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Background
Proteins are molecular machines that are involved in a large variety of biological pro-
cesses. Protein function is often driven by large-scale structural transitions [1]. Experi-
mental methods for biomolecular structure determination such as X-ray crystallography, 
NMR and cryo-electron microscopy have been used to determine thousands of atomic 
structures of proteins in different conformational states. A powerful approach to under-
stand structural transitions in proteins is to decompose structures of different states 
into rigid domains and classify protein movements by hinge and shear motions of these 
structural domains [2].
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Given the large number of available protein structures, we need computational meth-
ods that identify structurally conserved domains in a set of alternative structures in an 
automated fashion with minimal user intervention. For example, one could use the soft-
ware to study molecular dynamics trajectories at the level of rigid domains to gain an 
understanding of large-scale movements, or identify important active sites located at the 
interface between rigid domains.

A number of computational methods for detecting rigid domains in protein structures 
have been developed. Dyndom [3] identifies rigid domains by clustering a set of rotation 
vectors. Hingefind [4] focuses on the detection of hinge residues, which are detected 
via differences in bending angles. RigidFinder [5] finds rigid domains via a dynamic 
programming algorithm that optimizes the rigidity of structural segments extracted 
from two conformational states. These methods are limited to two input structures 
and require the selection of a cutoff parameter [5], which can impact the results quite 
strongly. Spectrus [6] applies spectral clustering to distance fluctuations and supports 
multiple input structures. However, the number of clusters relies on a quality score, 
which sometimes gives ambiguous results. Probabilistic approaches [7, 8] segment pro-
tein structures into rigid domains as part of a generative probabilistic model. The model 
parameters, including the segmentation, are inferred with expectation maximization or 
Gibbs sampling. However, choosing the initial parameters as well as the number of rigid 
segments is still a critical issue, because both algorithms explore parameter space only 
locally, and can therefore require many restarts from different initial conditions.

A more ambitious goal is to predict rigid domains from a single structure by, for exam-
ple, molecular dynamic simulation or an elastic network model that can both be used 
to generate a set of alternative conformational states. HingeProt [9] and Domain Finder 
[10] use an elastic network model to predict hinge residues by analyzing the correlation 
between selected pairs of eigenvectors of the correlation matrix. However, in general it is 
unclear which modes contribute most strongly to the movement, in particular if a con-
formational change involves multiple modes. FlexOracle [11] finds hinge positions by 
identifying split points with minimal energetic impact.

Despite the rich literature on methods for rigid-domain detection in protein struc-
tures, all of the existing methods require the initial number of rigid domains in their 
calculation. Thus, there is still a need for algorithms that are robust, reliable, able to 
handle high-throughput data and yet do not require extensive parameter tunning. Here, 
we introduce a graph-based method that infers a binary labeling that encodes if pairs 
of amino acids belong to identical or different rigid domains. Our algorithm proceeds 
in two stages: first, we construct a protein graph based on spatial proximity, which we 
cluster using the Louvain algorithm to obtain a coarse-grained graph of reduced size. 
Second, edges in the reduced graph are labeled by applying a line graph transformation 
along with the general Viterbi algorithm. We benchmark our algorithm on 487 entries 
of the DynDom database and find a high agreement with the reference segmentation. In 
addition, we also present a detailed analysis of various proteins that show a large variety 
of conformational transitions and compare our results to other methods.
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Results
To validate our algorithm, we first segment conformations of Adelynate Kinase (ADK). 
We then perform a benchmark on 487 proteins from the DynDom database. Finally, we 
compare our method with other domain segmentation algorithms on a number of test 
cases ranging from medium to large scale conformational changes.

Rigid segmentation of Adenylate Kinase

We first run our algorithm for rigid domain segmentation on Adenylate Kinase (ADK) 
for which multiple experimental structures showing different conformations are avail-
able [12]. ADK catalyzes the interconversion of adenine nucleotides and is composed of 
three rigid domains. By closing the NMP-binding domain and the LID domain onto the 
CORE domain, ADK binds ATP and AMP which are converted to two ADP molecules. 
The PDB codes of ADK open and closed conformations are 4ake and 1ake (both chain 
A) respectively. ADK is composed of 214 amino acids which constitute the vertices of 
the initial protein graph. To build the protein graph from both states, we used δ = 7.5 Å 
as cutoff.

Figure 1 illustrates the workflow of our algorithm and intermediate results for ADK 
using default values for the algorithmic parameters. Figure  1a shows ADK’s protein 
graph in which each vertex is an amino acid; the construction of edges linking spatially 
close amino acids is described in Methods. Amino acids are grouped by running the 
Louvain domain detection algorithm [13] and merged into vertices of a coarse-grained 
graph. In the case of ADK, the protein graph comprising 214 vertices is transformed 
to a coarse-grained graph composed of 20 vertices (Fig. 1b). In the next step, we con-
struct the line graph of the coarse-grained graph (Fig. 1c). We then run the generalized 
Viterbi algorithm [14] on a scoring function defined on the line graph. This results in a 
binary labeling of the line graph (Fig. 1d) or, equivalently, a labeling of the coarse-grained 

a b c

g

f e d

Fig. 1  Graph-based segmentation of ADK into rigid domains. a Protein graph constructed from open and 
closed conformations. b Reduced graph obtained by coarse-graining the protein graph. c A line graph of the 
reduced graph. d A line graph with binary vertex labels (black: − 1, white: + 1) obtained with the generalized 
Viterbi algorithm. e The injective relation between edges of the reduced graph and vertices of the line graph 
allows us to also label the edges of the reduced graph. Edges having negative labels are removed resulting 
in three disconnected subgraphs. f A segmented protein graph derived from disconnected subgraphs in the 
reduced graph. g ADK graph with domain annotation from literature encoded by colors
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graph. Based on this labeling our method splits the coarse-grained graph into three 
disconnected subgraphs (Fig. 1e). Finally, we map the unconnected subgraphs back to 
the protein graph to obtain a segmentation of ADK into three rigid domains (Fig. 1f ). 
Our segmentation agrees strongly with the domain boundaries defined in the literature 
[15], which we color-coded in Fig. 1g for visual comparison. Our segmentation deviates 
from the literature annotation only in the hinge regions. This discrepancy is due to the 
ambiguous membership of amino acids in the hinge region which tend to be merged 
with amino acids from different domains in the coarse-graining step.

Unlike DynDom, our method also works with multiple conformational states. To study 
this feature, we ran our algorithm again but on 100 ADK conformations generated by 
morphing between the open and closed state [16]. The algorithm produces a similar 
segmentation.

An advantage of our method is that it allows users to integrate prior knowledge to 
improve the segmentation. For example, for the default parameter setting, our method 
incorrectly assigned fifteen amino acids of the NMP-binding and LID domain to the 
core domain. Yet with some prior knowledge about the rigid domains, we can improve 
the rigid-domain segmentation. Suppose we are given ADK’s segmentation calculated 
from Spectrus [6] with K = 4 (number of rigid domains). We can integrate this prior 
knowledge into our model as follows. The weights of edges in the protein graph whose 
vertices belong to different domains according to the prior labeling are reduced by a fac-
tor α < 1 . Here, we choose α = 0.75 . This setting helps the coarse-graining process to 
reduce the error of inconsistency (mentioned in the Discussion) and thus improve the 
performance. We then ran our graph-based method on the new coarse-grained graph 
and found that only five amino acids of the LID domain were wrongly assigned to the 
core domain. Thus even imperfect prior knowledge can significantly improve the result.

Rigid segmentation benchmark

We benchmarked our method on the DynDom database [17] reduced to those pairs of 
proteins whose overall RMSD exceeds 5 Å. Moreover, we removed domains that span 
less than ten amino acids. To evaluate our method, we use the segmentation error and 
overlap defined by [8]. The overlap counts the number of matches between two segmen-
tations after solving a low-dimensional linear assignment problem that maximizes the 
agreement between the two labelings. The error assesses how often two segmentations 
disagree on whether a pair of amino acids belongs to the same domain. Although both 
metrics differ in the details, they are highly anti-correlated.

Figure 2 shows histograms of the error and overlap between our and DynDom’s seg-
mentation evaluated on 487 proteins based on an edge cutoff value of 7.5 Å. The median 
error is 0.038 and the median overlap 0.972. The error and overlap histograms are highly 
skewed to small and large values, respectively. For approximately 30% of the examples, 
our method reaches a near perfect agreement with the annotation provided by DynDom 
(overlap ≥ 0.99). In only a few cases our method fails to produce a reasonable segmenta-
tion due to errors in the coarse-graining step and/or an indistinguishable signal derived 
from the mean variance. Despite of the disagreements between our method and Dyn-
Dom, our segmentation sometimes seems to be more reasonable. We investigate the 
open and closed states of human importin subunit beta-1 (PDB code 3lww, chains A and 
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C) as an example. According to Dyndom, this protein has three rigid domains (Fig. 3a) 
whose RMSD s are 6.8, 4.3, and 2.1 Å, respectively. We note that the first domain found 
by DynDom (dark green) is small, fragmented and shows a large RMSD . A large portion 
of the second domain (dark red) is interspersed with the third domain (dark blue). Our 
segmentation suggests two separate domains whose RMSD s are 2.2 and 1.0 Å (Fig. 3b), 
which are much smaller than the RMSDs produced by DynDom’s segmentation.

To study the impact of the edge cutoff used in the definition of the protein graph, we 
ran experiments with varying cutoff values. Table 1 reports the mean and median of the 
overlap and error obtained with different edge cutoff values. The overlap seems to be 
largely unaffected by the specific choice of the cutoff, whereas the error drops slightly 
with larger cutoffs. Two possible explanations come to our mind. First, a larger cutoff 
results in protein graphs with more connections between amino acid vertices. Denser 
graphs seem to be more suitable to coarse graining with the Louvain method (see Addi-
tional file  1: Figure S1 and the Discussion for a demonstration of this claim). Second, 
also the coarse-grained graph will be denser with larger cutoff values, which seems to 
improve the scoring of the line graph. However, because denser graphs result in larger 
line graphs, we need to restrict the cutoff to smaller values to tame the computational 
costs of the Viterbi algorithm.

Analysis of various structural transitions

We ran our method on various proteins studied in [8] showing different types and scales 
of conformational changes. Table 2 provides the protein name, size and PDB code; Fig. 4 
shows a summary of the segmentation analysis. First, we study and compare the perfor-
mance of our algorithm (graph-based method) to other methods by analyzing protein 
complexes that undergo large-scale conformational changes.

Pyruvate phosphate dikinase (PPDK) is a large biomolecular complex that catalyzes 
the reversible conversion of PEP, AMP, and Pi to pyruvate and ATP [18]. We apply our 
graph-based method to two PPDK structures and compare the segmentation to the 

Fig. 2  Histogram of the error and the overlap evaluated on 487 proteins in the DynDom database
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annotation found in the literature [18] and by other methods such as Spectrus, DynDom 
as well as Nguyen&Habeck2016 [8]. Our segmentation agrees strongly with the segmen-
tation provided by DynDom, but fails to detect the additional domain reported in the 
literature and by [8]. Typically, our method produces a smaller number of domains than 
reported in the literature, because we only take changes in a few structural snapshots 
into account and no additional experimental information. For K = 3 , Spectrus agrees 

Fig. 3  Protein graph of human importin subunit beta-1 protein. a Segmentation suggested by DynDom: 
three rigid domains colored in dark green, red and blue. b Segmentation estimated by our method: two rigid 
domains colored in light green and blue

Table 1  Performance of  the  graph-based algorithm for  different edge cutoffs evaluated 
on the DynDom benchmark

Cutoff (Å) Metric

Median overlap Mean overlap Median error Mean error

7.5 0.972 0.924 0.038 0.086

10.5 0.977 0.924 0.034 0.083

13.5 0.972 0.926 0.033 0.081
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strongly with the segmentation found by our graph-based approach except for the first 
domain, which is significantly larger according to Spectrus.

T7 RNA polymerase is involved in the initiation and elongation of RNA transcription. 
Our segmentation is highly consistent with the results from DynDom, [8] and the anota-
tion from the literature [19]. Spectrus fails to identify the refolding loop inserted in the 
N-terminal domain.

The chaperonin GroEL [20] provides a shielded environment to assist protein folding 
and prevent aggregation. For this example, all methods provide very similar segmenta-
tion results.

We also benchmark our method on proteins undergoing medium-scale structural 
transitions. Aspartate aminotransferase (AST) is an enzyme involved in amino acid 
metabolism that catalyzes the reversible transfer of an α-amino group between aspartate 
and glutamate [21]. For this example, we find a high agreement between our method 
and other segmentations. Another example is the enzyme Alcohol dehydrogenase (AhD) 
that decomposes alcohol into aldehyde. Our graph-based segmentation agrees strongly 
with the result from DynDom. Spectrus achieves its maximum score for K = 3 domains, 
but introduces an additional domain compared to the other methods. For K = 2 , the 
score is lower, but Spectrus’ segmentation is more consistent to DynDom and our result.

Discussion
Our results demonstrate that segmentation of protein conformations into rigid domains 
can be achieved with a graph-based algorithm that solves the rigid segmentation prob-
lem with an edge-labeling strategy. Let us discuss the key features of the algorithm and 
the impact of algorithmic parameters. To measure the efficiency of the graph construc-
tion and coarse graining, we use a metric that we call inconsistency error. The inconsist-
ency error quantifies the heterogeneity of clusters weighted by their size. Let G = (V , E) 
be a graph composed of N = |V| vertices vi ∈ V with labels σi and C = {Ck} a partition of 
the vertices into clusters Ck ⊂ V obtained by coarse graining. We define the inconsist-
ency error of the coarse graining procedure as error(C|G) = 2

∑

Ck∈C
|Ck |
N

∑

i<j∈Ck
|σi �=σj|

|Ck | (|Ck |−1)  
which is the average number of labeling mismatches within each cluster weighted by 
cluster size.

Table 2  Proteins in different scale conformational changes involved in the assessment

Protein PDB code Chain ID Size

PPDK 1kc7 A 872

2r82 A

T7 RNA polymerase 1qln A 842

1msw D

GroEL 1aon A 524

1aon H

Aspatate aminotransferase 9aat A 401

1ama A

Alcohol dehydrogenase 1adg A 374

2ohx A
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We first study different ways to construct a protein graph from multiple conforma-
tions. There are many reasonable options for constructing a protein graph. For example, 
one possibility is to create an edge if the distance between two vertices is smaller than a 
cutoff in at least one conformation, and to assign as a weight the number of such con-
formations. Another possibility (detailed in Methods) is to create an edge if its distance 
is smaller than the cutoff in all conformations, and to weight the edge by the reciprocal 
exponentiated variance computed over all conformations (such that low-variance edges 

Fig. 4  Analysis of several proteins undergoing conformational changes on a variety of scales. Large-scale 
conformational changes: pyruvate phosphate dikinase, T7 RNA polymerase, GroEL. Medium-scale 
conformational changes: Aspartate aminotransferase, Alcohol dehydrogenase. For each protein, the 
segmentation found by different methods and in the literature are shown. Same color means same domain
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have a weight close to one and large-variance edges are assigned small weights). Addi-
tional file  1: Figure S1 demonstrates that the second graph construction rule consist-
ently outperforms the first rule based on the inconsistency error. We therefore used the 
second rule in our benchmark calculations. In addition, we tested different values of the 
edge cutoff distance and noticed a minor, but not significant improvement of the incon-
sistency error for larger cutoff values.

We also studied various options for the coarse-graining step. In all tests, we used 
the Louvain algorithm for fitting Potts models [13] for coarse graining. The resolution 
parameter was adjusted so as to produce about 20 clusters of medium size. Too large 
clusters risk to merge amino acids from hinge regions and thus the inconsistency error 
is expected to increase. Too small clusters will tend to show a smaller inconsistency 
error at the cost of lowering the significance of the mean variance between two clusters. 
Large graphs will pose a computational challenge in the Viterbi step, because the num-
ber of vertices of the line graph grows quadratically with the number of vertices in the 
original graph. By using our coarse-graining strategy, we save computational resources 
and enhance the signal as shown in Additional file 1 (see second section and Additional 
file 1: Figure S2).

Moreover, we ran our algorithm on Lysozyme [22], an enzyme contributing to the 
innate immune system, to investigate if this graph-based algorithm could produce a 
reasonable segmentation given several actual conformations. In this study, we use 100 
conformations of Lysozyme whose PDB codes can be found in the Supplementary Infor-
mation. To account for minor differences in the protein sequences, we align all proteins 
with Clustal Omega Alignment (https​://www.ebi.ac.uk/Tools​/msa/clust​alo/). Our seg-
mentation on Lysozyme completely agrees with Spectrus [6] and Nguyen&Habeck2016 
[8] where all methods suggest two domains whose RMSDs are 1.6 and 4.9 Å, respectively.

Our method is also applicable to study rigid domains in membrane proteins. For 
instance, the chemokine receptor CCR5 [23] located on the surface of white blood cells 
plays an important role in the immune system. Here, we consider various conforma-
tional states of CCR5 (PDB codes: 6aky_A, 4mbs_A, 6akx_A, 5uiw_A). The sequences 
of these four conformational states were aligned with Clustal Omega [24, 25]. Our seg-
mentation finds a small (51 amino acids 223–253) and a big (286 amino acids 1–222 & 
254–337) rigid domain whose RMSDs are 0.6 and 1.6 Å, respectively. This segmentation 
is stable against variations in the rigidity threshold and does not require the execution 
the merging procedure. When we reduced the threshold to define the protein graph to 
4.5 Å, we obtained two different domains: a small domain (amino acids 193–246) and a 
large domain (amino acids 1–192 and 247–337) whose RMSDs deteriorated to 2.7 and 
3.0 Å, respectively.

To avoid duplication of features involving vertices and edges, we modify the construc-
tion of the line graph by discarding an edge if its two end vertices are connected as well. 
That way, features extracted from edges add new information. Finally, we use a merging 
routine with heuristic criteria to merge two domains. One may ask if we could skip the 
labeling step (Viterbi algorithm) and apply the merging routine directly to the clusters 
found by coarse graining. This simplified version of our algorithm achieves good results 
on proteins showing a large-scale movement, but fails on more subtle cases. Overall, 

https://www.ebi.ac.uk/Tools/msa/clustalo/
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post-processing via the merging procedure compensates for segmentation errors involv-
ing small fragments.

The running time of our algorithm depends on the size of the protein, the density of 
the protein graph, and the rigidity of the conformational change. Additional file 1: Figure 
S3 shows the relationship between protein size and the running time of our graph-based 
segmentation algorithm. We note that the running time for proteins smaller than 800 
amino acids grows slowly in a linear fashion. For the larger proteins, it seems to grow 
quadratically. There are a few outlier proteins whose running time is significantly longer 
than for proteins of similar size.

Indeed, the running time strongly depends on how often the Viterbi algorithm is exe-
cuted in the recursion and how quickly a big, non-rigid graph is segmented into several 
subgraphs. The worst scenario occurs when many Viterbi calculations are required for a 
protein with densely connected protein graph and with a high degree of flexibility such 
as intrinsically disordered proteins [26]. In these problematic cases, the signal derived 
from the mean-variance metric fails to distinguish the labels of inter/intra vertices and 
edges in the line graph.

Other segmentation methods and ours all require 3D protein structures which are not 
always available. In our graph-based framework, we may resolve this shortcoming by 
estimating a protein graph as follows. First, from a given protein primary sequence, we 
may use its protein contact map predicted, for example, by AlphaFold [27] to construct 
a protein graph. Second, due to the absence of 3D protein structures, the rigidity estima-
tion could not base on RMSD but rather on another quantity which could be inferred 
directly from the protein contact map. Final, the rest of the graph-based method is 
unchanged and still applicable with above predicted protein graph.

Conclusion
We present a new algorithm to characterize structural transitions in proteins. Our 
graph-based algorithm constructs a graph from a set of protein conformations and 
detects rigid domains via an edge labeling strategy. A key feature is that the number of 
rigid domains is determined automatically. Yet the algorithm allows users to relax the 
rigidity definition of domains and thereby increase or decrease the number of rigid 
domains. Segmentations produced by our algorithm agree strongly with segmentations 
found by other methods such as DynDom [3, 28] and Spectrus [6] on various medium to 
large scale structural transitions.

Our approach has several advantages over other rigid segmentation methods. First, 
there is no limitation on the number of protein conformations. In fact, a larger number 
of conformations should result in a better signal and thereby a superior performance of 
the algorithm. Second, by using the graph-based model along with a binary labeling of 
edges, we overcome the need to choose the number of rigid domains, which is neces-
sary for many of the existing methods. Moreover, our method performs well with default 
parameter settings, which saves the user from parameter tweaking. Another appeal-
ing aspect of our method is that it can be used to produce a good initial segmentation 
for other segmentation algorithms. For instance, the Nguyen&Habeck2016 method [8] 
requires a good initial guess of the rigid-domain segmentation which could be provided 
by our graph-based method. Finally, our graph-based framework is quite flexible in that 
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it allows us to integrate into the scoring function additional information such as the 
location of hinges or a prior segmentation.

Methods
We organize the “Methods” section as follows. First, we present the notation used 
throught the Methods section. Next, we describe several steps in our approach such as 
the coarse-graining algorithm used to reduce the graph size, a line graph transformation 
that enables inference of edges’ labels , and an outlier-detection method that we use to 
define features on the line graph. Moreover, we explain our method from the perspective 
of conditional random fields (CRFs) as well as our objective function for labellings of the 
line graph. Finally, we present pseudo code for our algorithm as well as a post-processing 
procedure.

Notation

Our algorithm aims to infer a rigid-domain segmentation from M > 1 conformational 
states of a protein. Each conformational state is encoded by a N × 3 matrix X ∈ R

N×3 
whose rows are the 3D coordinates of representative atoms (typically Cα atoms), i.e. 
X
(m)
n  is the position of the nth atom in the mth conformation. Every conformational state 

gives rise to a symmetric N × N  distance matrix D(m):

where � · � denotes the Euclidian norm.
We encode the conformational variability across all M structures through a protein 

graph

whose vertices V are the representative atoms {1, 2, . . . ,N } . An edge between atoms k, l 
belongs to the edge set E if and only if

where δ is a cutoff distance. Viloria et al. [29] suggest a cutoff distance of 5 Å as opti-
mal value for molecular dynamics simulations. In contrast, HingeProt [9] uses 13 Å as 
a cutoff to construct a network. Our choice of the cutoff distance is inspired by elastic 
network models [30], which also encode protein structures as graphs. We ran tests with 
various cutoff values δ = 7.5 , 10.5 and 13.5 Å. We assess the rigidity of a subset S ⊆ V 
through

where RMSDS

(

X (m),X (m′)
)

 is the root mean square deviation (RMSD) [31] between 

conformations X (m) and X (m′) reduced to atoms in S . A subset S is rigid if and only if 
RMSD(S) < θ . The rigidity threshold θ depends on the heterogeneity of the 

(1)D
(m)

k ,l := �X
(m)

k − X
(m)

l � (k , l = 1, 2, . . . ,N ),

(2)PG = (V , E)

(3)max
m=1,2,...,M

D
(m)

k ,l ≤ δ

(4)RMSD(S) :=
2

M(M − 1)

M−1
∑

m=1

M
∑

m′=m+1

RMSDS

(

X (m),X (m′)
)
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conformational states. RigidFinder [5] probes every cutoff between 1.0 and 6.0 Å. We 
typically set θ = 3.5 Å in our tests on the DynDom benchmark [28].

Coarse graining of the protein graph

Rigid domains form densely connected subsets of nodes in the protein graph. To reduce 
the size of the protein graph, we run the Louvain algorithm [13, 32, 33] that partitions 
the nodes V into communities. The parameters of the Louvain algorithm are chosen 
such that the communities

•	 are small enough to include, with a few exceptions, amino acids that are part of the 
same rigid domain (i.e. criterion (Eq. 4) is met for every community);

•	 are large enough to enable the inference of vertex labels (Eq. 9).

If C is a partition found by the Louvain algorithm, the coarse-grained graph

links two communities c1 and c2 ( c1, c2 ∈ C ) by an undirected edge (c1, c2) ∈ CE if at least 
one pair of amino acids a1 ∈ c1, a2 ∈ c2 is linked in the protein graph: (a1, a2) ∈ E . In this 
context, we use the expressions “vertex in the coarse-grained graph” and “community” 
interchangeably.

The mean variance of all distances between two communities c1 and c2 is defined by

The mean variance is a key quantity of our method. For better readability we skip the 
subscript when it does not lead to misunderstandings.

We also use RMSD(CG) to denote the root mean square deviation calculated from the 
protein graph of CG according to Eq. (4).

Line graph transformation

Given an undirected graph with defined sets of vertices and edges, its line graph trans-
formation is a graph whose vertices are the edges in the original graph [34]. Two vertices 
in the line graph are linked if and only if their corresponding edges in the original graph 
are incident (share a common vertex).

In this study, we apply the line graph transformation to the coarse-grained graph with 
a small modification. This transformation is an intermediate step that allows us to utilize 
the generalized Viterbi algorithm to infer binary labels of edges in the coarse-grained 
graph. The line graph derived from the coarse-grained graph is denoted as:

where the edges of the coarse-grained graph become the nodes of the line graph, or 
LV = CE . Two vertices are linked if and only if their two corresponding edges in the 

(5)CG = (CV , CE)

(6)

ξD(c1, c2) :=
1

|c1||c2|(M − 1)
×

×
∑

a1∈c1

∑

a2∈c2

M
∑

m=1

(

D(m)
a1,a2

−
1

M

M
∑

m′=1

D(m′)
a1,a2

)2

.

(7)LG(CG) = (LV ,LE)
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coarse-grained graph are incident and the two end nodes are not connected. Formally, 
we denote two adjacent vertices v1 = (c0, c1) and v2 = (c0, c2) where v1, v2 ∈ LV , and 
c0, c1, c2 ∈ CV . In this notation, we call c0 as a common vertex/node between v1 and v2 , 
while c1, c2 are end nodes. We create an edge e = (v1, v2) ∈ LE if and only if c0 is a com-
mon node and (c1, c2) /∈ CE.

Additionally, we define the mean variance of a vertex v in the line graph ξ(v) according 
to Eq. (6) evaluated on both communities linked by v. Similarly, the mean variance of an 
edge e in the line graph is denoted by ξ(e) and defined via the same equation applied to 
the end nodes of e.

Outlier detection

The bigger the mean variance of a line graph vertex, the more likely is it that the corre-
sponding communities belong to two different domains. Likewise, the end nodes of an 
edge tend to belong to different domains if the mean variance is large. However, it is not 
obvious how to define a mapping that is valid across a diverse set of proteins.

Motivated by these observations, we denote by an inter/intra vertex a line graph node 
linking two communities that are part of different domains/the same domain, respec-
tively. Similarly, a line graph edged is an inter edge if its end nodes belong to different 
rigid domains; otherwise it is an intra-domain edge. We note that the mean variance of 
inter/intra vertices or edges follow two different but overlapping distributions. Both dis-
tributions can be modeled with inverse gamma distributions whose parameters can be 
estimated with expectation maximization (EM). However, we obtained very poor results 
with this approach due to the small number of inter vertices/edges. Therefore, we only 
consider the distribution of values from intra vertices/edges and treat values of inter ver-
tices/edges as outliers.

To identify outliers, we use the algorithm developed by [35] that detects outli-
ers based on the distance from its median normalized by the median absolute devia-
tion (MAD) [36]. MAD is a measure of dispersion estimated via the median of absolute 
deviations from the median of the data. We consider a line graph G = (V , E) with P 
vertices vi ∈ V (i = 1 . . .P) and Q edges ej ∈ E (j = 1 . . .Q) . Without loss of general-
ity, we enumerate the line graph vertices such that elements in the array of mean vari-
ances Avertex = [ξ(v1), ξ(v2), . . . , ξ(vP)] are sorted in ascending order. Correspondingly, 
Aedge =

[

ξ(e1), ξ(e2), . . . , ξ(eQ)
]

 is the array of mean variances of all edges indexed such 
that their mean variance increases. For both arrays, we define a binary outlier indicator 
γ ∈ {−1,+1}:

and

When the ascending mean variance arrays of vertices and edges are unambiguous in the 
given context, we omit the array and indicate whether we are considering vertex or edge 
arrays by the subscript.

γ (v|Avertex) = γv :=

{

−1 if v is an outlier inAvertex;

+1 otherwise.

γ
(

e|Aedge

)

= γe :=

{

−1 if e is an outlier inAedge;

+1 otherwise.
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Outliers are characterized by a mean variance that is larger than any other mean vari-
ance. The set of outliers can be enlarged by including non-outliers located at the end 
of the array. By such expanding, it is important to notice that the indices of outliers are 
always bigger than ones of non-outliers.

A short introduction into CRFs

Let us consider a graph G = (V , E) whose nodes we call sites and V = {1, 2, . . . ,N } with-
out loss of generality. Sites are labeled by elements of the finite set B . Words of length ℓ 
over the finite alphabet O are called observations. E is the set of edges in the site graph 
G . The neighborhood Ni ⊆ V of site i ∈ V consists of all sites j ∈ V , j �= i that are linked 
to i by an edge in N  and i  ∈ Ni . For every label sequence y ∈ BN and subset I ⊆ V , yI 
denotes the partial labeling of sites in I: yI := {(i, yi) | i ∈ I} . Additionally, for every e ∈ E , 
ye denotes the labels of two vertices of e and y

G
′ is the labels of all vertices in a graph G ′.

A pair (X ,Y ) composed of a random observation X ∈ ON and a random label 
sequence Y ∈ BN realizes a feature-based exponential model if the conditional probabil-
ity p (y|x ) of all pairs (x, y) is

where

∑

|I |=s denotes a sum over all cliques I of size s in G ; c is the maximum clique size. For 
every clique size s ≤ c , the function �(s)(yI , x) is the feature of cliques of size s. Under 
very weak assumptions the feature-based exponential models coincide with the class of 
conditional random fields where at every site i the label is conditionally independent of 
the labels outside Ni given the observation and the labels of Ni.

The labeling problem is solved by computing a labeling sequence

that achieves maximum posterior probability (MAP prediction). In general, MAP pre-
diction is NP-hard. The generalized Viterbi algorithm detailed in [14] is able to make the 
inference for an arbitrary graph, yet has an exponential running time according to the 
boundary set of a graph. Only if the underlying site graph is small enough, it can be used 
within a feasible time bound.

Label inference via the generalized Viterbi algorithm

A shortcoming of existing rigid-domain detection methods such as [6, 8, 28] is the 
requirement to specify the number of rigid domains which is often unknown. To over-
come this issue, we use the generalized Viterbi algorithm to infer a binary labeling which 
indicates if a pair of nodes in the coarse-grained graph belongs to identical or different 

(8)p (y|x ) =
1

Z(x)
exp





c
�

s=1

�

|I |=s

�(s)(yI , x)



,

Z(x) :=
�

y′∈BN

exp





c
�

s=1

�

|I |=s

�(s)(y′I , x)



.

(9)y∗ := argmax
y∈BN

p (y|x )
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rigid domains. It is important to note that we need to infer the binary labels of edges in 
the coarse-grained graph, whereas the Viterbi algorithm estimates optimal vertex labels. 
Thus, it is not suitable to directly apply the Viterbi algorithm to the coarse-grained 
graph. Instead, we apply the generalized Viterbi algorithm on a line graph derived from 
the coarse-grained graph. This gives us a binary labeling of line graph vertices, which 
equivalent to a binary labeling of edges in the coarse-grained graph.

Thus, we consider a line graph as a site graph described above. In a pairwise CRF, one 
only considers cliques formed by vertices and edges. Consequently, Eq. (8) can be rewrit-
ten as

where �(1) and �(2) are the feature functions defined on vertices and edges respectively. 
The term Z(x) can be ignored because it is not a function of y . As a convention, we call 
p (y|V , E ) “unnormalized probability” or “scoring function” interchangeably.

In our rigid domains detection problem, we define a feature function for a vertex v 
along with its label yv by

This function will reward labeling yv that coincide with the outlier indicator value.
Given an edge e = (v1, v2) ∈ E , we define a feature function on e and its predicted label 

ye by distinguishing three cases:
Case “Two values among γe, γv1 , γv2 are equal to −1 .” In this case, the egde feature 

rewards an agreement between the predicted vertex labels ye and the outlier indicators:

Case “ γv1 = γv2 = +1 ” seems to indicate that three nodes of v1 and v2 (a common vertex 
and two end nodes) belong to the same rigid component. However, the vertex shared by 
the two edges may be part of a hinge region between two rigid components. This is likely 
to occur if the mean variance value of the edge is outlier, or “ γe = −1 ”. If this is the case, 
we have to decide to which component the hinge node belongs. This decision is based on 
a comparison between ξ(v1) and ξ(v2) . Thus, �(2) becomes:

For any other combination of γv1 , γv2 and γe , we set

(10)p (y|V , E ) ∼ exp





�

v∈V

�(1)(v, yv)+
�

(v1,v2)∈E

�(2)(v1, v2, y(v1,v2))





(11)�(1)(v, yv) = γvyv .

(12)�(2)
(

e, ye|e = (v1, v2)
)

:=

{

+1 if yv1γv1 + yv2γ v2 = 2;
−1 otherwise.

(13)

�(2)
�

e, ye|e = (v1, v2)
�

:=



















+1 if yv1 = −1, yv2 = +1, γe = −1 and ξv1 > ξv2;

+1 if yv1 = +1, yv2 = −1, γe = −1 and ξv1 < ξv2;

+1 if yv1 = yv2 = +1 and γe = +1;
0 if yv1yv2 = −1, γe = −1 and ξv1 = ξv2;

−1 otherwise.

(14)�(2)
(

e, ye
)

:= 0
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In all three cases above, labelings are rewarded by setting �(2) to +1 , penalized by setting 
�(2) to −1 and ignored by setting �(2) to 0.

Hence, for any labeling of the line graph G , the generalized Viterbi algorithm computes 
its unnormalized probability (Eq.  10) via Eqs. (11)–(14) and thus gives us the most prob-
able labels of G.

Graph‑based prediction of rigid domains

This subsection provides pseudo code for our graph-based prediction of rigid domains 
in proteins. We denote the rigidity threshold as θ (typically 3.5 Å). 

There is no guarantee that this algorithm always converges. However, we experienced 
fast convergence within a few iterations in most of our experiments. We also added a 
limitation on the number of recursions. The final result of our algorithm is a list of dis-
connected subgraphs of the coarse-grained graph.
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Finalizing rigid‑domain segmentation

Our graph-based method for rigid-domain detection described in the Sect. 5.6 produces 
a list of disconnected subgraphs of the reduced graph. we can trace back the subgraphs 
to the corresponding protein subgraphs and thus obtain a list of disconnected protein 
graphs.

Let S = {S1,S2, . . . ,SL} be a mutual exclusive partition of the protein graph PG . Our 
merging algorithm works as follows: 

After termination of the Merging Algorithm, S is returned as rigid-domain prediction.
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