therapies with radiation therapy such as WBRT and 
SRS, or with immunotherapeutic agents. With the advanced 
understanding of concrete molecular mechanism of BM, we 
are eagerly expecting to find a brand-new therapy that specif-
ically targets BM.
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