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Abstract 

Background:   As one of the largest publicly accessible databases for hosting chemical structures and biological 
activities, PubChem has been processing bioassay submissions from the community since 2004. With the increase 
in volume for the deposited data in PubChem, the diversity and wealth of information content also grows. Recently, 
the Tox21 program, has deposited a series of pairwise data in PubChem regarding to different mechanism of actions 
(MOA), such as androgen receptor (AR) agonist and antagonist datasets, to study cell toxicity. To the best of our 
knowledge, little work has been reported from cheminformatics study for these especially pairwise datasets, which 
may provide insight into the mechanism of actions of the compounds and relationship between chemical structures 
and functions, as well as guidance for lead compound selection and optimization. Thus, to fill the gap, we performed 
a comprehensive cheminformatics analysis, including scaffold analysis, matched molecular pair (MMP) analysis as well 
as activity cliff analysis to investigate the structural characteristics and discontinued structure–activity relationship of 
the individual dataset (i.e., AR agonist dataset or AR antagonist dataset) and the combined dataset (i.e., the common 
compounds between the AR agonist and antagonist datasets).

Results:  Scaffolds associated only with potential agonists or antagonists were identified. MMP-based activity cliffs, as 
well as a small group of compounds with dual MOA reported were recognized and analyzed. Moreover, MOA-cliff, a 
novel concept, was proposed to indicate one pair of structurally similar molecules which exhibit opposite MOA.

Conclusions:  Cheminformatics methods were successfully applied to the pairwise AR datasets and the identified 
molecular scaffold characteristics, MMPs as well as activity cliffs might provide useful information when designing 
new lead compounds for the androgen receptor.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
As one of the largest publicly accessible databases for 
chemical structures and their bioactivities, PubChem [1], 
hosted by the National Center for Biotechnology Infor-
mation (NCBI), National Institutes of Health (NIH), has 
become an increasingly important platform to the scien-
tific community for data sharing. With three intercon-
nected databases: PubChem Substance (identifier SID), 
PubChem BioAssay (identifier AID) and PubChem Com-
pound (identifier CID), PubChem offers open access to 
over 50,000 users daily via the NCBI Entrez system, as 
well as web-based and programmatic tools. In addition, 
PubChem is closely integrated with literature and other 

biomedical databases such as PubMed, Protein, Gene, 
Structure, Biosystems and Taxonomy [2]. According to 
the recent review [2], PubChem has been successfully 
applied to various fields, such as developing secondary 
resources and tools, studying compound-target network 
and drug polypharmacology, generating and validat-
ing machine learning models, and identifying lead com-
pounds etc.

Despite of a number of previous data mining efforts 
[3–7], the demand only becomes higher for researchers 
to collectively analyze bioactivity data to solve or pro-
vide insights into scientific questions, especially in the 
medicinal chemistry filed, where one of the main tasks 
is to identify and optimize lead compounds towards 
desired biological activities. Thus, many researchers 
have attempted different computational approaches to 
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accomplish such tasks including virtual screening based 
on PubChem bioactivity data [8] using the maximum 
unbiased validation datasets, predicting adverse drug 
reactions using PubChem bioassay data [9] and many oth-
ers [10–13]. However, most of the studies mainly focused 
on the datasets with the single endpoints. With the 
increase in volume for the deposited data in PubChem, 
the diversity and wealth of information content also 
grows. PubChem contains hundreds of large scale high-
throughput screening (HTS) projects, which often tested 
a common compound library providing great opportuni-
ties for bioactivity profiling research. Recently, the Tox21 
program compiled a library of 10,000 compounds, and 
systematically carried out HTS projects against a group 
of targets and pathways, such as androgen receptor (AR), 
estrogen receptor (ER), retinoic acid receptor (RAR) and 
other receptors, searching simultaneously for agonists 
and antagonists in a pairwise manner. Data generated 
by these projects were deposited in PubChem. Analysis 
of such pairwise bioactivity data regarding to different 
mechanism of actions (MOA) for the same target may 
result in interesting discoveries, in particularly when to 
combine with prior data in PubChem. However, to the 
best of our knowledge, little work has been reported from 
cheminformatics study for these datasets. Thus, to fill the 
gap, we performed a comprehensive study focusing on 
this data collection using several cheminformatics meth-
ods, including scaffold analysis, matched molecular pair 
(MMP) analysis and activity cliff analysis.

In fact, previous studies have successfully applied such 
cheminformatics methods to the analysis of bioactivity 
data in public databases. For example, Hu and Bajorath 
[14] performed scaffold analysis for the DrugBank data-
base [15] and the ChEMBL database [16]. They con-
cluded that many drugs contain unique scaffolds with 
varying structural relationships to scaffolds of currently 
available bioactive compounds. The same authors also 
explored the scaffold universe of kinase inhibitors with 
respect to different activities [17]. Kramer et  al. [18] 
performed matched molecular pair analysis by compar-
ing the ChEMBL data and Novartis data suggesting that 
MMP analysis is a very robust tool for lead optimiza-
tion and will have growing importance in daily medici-
nal chemistry practice. Using the ChEMBL database, 
Dimova et  al. [19] presented a systematic evaluation of 
activity cliff progression in evolving compound datasets. 
They found that activity cliffs currently are not a major 
focal point of practical medicinal chemistry efforts and 
anticipated that chemically unexplored activity cliffs 
should provide significant opportunities for further study 
in medicinal chemistry. All these findings indicate that 
cheminformatics studies are playing important roles in 
medicinal chemistry. However, it can be noted that most 

of such studies are mainly focusing on the ChEMBL 
database.

In this work, we performed a comprehensive chem-
informatics study for the Tox21 assay data deposited in 
the PubChem database to investigate the molecular scaf-
fold characteristics, matched molecular pairs as well as 
activity cliff in the individual target-based dataset (i.e., 
either AR agonist dataset or antagonist dataset). Moreo-
ver, we also performed a computational analysis for the 
combined dataset (i.e., commonly tested compounds) 
between the AR agonist and antagonist datasets in 
Tox21. Several interesting observations are reported and 
discussed.

Material and experimental methods
Bioassay data
Bioactivity data for the agonist and antagonist screens for 
the androgen receptor (AR, GenBank: AAI32976.1) were 
retrieved from the PubChem BioAssay database. For the 
agonist screen (AID 743053), there were 372 substances 
reported as active outcomes and 9070 substances as inac-
tive outcomes from a total of 10,486 substances, while for 
the antagonist screen (AID 743063), 670 substances were 
reported as active and 7770 substances as inactive from 
the same compound library. These original compounds 
were subject to further filtering as described below.

Preprocessing of the original data
To obtain the final dataset for analysis, the following 
steps were applied: (1) compounds with missing read-
outs were removed (original 8, 111 unique CIDs were 
reduced to 8110 for both the AR agonist and antagonist 
datasets); (2) redundant compounds (same CIDs and 
same readouts but different SIDs) were removed (CIDs 
remained the same for both the AR agonist and antago-
nist datasets); (3) compounds with discrepant bioactivity, 
meaning the same chemical structure (CID) with con-
tradictory bioactivity report (same CIDs but different 
readouts and different SIDs), were removed (CIDs were 
reduced to 7866 for the AR agonist dataset, and 7678 for 
the AR antagonist dataset, respectively); (4) compounds 
without outcome annotations of “Active” and “Inactive” 
were removed (CIDs were reduced to 7174 for the AR 
agonist dataset, and 6321 for the AR agonist dataset, 
respectively); (5) compounds of mixtures were removed 
(CIDs were reduced to 5649 for the AR agonist dataset, 
and 4956 for the AR antagonist dataset, respectively); 
and (6) compounds containing no ring-like structures 
were removed (CIDs were reduced to 4162 for the AR 
agonist dataset, and 3563 for the AR antagonist dataset, 
respectively). Finally, the PubChem CID (representing 
unique chemical) rather than SID (representing a sam-
ple) was used as the compound identifier for keeping data 
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consistency. The final AR agonist dataset consisted of 172 
“Active” molecules and 3990 “Inactive” ones, and the AR 
antagonist dataset consisted of 322 and 3241 of “Active” 
and “Inactive” compounds, respectively. The R software 
[20] was used to perform the analysis.

Scaffold construction
A molecular scaffold, according to the definition intro-
duced by Bemis and Murcko [21], is often called BM scaf-
fold, which is extracted from the molecule by removing 
all substituents while retaining aliphatic linkers between 
ring systems. In this work, the scaffolds of the AR ago-
nist and antagonist datasets were constructed by using 
the method proposed by Matlock et al. [22]. Specifically, 
the scaffold network generator (sng) tool [22], taking the 
input of SDF format of molecules, was used to generate 
the molecular scaffolds. In addition, each scaffold was 
also reduced to an even more brief molecular framework 
(also called cyclic skeleton (CSK) [23]) by converting all 
heteroatoms to carbon and turning all bonding orders 
(double bonds or triple bonds) to one. Therefore, each 
CSK represents a series of topologically equivalent scaf-
folds. The RDKit software [24] was used to obtain the 
CSKs from the corresponding scaffolds.

Matched molecular pair
As described by Hussain and Rea [25], an MMP is a pair 
of molecules that only differ by a structural change at a 
single site, which has become a major tool for analyzing 
large chemistry dataset for promising chemical trans-
formations [18]. In this work, size-restricted MMPs 
were constructed to limit structural differences between 
compounds to small replacements as reported previ-
ously [26], which was done in the following procedures: 
(1) the invariant core fragment was required to have at 
least twice as the size of each exchanged fragment; (2) the 
maximal size of an exchanged fragment was limited to 13 
non-hydrogen atoms and (3) the size difference between 
two exchanged fragments was set to eight atoms as the 
maximum. Thus, the generated MMPs provided a con-
servative measure of structural similarity [23]. All MMP 
calculations were calculated using the algorithm pro-
posed by Hussain and Rea [25]. Specifically, the mmpa 
module implemented in RDKit software [24] was used to 
generate the MMPs. The module was ran with the default 
settings except the maximal size change in heavy atoms 
allowed in MMPs identified (13 in this work). The other 
steps were performed using the R software [20], which 
took the SMILES format of molecules as input.

Activity cliff
A common definition for activity cliff is that a pair of 
structurally similar molecules exhibit a large difference 
in bioactivity potency [27]. For the similarity measures 
between molecules, different methods have been suc-
cessfully applied, whereas Tanimoto similarity based on 
various fingerprint descriptors (e.g., PubChem finger-
prints, MACCS fingerprints, ECFP4 fingerprints and 
many others [27]) and MMP-based similarity are among 
the most popular ones [28]. In this work, the latter was 
adopted. In addition, the PubChem bioactivity outcome 
annotations (i.e., active or inactive) provided by deposi-
tors were directly used to obtain the bioactivity potency 
differences. Thus, the generated activity cliffs herein were 
MMP-based cliffs.

Results and discussion
As one of the nuclear hormone receptors, AR (GenBank: 
AAI32976.1) plays a critical role in AR-dependent pros-
tate cancer and other androgen related diseases. Several 
endocrine disrupting chemicals and their interactions 
with AR may cause disruption of normal endocrine func-
tion as well as interfere with metabolic homeostasis, 
reproduction, developmental and behavioral functions. 
Thus, in order to identify the agonists and antagonists 
of AR signaling, GeneBLAzer AR-UAS-bla-GripTite cell 
line containing a beta-lactamase reporter gene under 
control of an upstream activator sequence stably inte-
grated into HEK293 cells was used to screen the Tox21 
10K compound library. In this work, we have investigated 
the screened compounds by applying several cheminfor-
matics methods in order to mine useful information for 
the design of lead compounds.

Scaffolds and CSKs of the AR agonist and antagonist 
datasets
After applying the filtering criteria described in the 
method section, the compounds used in the analysis 
including both the AR agonist and antagonist datasets are 
listed in Table 1, together with statistics for scaffolds and 
CSKs. As we can see that we finally obtained a total of 
4162 compounds from the PubChem Tox21 agonist data-
set (AID 743053) containing 172 active and 3990 inactive 
ones to perform further research. It should be noted that 
each compound possesses a unique CID indicating that 
it has a distinct chemical structure. On the contrary, the 
AR antagonist dataset (AID 743063) includes relative less 
unique compounds (3563) but with more active ones of 
322 and less inactive ones of 3241 compared to the AR 
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agonist dataset. In order to explore the building blocks or 
core structures of these compounds of different mecha-
nism of actions, which are of high interest to pharma-
ceutical research, we performed scaffold analysis. Here, 
the scaffold refers to the popular BM-scaffold. On the 
basis of these identified 4162 compounds in the agonist 
dataset, we extracted 1571 unique scaffolds. Thus, each 
scaffold on average represents about 2.6 compounds. It 
is also noted that there are about 77  % scaffolds which 
are only found in a single compound. Among the scaf-
folds, benzene represents the most compounds. In this 
case, one benzene scaffold represents 1147 compounds, 
followed by the pyridine scaffold representing 67 com-
pounds. These findings indicate that the series of com-
pounds tested in the AR dataset are structurally diverse. 
Figure  1a shows the distribution of the compounds 
among the identified scaffolds for the AR agonist dataset. 
Furthermore, we also would like to examine the distribu-
tion of rings in these scaffolds. As shown in Fig. 1c, it is 
evident that most of the scaffolds consist of two or three 
rings (64  % of the whole scaffolds). For the AR antago-
nist dataset, 3563 compounds are covered by 1384 scaf-
folds. Among them, 1063 scaffolds (about 77  % of the 
whole scaffolds) show a one-scaffold-one-compound 
relationship again with benzene and pyridine as the most 
common ones. Figure  1c shows the distribution of the 
compounds among the scaffolds for the AR antagonist 
dataset. While exploring the number of rings related with 
scaffolds, it can be noted that most scaffolds (63 %) have 
two or three rings which is the same as the AR agonist 
dataset, but the maximum number of rings is 9 rather 
than 10 compared to the corresponding agonist dataset 
(Fig. 1d). Based on this analysis, it can be noticed that the 
studied compounds are ring-less and diverse.

It is well known that datasets from HTS have the 
imbalanced nature, which means that the majority of 
screened compounds exhibit inactive outcomes, while 
just a minority part of them show active outcomes. In 
our study, the inactive compounds of the AR agonist 

dataset are more than 23 folds larger than the active 
ones. By comparing the scaffolds of them, the former are 
more than 21 folds of the latter (Table 1). However, one 
can notice that the imbalanced ratio between the inac-
tive and active CID counts, and that between the scaffold 
counts for the compounds of the AR antagonist dataset 
are relatively low compared to those of the agonist data-
set, which are about 10 and 6 for the compounds and 
scaffolds, respectively, which indicates that the identified 
agonists are more structurally specific while the antago-
nists are rather structurally diverse in this studied data-
sets. By calculating the diversity index (DI) [29] of active 
and inactive molecules, using the PubChem fingerprints 
for the AR agonist dataset, it can be noticed that the DI of 
active compounds is 0.50, which is relatively less than the 
inactive DI of 0.66 though the number of former dataset 
is largely less than the latter. For the AR antagonist data-
set, the DIs are 0.61 and 0.67 for the active and inactive 
compounds, respectively. The almost equal DIs indicate 
that the investigated datasets are diverse.

We further decomposed the scaffolds to CSKs which 
are used to elucidate more general skeletons of the scaf-
folds. According to the previously mentioned criteria, a 
total of 1571 scaffolds are reduced to 895 CSKs for the 
AR agonist dataset, where the active 72 scaffolds con-
sist of 53 CSKs and the inactive 1521 ones consist of 
865 CSKs (Table  1). Likely, the AR antagonist dataset 
consists of 814 unique CSKs, in which the active and 
inactive ones consist of 160 and 717 CSKs, respectively 
(Table  1). Figure  1e, f show the distribution of scaffolds 
among CSKs for the AR agonist and antagonist datasets, 
respectively. There are about 77 % of the whole CSKs in 
the AR agonist dataset exhibiting a one CSK to one scaf-
fold relationship, while this ratio is 78 % for the AR antag-
onist dataset, again indicating the screened compound 
library is structurally diverse enough. The whole list can 
be found in the Additional file 1: Table S1.

More importantly, a comparison for the active and 
inactive scaffolds of the AR agonist dataset shows 22 

Table 1  Summary of the studied AR agonist and antagonist datasets

Agonist Antagonist

Total Active Inactive Total Active Inactive

Number of unique compounds 4162 172 3990 3563 322 3241

Number of unique scaffolds 1571 72 1521 1384 198 1248

Number of unique CSKs 895 53 865 814 160 717

Diversity index – 0.50 0.66 – 0.61 0.67
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overlapping scaffolds, and there are 50 scaffolds that 
exclusively represent only active compounds in the ago-
nist dataset. Figure 2a gives the representative structures 
of these distinct active scaffolds. Besides the binary out-
comes, we have also looked into the potency for these 
active compounds as the AR agonists. Herein, we con-
verted the IC50 (uM, micromolar) as pIC50 (M, molar). It 
should be pointed out that when we extracted the potency 
value for each unique active compound, we also applied 

some criteria: (1) if the same compound has multiple 
potency values with the same log order, we obtained the 
mean value of them as the final potency value; (2) if the 
same compound has multiple potency values with the 
difference of more than one log order, we removed such 
compounds. Finally, 49 exclusive scaffolds were derived 
representing 98 unique compounds. These compounds 
exhibit a scale of potency values from 4.26 to 9.19 molar. 
It can be noticed that two compounds (CID 10631 with 

Fig. 1  Frequency of scaffolds that cover a certain number of compounds for the agonist dataset (a) and antagonist dataset (b); frequency of scaf-
folds that have a certain number of rings for the agonist dataset (c) and antagonist dataset (d); frequency of CSK that cover a certain number of 
scaffolds for the agonist dataset (e) and antagonist dataset (f) of AR
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4-ring scaffold “O=C1CCC2C(=C1)CCC1C2CCC2C-
1CCC2” named sca_1 and CID 3033968 with 4-ring scaf-
fold “O=C1CCC2C(=C1)CCC1C2CCC2C1C=CC2” 
named sca_2) shows the most potency values of more 
than 9 molar. Both sca_1 and sca_2 represent a total of 35 
unique active compounds, where the former represents 
the majority of 34 compounds with the potency values 

from 5.67 to 9.10 molar (around 79  % of them present 
the potency values of more than 7 molar), and the latter 
consists of only one compound (CID 3033968). The com-
pounds with high potency values may provide insight for 
lead design. Likely, 136 scaffolds exclusively cover only 
active compounds of the AR antagonist dataset with the 
representative ones shown in Fig. 2b. When analyzing the 

Fig. 2  Representative exclusive scaffolds for the AR active agonists (a) and AR active antagonists (b)
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potency values of the exclusive antagonists, we filtered out 
one scaffold and kept a total of 135 scaffolds represent-
ing 171 unique compounds with the potency values from 
4.23 to 7.95. Eleven compounds from 9 scaffolds show 
the most potency values of more than 7 molar. When we 
investigated the activity distribution for all compounds 
from these 9 scaffolds, it can be noticed that there are a 
total of 13 compounds with the potency values from 6.65 
to 7.95 molar, indicating these scaffolds represent the con-
sistent activity distribution, though the bioactivity (7.95 
molar) for the most potent antagonist is two orders lower 
compared to that of the strongest agonists (9.19 molar). 
Such exclusive scaffolds should be explored further for 
lead compound development with optimal potency and 
selectivity. More information about the exclusive active 
scaffolds for the AR agonists and antagonists can be found 
in the Additional file 2: Table S2.

MMPs and activity cliffs of the AR agonist and antagonist 
datasets
Matched molecular pair (MMP) analysis has become a 
standard tool for the extraction of medicinal chemistry 
knowledge from large databases [18]. In addition, MMP 
formalism is descriptor-independent, metric-free and 
chemically intuitive [26], which motivated us to perform 
MMP analysis based for the AR datasets. For the agonist 
dataset, we accomplished MMP calculations from the 
original 4162 molecules according to the rules described 
in the method section. Herein, it should be pointed out 
that a pair of compounds may generate multiple MMPs. 
In such case, we retained only one of the MMPs by apply-
ing the additional selection rules. First of all, we calcu-
lated the absolute deviation of the heavy atom count 
between the exchanged groups, and retained the pair 
with the smallest deviation value. Secondly, if there still 
exists multiple pairs with the same smallest deviation 
value, we randomly chose one of such pairs. As a result, 
9695 MMPs were generated to satisfy the specified cri-
teria. By classifying all MMPs, one can notice that the 
MMPs with the same bioactivity outcomes are 9603 
including the inactive MMPs of 9462 and the active 
MMPs of 141. Herein, an inactive MMPs refer that the 
‘left’ molecule and ‘right’ molecules in a pair show both 
inactive outcomes according to the bioactivity annota-
tion depositors provided, and this is the same for an 
active MMPs with both molecules in the pair being active 
compounds. Moreover, a total of 92 MMPs are observed 
with the molecule pairs associated with opposite bioac-
tivity outcomes (i.e. with one of the molecule reported as 

active, and the other one in the pair as inactive) for the 
AR agonist dataset, indicating potential activity cliffs 
which will be further discussed in the following section. 
For the AR antagonist dataset, we obtain a total of 8049 
MMPs from the original 3563 molecules. Among them, 
7717 MMPs with the same outcomes consist of 7623 
inactive MMPs and 94 active MMPs. Furthermore, 332 
MMPs consist of molecule pairs with opposite bioactiv-
ity outcomes. Table 2 shows the summary of the gener-
ated MMPs for the AR agonist and antagonist datasets, 
respectively. In this series of generated MMPs, one may 
be first interested in the active MMPs to give insight 
into property optimization for the compounds such as 
improving solubility, oral availability, protein binding, 
and so forth [30]. Figure  3 shows several representative 
active MMPs for the AR agonist and antagonist data-
sets, separately. The whole networks for both datasets are 
shown in Fig. 4. From this figure, one can see that most 
active compounds are used as hubs to connect the inac-
tive ones in the generated pairs, indicating that more 
attention should be paid when designing new lead com-
pounds based on these hub compounds since analogs 
may be located at the bottom of the activity cliff.

In addition to MMP recognition, activity cliff analysis 
has been another critical approach for medicinal chem-
istry research, for which activity cliffs are often encoun-
tered in hit-to-lead projects. Activity cliffs represent 
centers of SAR discontinuity in activity landscapes of 
compound datasets and are focal points of SAR explora-
tion [31]. It is also worthy to point out that activity cliffs 
fall out of the similarity-property principle and are usu-
ally incorrectly predicted by quantitative structure–activ-
ity relationship models [27]. Given the importance of 
activity cliff analysis in medicinal chemistry, several stud-
ies have been reported mainly based on the ChEMBL 
database [19, 32–34]. To gain insight for lead identifica-
tion and optimization, we analyzed MMP-based activity 
cliffs for both Tox21 AR agonist and antagonist datasets. 
We used the binary bioactivity outcome annotations, 

Table 2  MMPs for the AR agonist and antagonist datasets

Category Number of MMPs Outcome pattern

Agonist Antagonist Left  
molecule

Right  
molecule

Inactive MMPs 9462 7623 Inactive Inactive

Active MMPs 141 94 Active Active

Activity cliff MMPs 92 332 Inactive Active



Page 8 of 13Hao et al. J Cheminform  (2016) 8:37 

e.g. active versus inactive, provided in the dataset sub-
missions as the corresponding activities. As shown in 
Table  2, we identified 92 MMP-based activity cliffs for 
the AR agonist dataset, while for the AR antagonist data-
set, 332 MMPs with potential activity cliffs are observed. 
Such activity cliffs are of high interest and can be valu-
able to medicinal chemists for lead compound design and 
development. Figure  5 shows the representative MMP-
based activity cliffs for the AR agonist and antagonist 
datasets, respectively. The whole active MMPs list is pro-
vided in the Additional file 3: Table S3.

Mechanism of actions analysis
In addition to the activity cliff analysis within the respec-
tive AR agonist dataset and antagonist dataset, we also 
carried out MMP-based analysis by combing the agonist 
and antagonist datasets taking the advantage that both 
screens tested the same compound library. We compiled 
a total of 3293 such common compounds for both data-
sets. We first removed those compounds (3008) with 
inactive outcome in both of the AR agonist and antago-
nist datasets as we attempted to focus on the compounds 

with potential agonist and antagonist function as iden-
tified in the two screens. As a result, the remaining 285 
compounds with pairwise mechanism of actions (i.e. ago-
nist vs. antagonist) were applied to further study with two 
questions in mind: (1) to check structure-based bioactiv-
ity overlap; and (2) to explore MMP-based MOA cliffs.

To answer the first question, we organized the 285 
common compounds according to their annotated bio-
activity outcomes. It can be noticed that 240 molecules 
exhibited opposite outcomes (i.e., they are either ago-
nists or antagonists of AR). On the other hand, and sur-
prisingly, 45 compounds (Additional file  4: Table S4) 
were reported as active in both screens. This finding is 
interesting since it means that these 45 molecules were 
recognized as both agonists and antagonists of AR simul-
taneously, which may be explained by two folds: (1) they 
indeed possess both MOA detected by different screens; 
(2) this observation may reflect underlying experimental 
errors. In any case, further experimental investigation is 
needed to confirm this finding. Figure 6 shows the rep-
resentative structures for these 45 compounds with dual 
MOA reported.

Fig. 3  Representative active MMPs for the AR agonists (a) and AR antagonists (b)
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Fig. 4  MMP network for the AR agonist dataset (a); MMP network for the antagonist dataset (b); MMP example surrounded by green circle for the 
AR agonist dataset (c); MMP example surrounded by green circle for the AR antagonist dataset (d)
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For the second question, MMP analysis was performed 
for the 285 common compounds. As a result, a total of 
78 MMPs were obtained after applying above-mentioned 
filters. We classify these 78 MMPs into 3 categories as 
shown in Table  3. The largest category has 64 MMPs, 
where both molecules in a pair show the same MOA, 
and we call it same MOA. Interestingly, the remaining 14 
MMPs form MOA-cliffs, a novel concept we proposed, 
which refers to that a pair of structurally similar mole-
cules present different MOA. Among the 14 MOA-cliffs, 
there are 13 MMPs to be considered as weak MOA-cliffs 
because they just show partly different MOA. Compared 
to the weak MOA-cliffs, it is very interesting to observe 
a strong MOA-cliff, which presents a totally opposite 
MOA between the molecules (CID 443884, AR agonist, 
4.69 molar; CID 6321253, AR antagonist, 4.77 molar) 
(Table  3). It is true that both molecules show the rela-
tively less potency values, but the outcome annotations 

from the depositor indeed elucidate them as agonist and 
antagonist, respectively. It should also be pointed out 
that by comparing CID 443884 with CID 6321253, the 
exchanged fragments are slightly different where the tail 
of former molecule shows the more polar characteristic 
than the latter one. That may be a possible reason why 
they show the opposite MOA. Figure 7 exhibits the rep-
resentative structural pairs of the identified MMPs and 
MOA-cliffs for the combined dataset (the whole list 
can be found in the Additional file 5: Table S5). Despite 
of the high interest for this observation, it should be 
pointed out the bioactivities of the compounds would 
need to be verified by further investigations. Regard-
less, the analysis indicates that the cheminformatics 
tools may be used to provide in-depth analysis of big 
chemical biology data, to understand the relation-
ship between chemical scaffolds, structures and their 
biological functions, and in particularly to recognize 

Fig. 5  Representative MMP-based activity cliffs for the AR agonist dataset (a) and AR antagonist dataset (b)
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interesting compound pairs that demonstrate completely 
different mechanism of actions, hence to provide guid-
ance for further medicinal chemistry study. Indeed, 
there are more datasets from the Tox21 program and 

other HTS projects with data available in PubChem 
screened for both agonists and antagonists, or activators 
and inhibitors against a target, which will be subject to  
future study. 

Fig. 6  Representative molecular structures for the dual action molecules

Table 3  Summary of MMPs and cliffs for the combined AR dataset

MOA pattern Number of MMPs Left molecule Right molecule

Agonist Antagonist Agonist Antagonist

Same MOA 64 17 Active Active Active Active

26 Inactive Active Inactive Inactive

21 Active Inactive Active Inactive

Weak MOA-cliffs 13 7 Inactive Active Active Active

6 Active Active Active Inactive

Strong MOA-cliffs 1 1 Active Inactive Inactive Active
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Conclusions
In this work, we analyzed the pairwise agonist and antag-
onist AR data including scaffold analysis, matched molec-
ular pair and activity cliff. Scaffolds with distinct agonist 
or antagonist bioactivity as well as those showing activ-
ity cliffs were identified. In addition to the activity cliffs 
regarding to a single MOA, we also carried out activity 
cliff analysis by combing the AR agonist and antagonist 
datasets. We proposed a novel MOA-based cliff concept 

to indicate a pair of structurally similar molecules which 
exhibit the opposite MOA. In a summary, by a thorough 
investigation of the Tox21 AR datasets, a series of scaf-
folds, MMPs, activity cliffs as well as MOA-cliffs have 
been identified or proposed. We hope this analysis might 
be helpful for optimizing or designing novel AR agonists 
and antagonists, and to find key structure elements for 
determining mechanism of actions for small molecule 
compounds.

Fig. 7  Representative MMP (a), weak MOA-cliff (b) and strong MOA-cliff (c) for the combined dataset
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