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Heart rate variability (HRV) has prognostic and diagnostic potential, however, the
mechanisms behind respiratory sinus arrhythmia (RSA), a main short-term HRV, are
still not well understood. We investigated if the central feedforward mechanism or
pulmonary stretch reflex contributed most to RSA in healthy humans. Ventilatory
support reduces the centrally mediated respiratory effort but remains the inspiratory
stretch of the pulmonary receptors. We aimed to quantify the difference in RSA
between spontaneous breathing and ventilatory support. Nineteen healthy, young
subjects underwent spontaneous breathing and non-invasive intermittent positive
pressure ventilation (NIV) while we recorded heart rate (HR, from ECG), mean arterial
pressure (MAP) and stroke volume (SV) estimated from the non-invasive finger arterial
pressure curve, end-tidal CO2 (capnograph), and respiratory frequency (RF) with a stretch
band. Variability was quantified by an integral between 0.15–0.4 Hz calculated from the
power spectra. Median and 95% confidence intervals (95%CI) were calculated as
Hodges–Lehmann’s one-sample estimator. Statistical difference was calculated by the
Wilcoxon matched-pairs signed-rank test. RF and end-tidal CO2 were unchanged by NIV.
NIV reduced HR by 2 bpm, while MAP and SV were unchanged in comparison to
spontaneous breathing. Variability in both HR and SV was reduced by 60% and 75%,
respectively, during NIV as compared to spontaneous breathing, but their interrelationship
with respiration was maintained. NIV reduced RSA through a less central respiratory drive,
and pulmonary stretch reflex contributed little to RSA. RSA is mainly driven by a central
feedforward mechanism in healthy humans. Peripheral reflexes may contribute as
modifiers of RSA.
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INTRODUCTION

Cardiovascular oscillations such as heart rate variability (HRV) can be used as a prognostic marker
for several diseases (Bigger et al., 1993; Task Force of the European Society of C and the North
American Society of Pacing E, 1996). The presence of HRVmay be an indication of a healthy heart. A
main component of short-term HRV is respiratory sinus arrhythmia (RSA) (Skytioti et al., 2017), a
well-known phenomenon describing inspiratory increases and expiratory decreases in heart rate
(HR) (Ludwig, 1847). The respiratory-related changes in vagal outflow give rise to RSA, which is
suggested to be elicited by several mechanisms and to have at least as many proposed functions.
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Two of the suggested contributors to RSA are the central
feedforward mechanism and pulmonary stretch reflexes (Anrep
et al., 1936a; Anrep et al., 1936b; Freyschuss and Melcher, 1975).
The debate about whether a central feedforwardmechanism is the
main contributor to RSA, or if peripheral reflexes such as
pulmonary stretch reflexes are the most important
determinant of RSA (Taha et al., 1985–1995), is by no means
settled (Elstad et al., 2018). Other peripheral mechanisms such as
arterial baroreflex and cardiopulmonary reflexes are also
suggested to contribute (Eckberg and Karemaker, 2009).

We investigated if central feedforward mechanisms or the
pulmonary stretch reflex are the most important contributor to
RSA in healthy humans. Many previous studies have been
performed in animals, which have many similarities to human
cardiovascular control mechanisms. We wanted to develop a
method that could differentiate the response between the central
respiratory drive and the peripheral pulmonary stretch reflex into
the amplitude of RSA.

Clinically assisted ventilation modes support respiration in
patients with respiratory failure who are able to initiate
inspiration themselves. In this setting, the central respiratory
drive is present; therefore, RSA amplitude is maintained (Cooper
et al., 2004). However, when the respiratory drive was diminished
by hypocapnia, RSA amplitude was significantly reduced (Cooper
et al., 2004). In our study, we thus employed a control-mode non-
invasive intermittent positive pressure ventilation (NIV) in order
to suppress the inspiratory drive with a normal lung inflation-
deflation cycle to maintain the pulmonary stretch reflex.

In this study, we reanalyzed data from a previous study to
investigate if we could separate the central control mechanisms
from pulmonary stretch reflexes on RSA in healthy humans. We
assumed that the experimental protocol with NIV would decrease
RSA substantially. Our hypothesis was that RSA is mainly driven
by central feedforward control mechanisms. If our hypothesis was
confirmed, RSA would decrease during NIV. We investigated
other cardiovascular variables known to influence RSA as well.

METHODS

Subjects
We recruited 22 subjects. Three did not complete the protocol
due to difficulties accepting the NIV protocol (two) or technical
problems with the blood pressure measurements. The 19
included in the analysis had a median age of 21 years (range
19–25), a height of 174 cm, a weight of 65 kg, a body surface area
of 1.8 m2, and performed exercise on a median of 5 h per week.
Ten of the participants were female. All subjects gave written
informed consent prior to the experiments. The experimental
protocol was preapproved by the regional ethical committee
(Ref.no: 2012/2251) and conformed with the Helsinki
declaration.

Subjects abstained from strenuous exercise and alcohol for at
least 24 h prior to the experiments. All subjects had a light meal
for at least 2 h and avoided all caffeine-contained beverages or
food for 12 h prior to the experiments. All subjects were healthy
and took no medications except contraceptives.

Experimental Protocol
Analyses from parts of these experiments have been published
previously (Elstad and Walløe, 2015; Skytioti et al., 2018). Only
the protocol relevant to this study is described here.

Subjects visited the lab facilities at least twice, with
familiarization with the recording equipment and NIV on the
first visit. During the experiments, the subject rested supine with
recording equipment attached and breathing through a
comfortable face mask (Respireo Primo F Non-Vented, Air
Liquide Medical Systems, Italy) covering both the nose and
mouth. NIV was given by VIVO50 (Diacor a/s, Oslo,
Norway), a ventilator fitted for home usage, and provided
intermittent positive pressure at an individually adjusted
frequency. We adjusted individually the inspiration time
[median 1.5 s (range 1.2–1.8 s)], inspiratory pressure
(minimum: median 6 cm H2O, maximum: median 15 cm
H2O), and low expiratory pressure (range 2–3 cm H2O).

The individual subject’s spontaneous breathing frequency was
determined on the experimental day. The subject breathed
spontaneously for a minimum of two minutes unaware of the
observation of their respiration. The recorded respiratory trace
was inspected for stability, and respiratory frequency was
estimated in breaths per min. The breathing rate was adjusted
upward to suppress the initiation of inspiration. The ventilator’s
frequency was then set to the subject’s individual respiratory
frequency.

We employed control-mode NIV. The subjects were trained
not to initiate inspiration themselves but to passively accept the
tidal volume and breathing frequency given by the ventilator.
This experimental method has reduced RSA substantially
compared to the physiologic setting of spontaneous breathing
due to the reduction in the central feedforward drive and the
elimination of the spontaneous inspiratory effort (Beda et al.,
2012; Elstad et al., 2015; Skytioti et al., 2017).

Instrumentation and Recordings
Respiratory chest movement (RE) was obtained using a belt
around the upper abdomen (Respiration and Body Position
Amplifier, Scan-Med a/s, Drammen, Norway). HR was
obtained from the duration of each RR interval of the three-
lead ECG signal (SD-100, Vingmed Sound, Horten, Norway). The
recording computer has a customized R detector. Finger arterial
pressure was recorded continuously from the middle-left finger
positioned at heart level (Finometer, Finapres Medical System,
Amsterdam, Netherlands). Beat-by-beat mean arterial blood
pressure (MAP) was calculated by numerical integration in
each RR interval by the recording computer. Cardiac stroke
volume (SV) was calculated by the incorporated Modelflow
(Bogert and van Lieshout, 2005). During supine rest, SV
measured by Modelflow is found to be in good accordance
with SV measured by ultrasound Doppler (Van Lieshout et al.,
2003). Cardiac output (CO) was calculated from the
corresponding pulse rate and SV estimated by the Finometer.
The signals were sampled at 100 Hz and transferred online to a
recording computer running a dedicated data collection and
analysis program (program for real-time data acquisition:
Morten Eriksen, Oslo, Norway). A capnograph (inbuilt in
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vivo50) registered the expiratory CO2 level and indicated if a
subject was hypoventilated or hyperventilated.

Signal Processing, Analysis, and Statistical
Tests
Every recorded signal from each experimental run was visually
inspected, and only time intervals with successful recordings with
stationarity were included in the subsequent analysis. Each
selected continuous sequence with acceptable measurements
had to last for at least ten respiratory cycles (Task Force of the
European Society of C and the North American Society of Pacing
E, 1996). The original recording was sampled at 300 Hz for ECG,
100 Hz for respiratory movements and SV, and beat-by-beat for
HR and MAP.

All subjects underwent 5 min of spontaneous breathing and
5 min of NIV in a randomized order. Each participant
contributed in 1-3 experimental runs, and the median value of
the response or the difference between the conditions is reported
as one value per participant. RSA was quantified as the area under
the curve within the high-frequency (HF, 0.15–0.4 Hz) interval of
the power spectrum of HR (REGIST3, a program for real-time
data acquisition: Morten Eriksen, Oslo, Norway, Figure 1). Power
density spectra were calculated by the fast Fourier transform
algorithm for each of the variables in the separate time intervals to
obtain variability at 0.15–0.4 Hz (Task Force of the European
Society of C and the North American Society of Pacing E, 1996).
Beat-to-beat signals (HR and MAP) were by interpolation
converted into equidistant time samples, resulting in 2n

samples as required for subsequent analysis. SV and
respiratory movements already had equidistant time samples.
The spectra were smoothed by a sliding Gaussian function with a
standard deviation of 0.01 Hz. The other variability was
calculated similarly as RSA, as previously published (Elstad,
2012; Elstad et al., 2015; Skytioti et al., 2017).

Peak respiratory frequency (RF) was determined from the
power spectra of the respiration signal. During analyses, we
estimated RF individually in each condition to test for
consistency between spontaneous breathing and NIV. The
analyzed frequency in each condition gave rise to individually
assessed RF ± 0.03 Hz band. The interaction between chosen
respiratory and cardiovascular variable pairs, RE-HR, MAP-HR,

and HR-SV, was examined by computing coherence and phase
angle from the cross-spectra at the peak RF ± 0.03 Hz. The
coherence provides a measure of coupling between two signals
in the range of frequencies examined. Coherence from a shorter
interval centered around the respiratory frequency is higher than
coherence in the classical 0.15–0.4 Hz band (Skytioti et al., 2017).
Phase angles were only estimated if the coherence between the
variable pair was ≥0.5.

We defined before analysis that a change in RSA of less than
10% between conditions could be considered as maintained RSA.
This was based on the established practice of clinically relevant
SV changes (Marik et al., 2011) and to ensure that a centrally
mediated RSA mechanism was of physiological relevance.

Medians and 95% confidence intervals were calculated by
Hodges–Lehmann’s estimate (Hollander and Wolfe, 1999) in a
statistical program (StatXact, Cytel Studio 10, Cytel Inc.,
Cambridge, MA, United States). Wilcoxon matched-pairs signed-
rank test was performed to test for statistical difference between the
two conditions (StatXact, Cytel Studio 12, Cytel Inc., Cambridge,
MA, United States). The level of significance was set to p < 0.05.

FIGURE 1 | Baseline recording of heart rate and power spectrum of high-frequency interval. Heart rate (HR) recording from one subject during spontaneous
breathing (left) and power spectra from the same recording (right). Respiratory sinus arrhythmia (RSA) is estimated as the area under the curve of the power spectra
(0.15–0.4 Hz).

FIGURE 2 | Pulmonary stretch input wasmaintained during non-invasive
ventilation. Variability in respiratory band stretch during spontaneous
breathing (left) and non-invasive ventilation (right). The triangles represent the
subject in each condition. The median is indicated by the horizontal bars.
The variability in the stretch of the respiratory band was similar during
spontaneous breathing and non-invasive ventilation.
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RESULTS

Nineteen volunteers completed at least one technically successful
experimental protocol with 5 min of spontaneous breathing and
NIV. NIV resulted in the same stretch of the respiratory band,
indicating that the input to the pulmonary stretch reflex was
similar in the two situations (Figure 2).

NIV showed minimal changes in the respiratory and
cardiovascular variables as compared to spontaneous breathing.
HR and CO decreased minimally but significantly, with 2 bpm and
0.3 l/min, respectively, from spontaneous breathing to NIV, while
MAP, SV, end-tidal CO2, and RF were unchanged (Table 1).

NIV reduced HRV and SVV by 60% and 75%, respectively,
while MAPV and COV were unchanged as compared to

TABLE 1 | Cardiovascular variables and respiratory frequency during spontaneous breathing and non-invasive ventilation.

Variable Spontaneous breathing Non-invasive ventilation

HR (bpm) 57.9 (53.0, 61.8) 55.5 ** (51.1, 60.0)
MAP (mmHg) 69.2 (64.5, 73.1) 68.8 (64.8, 72.9)
SV (ml) 89.1 (80.3, 98.1) 87.8 (80.2, 97.3)
CO (l/min) 5.18 (4.40, 5.85) 4.89* (4.20, 5.55)
RF (Hz) 0.24 (0.21, 0.28) 0.25 (0.23, 0.27)
End-tidal CO2 (kPa) (n = 10) 5.2 (4.7, 5.8) 4.9 (4.7, 5.3)

N= 19, calculated asmedian (95% confidence interval) by Hodges–Lehmann’s one-sample estimator. HR, heart rate; MAP,mean arterial pressure; SV, stroke volume; CO, cardiac output;
RF, respiratory frequency. Bold font indicates a statistically significant change in the variable from spontaneous breathing to non-invasive ventilation. * indicates p < 0.05 and ** indicates p <
0.0001.

TABLE 2 | Cardiovascular variability at high-frequency interval and coherences and phases at respiratory frequency.

Variability (0.15, 0.40 Hz) Spontaneous breathing Non-invasive ventilation

HRV (bpm2) 10.2 (6.1, 16.9) 3.9 ** (1.6, 7.3)
MAPV (mmHg2) 2.13 (1.56, 3.24) 1.98 (1.61, 2.54)
SVV (ml2) 16.0 (11.9, 22.4) 4.3 ** (3.2, 7.8)
COV ((l/min)2) 0.03 (0.02, 0.05) 0.02 (0.015, 0.035)
Coherences (C) and phase angles (P) (radians) (RF ± 0.03 Hz)
RE-HR C: 0.91 (0.85, 0.94) C: 0.81 * (0.74, 0.87)

P: 0.28 (−0.5, −0.13) P: 0.28 (−0.74, 0.0)
MAP-HR C: 0.33 (0.25, 0.42) C: 0.47 * (0.39, 0.55)

P: N/A P: N/A
HR-SV C: 0.91 (0.86, 0.95) C: 0.76 * (0.63, 0.84)

P: 2.83 (2.62, 3.11) P: 2.77 (2.13, 3.5)

N = 19, calculated as median (95% confidence interval) by Hodges–Lehmann’s one-sample estimator for spontaneous breathing and non-invasive ventilation; HRV, heart rate variability;
MAPV, mean arterial pressure variability; SVV, stroke volume variability; COV, cardiac output variability; MAP, mean arterial pressure; HR, heart rate; RE, respiration; SV, stroke volume.
Bold font indicates a statistically significant change in the variable from spontaneous breathing to NIV. * indicates p < 0.05 and ** indicates p < 0.0001. N/Ameans that phase angles are not
estimated as coherence is below 0.5.

FIGURE 3 | Respiratory sinus arrhythmia was decreased by non-invasive ventilation. (A) Five respiratory cycles during spontaneous breathing and non-invasive
ventilation from one subject. Recordings of respiratory stretch (bottom) and heart rate (HR, top) show that pulmonary stretch is maintained breath-by-breath during non-
invasive ventilation, while respiratory sinus arrhythmia is minimal during non-invasive ventilation. (B) Respiratory sinus arrhythmia is decreased for all nineteen subjects.
One circle represents one subject and lines indicate the individual’s decrease in heart rate variability (HRV) from spontaneous breathing (SB) to non-invasive
ventilation (NIV).
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spontaneous breathing (Table 2). All 19 subjects experienced a
reduction in HRV, but for three of the subjects, the decrease was
minimal during NIV as compared to spontaneous breathing
(Figure 3). The decrease in HRV from spontaneous breathing
to NIV was not significantly related to the decrease in SVV. There
was also no significant change in the variability of respiration
band stretch from spontaneous breathing to NIV.

RE and HR showed high coherence and in-phase relationship,
while HR and SV showed high coherence and inverse phase
relationship during both spontaneous breathing and NIV.
Coherence between MAP and HR was low during
spontaneous breathing. The coherence between the pairs (RE-
HR) and (HR-SV) decreased, while the coherence between MAP
and HR increased during NIV as compared to spontaneous
breathing (Table 2). The phase angles between the pairs did
not change between the two conditions.

DISCUSSION

We investigated if RSA is mainly driven by central respiratory
feedforward mechanisms or pulmonary stretch reflex. We
reduced the central respiratory drive by exposing the subjects
to NIV, which, on the other hand, maintained the cyclical
pulmonary stretch. We found that the central feedforward
mechanism was the main contributor to RSA in healthy
humans, as NIV reduced RSA by 60%. Several mechanisms
have been suggested to contribute to RSA and RSA is
proposed to have several functions (Hayano et al., 1996;
Sasano et al., 2002; Giardino et al., 2003; Ben-Tal et al., 2012;
Elstad et al., 2015).

Central Respiratory Drive During
Non-invasive Ventilation
The three-phase respiratory motor pattern is driven by balancing
excitation and inhibition within the ventrolateral respiratory
column and dorsal and pontine respiratory groups (Dhingra
et al., 2019). RSA is generated by the oscillation of firing in
cardiac vagal motor neurons, which again are inhibited during
inspiration and excited post inspiration (McAllen and Spyer,
1978; Farmer et al., 2016) (Baekey et al., 2008). Thus, RSA exhibits
a classical increase in HR during the inspiratory phase, with a
minimal HR during expiration (Cooke et al., 2006).

With our NIV method, we aimed at minimizing the central
respiratory drive during inspiration with maintained (or
increased) input from the pulmonary stretch receptors. Our
subjects were trained to accept the NIV machine to initiate
their breathing. The respiratory frequency of NIV matched the
subject’s individual spontaneous breathing frequency to avoid
effects from intrinsic oscillation. During NIV, RSA amplitude was
decreased in our present study. We interpret this at our method,
which overrides the subject’s central inspiratory drive and also
reduced the cardiac vagal motor neurons’ inspiratory inhibition
and post-inspiratory excitation, leaving less RSA.

NIV can also support inspiration, with positive pressure
initiated by the subject’s initiation of inspiration. If NIV was

used in this manner, there would be maintained central
inspiratory drive combined with increased pulmonary stretch,
with maintained RSA as a result (Cooper et al., 2004).

There are several different methods to reduce RSA in healthy
humans, with different potentials and limitations. While
choosing the method for this study, we aimed for a method
that was acceptable for the healthy subjects, non-invasive,
repeatable, and available in the non-clinical laboratory. As
RSA is driven by variation in vagal activity, a commonly used
modifier of RSA is blockade of the vagal outflow through drugs
(Toska and Eriksen, 1993; Elstad et al., 2001; Ogoh et al., 2005).
Due to the pharmacological half-life of many drugs, some of these
drugs need continuous infusion with clinical observation of their
effect to ensure stable conditions. A common side effect is also a
large increase in HR with circulatory effects. Another semi-
invasive method of modifying RSA is to elevate HR artificially
by electrical pacing (Hayano et al., 1996; Taylor and Eckberg,
1996; Sin et al., 2010). This also increases HR and affects
circulatory regulation mechanisms such as the cardiac
baroreflex. None of these methods will explore the central
feedforward mechanism behind RSA.

Pulmonary Stretch Reflex and Other
Peripheral Reflexes as Input to Respiratory
Sinus Arrhythmia
In our study, we maintained the stretch of pulmonary receptors
during the respiratory cycle with NIV, but RSA was significantly
reduced. We interpreted this finding as the central respiratory
drive is the main contributor to RSA. However, in a minority of
the subjects (three out of 19), we observed less than a 10%
decrease in RSA, suggesting that in a subset, pulmonary
stretch reflex may contribute substantially to RSA or at least
maintain RSA. We aimed at assuring that NIV elicited a
physiological lung stretch in the subjects, so we do not know
the consequence of excessive lung stretch on the amplitude of
RSA (Schelegle and Green, 2001). We also observed that end-tidal
CO2 was unchanged. The subjects were trained on the use of NIV
several times before the experiment. Two subjects were not able to
accept NIV, and one difficulty was accepting the NIV breathing
frequency. The included subjects all participated in the
experimental protocol without discomfort or indications of
increased tidal volumes.

In this study, there was no change in either MAP or MAP
variability. We thus propose that the arterial baroreflex had no
change in input and did not contribute to our results. Porta et al.
have found that respiration affects the cardiac baroreflex pathway
by reduction of baroreflex sensitivity (Porta et al., 2000; Porta
et al., 2012; Porta et al., 2022). Similarly, when baroreceptor
stimuli occur during inspiration, the respiratory gate renders the
vagal cardiac motoneuron unresponsive (Eckberg, 2003). Our
finding that RSA is mainly driven by central respiratory control
has an impact on the estimation of cardiac baroreflex sensitivity.
When cardiac baroreflex sensitivity is estimated from
spontaneous oscillations by spectral analysis without
accounting for the central feedforward component of RSA, the
baroreflex sensitivity may be overestimated. This point needs
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further investigation in coming studies. On the other side, in our
study, SVV was also reduced by NIV similar to HRV. Since the
arterial baroreflexes may respond to changes in stretch produced
by stroke volume (Charkoudian et al., 2005), SVV may have
influenced a respiratory-related signal in the arterial
baroreceptors, which again may have affected our results.
Similarly, cardiopulmonary reflexes respond to changes in
volume and pressure in the right side of the heart and
pulmonary circulation. We cannot rule out that
cardiopulmonary reflexes affected RSA in our study.

Limitations
The subjects’ ability to tolerate NIV while awake may have
influenced our results. We found that three out of 19 had
maintained RSA (<10% decrease in RSA) during NIV,
indicating that in a small proportion of subjects, pulmonary
stretch reflex maintained RSA. Anecdotally, one of the subjects
with maintained RSA was the only one with an inverse phase
angle between respiration and HR changes (Freyschuss and
Melcher, 1975) and may indicate a different RSA generation in
that subject. Another possibility is that the subjects with
maintained did not fully collaborate with the NIV and kept
their central drive to respiration (Cooper et al., 2004). The
subjects reported different experiences with NIV. The majority
experienced breathing with support as comfortable, while a few
of the participants reported the procedure as uncomfortable.
We did not record which subjects were uncomfortable
during NIV.

We reasoned that there were probably minimal tidal volume
changes as there was neither a significant change in respiratory
frequency nor end-tidal CO2. The stretch band has clear
limitations when estimating changes in tidal volumes
particularly if abdominal breathing is increased. Due to the
same circumstances, the estimation of respiratory variability
based on chest movement has several limitations. Future
experimental protocols need to look into the effect of tidal
volume change on RSA.

The time intervals used for the variability analysis varied in
length and number of respiratory cycles contained. This may
theoretically influence the result, however, each subject served as
their own control, and any statistical analysis was performed on
the change for that individual between conditions.

Clinical Implications
Intermittent positive pressure ventilation is a common clinical
intervention in patient groups with respiratory, circulatory, or
neurological diseases. Increased knowledge of the circulatory
effects of ventilation support will benefit the patient
population and may help in the development of individualized
interventions. Modern ventilators allow the patient to initiate
their own breathing, a treatment that will allow more
physiological cardiorespiratory interactions, and this might be

beneficial for long-term treatments. Future research may
investigate a combination of clinically assisted ventilation with
tailored breathing frequency, tidal volume, and inspiratory:
expiratory ratio to meet the patient’s individual needs for
cardiorespiratory support.

CONCLUSION

Respiratory effort drives RSA in healthy humans, while the
pulmonary stretch reflex contributes little to RSA. We used
NIV to maintain the pulmonary stretch during the respiratory
phases and reduce the central respiratory drive in healthy
humans. The arterial baroreflex and cardiopulmonary reflexes
have the potential to modify respiratory sinus arrhythmia, but
they are not the main contributors.
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