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a b s t r a c t 

Increasing evidence suggests a role of the gut microbiome in the development of colorectal cancer (CRC) and 
that it can serve as a biomarker for early diagnosis. This review aims to give an overview of the current status 
of published studies regarding the microbiome as a screening tool for early CRC detection. A literature search 
was conducted using PubMed and EMBASE in August 2022. Studies assessing the efficacy of microbiome-derived 
biomarkers based on noninvasive derived samples were included. Not relevant studies or studies not specifying 
the stage of CRC or grouping them together in the analysis were excluded. The risk of bias for screening tools 
was performed using the QUADAS-2 checklist. A total of 28 studies were included, ranging from 2 to 462 for 
CRC and 18 to 665 advanced adenoma patient inclusions, of which only two investigated the co-metabolome as 
biomarker. The diagnostic performance of faecal bacteria-derived biomarkers had an AUC ranging from 0.28-0.98 
for precursor lesions such as advanced adenomas and 0.54-0.89 for early CRC. Diagnostic performance based on 
the co-metabolome showed an AUC ranging from 0.69 – 0.84 for precursor lesions and 0.65 – 0.93 for early CRC. 
All models improved when combined with established clinical early detection markers such as gFOBT. A high 
level of heterogeneity was seen in the number of inclusions and methodology used in the studies. The faecal and 
oral gut microbiome has the potential to complement existing CRC screening tools, however current evidence 
suggests that this is not yet ready for routine clinical use. 
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Colorectal cancer (CRC) is the third commonest cancer worldwide
1] and a leading cause of cancer-associated deaths. Despite this, CRC is
ften treatable with a high overall survival when detected and treated
n its early stages [2] . This has led to the formation of global screen-
ng programs for CRC [3] , which typically employ faecal biomarkers
ike the guaiac faecal occult blood test (gFOBT), followed by endoscopy
4] . The gFOBT, is a fast, noninvasive and inexpensive test, however,
ts diagnostic sensitivity ranges from 7 to 21% for the detection of early
ancer (Stage 0 and I) and is unsuitable for the detection of complex
Abbreviations: 16S rRNA, 16S ribosomal RNA gene sequencing; AUC, Area Under t
ancer; FIT, Faecal Immunochemical Test; GC-MS, Gas-Chromatography Mass Spectro
nit; qPCR, quantitative real-time Polymerase Chain Reaction; QUADAS, Quality Asse
iquid Chromatography Mass Spectrometry. 
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denomas [ 5 , 6 ]. Faecal immunochemical test (FIT) offers a slight im-
rovement in its diagnostic yield for early cancer (maximum sensitivity
f 25%), however, with higher associated costs [7] . The FIT-DNA test
or stool DNA test), a test that combines the FIT with DNA markers asso-
iated with CRC, shows a further increasement in sensitivity, however at
he expense of a decrease in specificity, resulting in more false positive
esults [8] . 

Blood-based biomarkers such as Septin 9 and protein-based mark-
rs (e.g. CEA, TIMP-1 etc.) have also failed to provide diagnostic utility
or early detection [9] . Novel data from recent trials suggest that cir-
ulating DNA (cDNA) biomarkers for colorectal cancer have diagnostic
he Curve; CE-MS, Capillary Electrophoresis Mass Spectrometry; CRC, Colorectal 
metry; (g)FOBT, guaiac Faecal Occult Blood Test; OTU, Operational taxonomic 
ssment of Diagnostic Accuracy Studies; U(H)PLC-MS, Ultra-(High)-Performance 
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t  
nd prognostic utility, particularly for the stratification of chemothera-
eutic strategies [10] and the prediction of cancer recurrence. However,
espite the promise of these approaches for early detection, very limited
ata exist for the identification of high-risk adenomas. 

Increasing evidence points to the gut microbiome as a critical medi-
tor of adenoma formation and CRC risk through parallel processes of
o-metabolic dysfunction [11] , inflammation, epigenetic programming
nd DNA damage [12] . Multiple studies have identified the presence of
ntra-tumoural bacteria in precursors lesions of cancer [13–16] such as
usobacterium nucleatum, Escherichia coli , and Bacteroides fragilis [17] . A
oss of microbial diversity and increases in the abundance of both mu-
osal and faecal pathobionts can distinguish healthy persons from pa-
ients with CRC [18–20] . Importantly, microbiome changes can already
e observed in very early stages of CRC [21] . It has therefore been hy-
othesised that the microbiome has value as a biomarker for early cancer
etection or to identify those individuals at risk of this disease [22] . This
ystematic review aims to provide a comprehensive overview of the cur-
ent state of microbiome-derived biomarkers, based on their genes and
heir products, for early CRC detection. 

ethods 

earch strategy 

A literature search was carried out from inception to the 3 rd of Au-
ust 2022, using the databases PubMed and EMBASE (via OVID). A
ombination of the following terms was used: colorectal cancer, screen-
ng/early detection, and microbiome. No filters or restrictions were ap-
lied. Literature was reviewed following the Preferred Reporting Items
or Systematic Reviews and Meta-Analyses (PRISMA) guidelines [23] .
he complete search strategy can be found in Supplementary Table S1.

tudy selection 

Results were screened independently by two authors (F.Z. and H.S.)
ased on title and abstract for relevance and assessment for inclusion
ased on full text. Articles were evaluated via Rayyan, developed by
atar Computing Research Institute, a platform that allows blinded as-

essment of articles based on title, abstract, and key-words by multiple
eviewers [24] . Disagreement of articles screened for possible eligibil-
ty based on title and abstract was resolved by discussion. Conflicts over
he inclusion of articles for assessment following full-text screening were
esolved by consulting a third reviewer (J.K.). If studies used the same
atasets, the study most appropriate to our study was selected. 

ligibility criteria 

Articles were included for assessment if they assessed the efficacy
nd/or use of microbiome-derived biomarkers for early CRC detection,
ncluding precancerous lesions: complex adenoma > 1 cm, high-grade
ysplasia and early cancer: carcinoma in situ (CIS), malignant polyps
nd stage 0, I or II with N0, M0, according to the American Joint
ommittee on Cancer (AJCC) TNM Classification of Malignant Tumors
25] . Articles were excluded based on: (I) viral, fungal or solely human-
erived biomarkers; (II) investigating prognostic biomarkers; (III) dis-
ase other than CRC; (IV) advanced stage CRC; (V) inflammatory bowel
isease (IBD)-related CRC or CRC as part of a syndrome; (VI) in vitro or
nimal studies; (VII) language other than English; (VIII) small sample
ize ( < 10); (IX) no full text available; (X) case report or case series; (XI)
eview; (XII) no clear distinction of the CRC stages assessed; (XIII) all
RC stages grouped in the analysis. 

Since this study investigates the use of microbial-derived biomarkers
s a screening tool for the early detection of CRC, all sorts of invasive
creening studies, for example, studies assessing microbiome composi-
ion of the mucosal tissue based on biopsies, were excluded. Studies
2 
ssessing saliva, urine and blood were regarded as minimally invasive
rocedures and were included. 

ata extraction and assessment 

Extraction of data from the eligible articles was performed indepen-
ently by the two authors (F.Z. and H.S.). Confirmation of the extracted
ata was performed by a third author (K.Z.). Data extraction included
rimarily: year of publication, country, number of participants, age, per-
entage of male, stage of disease, sample origin, biomarker found, tech-
ique used for discovery, diagnostic performance of studied biomarker
based on sensitivity, specificity or area under the curve (AUC)) and, if
escribed, comparison with currently used screening tools (e.g. gFOBT,
IT). If any of the data was not described directly, additional informa-
ion was used to calculate the necessary values if possible. Data was
ounded off at either two decimals (AUC) or no decimals (sensitivity,
pecificity). If stated, specific bacteria or their molecular products and
unctions per cohort and methodology were reported. 

omparison with healthy controls 

Comparison with healthy controls was based, if applicable, via
olonoscopy and defined as subjects without prior gastro-intestinal dis-
ase(s) or colonoscopic findings with the exception of a few polyps
 < 5mm) present. 

ssessment 

Assessment of the strength of overall data regarding individual
iomarkers based on their risk of bias and applicability was undertaken
sing the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Stud-
es checklist) [26] . 

Included studies were independently evaluated for the risk of bias
nd applicability by two authors (F.Z. and H.S.). The risk of bias was as-
essed across four domains: patient selection, index test, reference stan-
ard, flow and timing (i.e. an appropriate interval between index test
nd reference as well as the inclusion of all patients in the analysis). 

Concerns regarding applicability were assessed on three domains:
atient selection, index test and reference standard. Signalling questions
f all domains were tailored for this review. Based on these questions,
he risk of bias and applicability was classified as low, high or unclear
or each domain. 

esults 

tudy selection 

A literature search was performed using the databases PubMed and
MBASE (via OVID). A total of 3859 records were retrieved, 1427
rom PubMed and 2432 from EMBASE. After removing duplicates, 3006
ecords were screened based on title and abstract, resulting in 513
ecords being evaluated for eligibility based on full-text screening. A
otal of 69 studies evaluating microbiome-derived indicators for early
RC diagnosis were again carefully screened, resulting in another 41
ecords to be excluded based on: a lack of CRC stage distinction (n = 8),
ll stages grouped together in the analysis (n = 11), screening based
n tumour tissue (n = 2), meta-analysis or usage of the same dataset in
nother article already included (n = 19) and insufficient data reported
n = 1). A total of 28 studies remained to be included in this systematic
eview. Study selection and exclusion were based on the PRISMA guide-
ines [23] . See Fig. 1 for a detailed overview of the selection process. 

tudy characteristics 

For microbiome-derived biomarkers based on bacteria for the de-
ection of early CRC, 26 articles were found and two articles were
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Fig. 1. PRISMA flow diagram of exclusion and included of studies. 
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ound investigating the co-metabolome solely as a biomarker. Seven-
een of the studies were conducted in East Asia [ 19 , 27-42 ], one in
outh Asia [43] , eight in Europe [44–51] and two in North America
 52 , 53 ]. The number of inclusions of these studies ranged between
 and 462 for CRC, 18 and 665 for adenoma and/or polyp and 24
nd 788 for healthy controls. Regarding the stage used in the arti-
les for early CRC detection, five studies were based on stage I or II
 29 , 30 , 37 , 40 , 50 ] and two used stage 0 [ 19 , 38 ]. The other studies in-
estigated a precursor lesion of CRC, either advanced adenomas or
olyps (AP) [ 28 , 31-35 , 39 , 41 , 44-49 , 51-53 ]. Only five articles evalu-
ted both precursor lesions of CRC and stages I and II [ 27 , 36 , 38 , 43 , 54 ].
ll articles used faecal samples, except for four: two studies used the
icrobiota collected from the oral mucosa instead of or next to fae-

al samples [ 31 , 46 ] and two used serum-based samples next to faecal
amples [ 36 , 54 ]. Whenever possible, the mean age and percentage of
en per group were extracted. The reported mean age ranged from 59

o 73 in the CRC group, from 48 to 68 in the AP group and from 49
o 67 in the healthy controls. The percentages of men in each group
anged from 32 to 67, 19 to 78 and 17 to 56 per cent for CRC, AP and
3 
ealthy controls, respectively. See Table 1 for the study characteristics as
ell. 

iagnostic performance of bacteria-derived biomarkers 

The overall performance of bacteria-derived biomarkers for the de-
ection of precursor lesions showed an AUC ranging from 0.28-0.98, a
ensitivity ranging from 18-100 per cent and specificity ranging from
9-97 per cent. Notably, the high AUC of the overall range for precur-
or lesions was determined by two studies that used oral mucosa instead
f or in conjunction with faecal samples. These studies by Flemer et al.
nd Zhang S. et al. [ 31 , 46 ], reported the highest AUC found of 0.98
95% CI 0.95-0.98), with a sensitivity of 88 per cent and AUC of 0.95
95% CI 0.91-0.99), respectively, suggesting a high accuracy for the use
f microbiome-derived biomarkers based on the oral mucosa for precur-
or lesions. The same study by Flemer et al. evaluated the performance
ased solely on bacteria from faecal samples with a reported AUC of
.87 (no 95% CI available) [46] . 
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Table 1 

Study characteristics. 

Author, year Country Sample Examined samples (CRC/AP/HC) 1 CRC stage according to 
TNM ((0) 3 /I/II/III/IV) 

(n) Age (mean 
( ± SD)) 2 

Gender, m (%) 

Bacterial taxa 

Zhang Y, 2021 [32] China Faeces N/A/268/788 N/A/61.7 (6.2)/59.9 
(6.2) 

N/A/74/48 N/A 

Zhang S, 2020 [31] China Oral mucosa 161/34/58 59.2 (10.7)/51.8 
(7.7)/50.7 (11.3) 

67/59/53 24/66/60/11 

Yachida, 2019 [19] Japan Faeces 258/67/251 + 40 
with history of 
colorectal surgery 

0 64.8 (7.5), I/II: 63.8 
(9.3), III/IV: 59.1 (11) 
/63.2 (9.1)/ 64.7 
(10.6) + 59.2 (12.3) 

0 62, I-II 66, III-IV 
58/72/28 + 33 

73/75/36/52/22 

Yao, 2021 [30] China Faeces 206/ N/A /112 62.2 (8.6)/ N/A /56.2 
(12.8) 

61/ N/A /56 98/47/49/12 

Xie, 2017 [29] China Faeces 445/288/304 I-IV 63.5 (10.2), I-II 64 
(8.9)/61.9 (8.7)/ 60.1 
(8.4) 

I-IV 61, I-II 65/63/ 
55 

I/II: 142; III/IV: 303 

Wei, 2022 [28] Taiwan Faeces 20/67/60 + 40 COB 4 64 (43–88)/48 (39–60)-/ 
61 (31–72) + 52 (35–63) 

35/42/41 + 45 Not distinguished 

Mo, 2021 [27] China Faeces 108/18/36 58 (26-86) of n = all 58 of n = all 20/39/37/12 
Liu, 2021 [41] China Faeces 60/37/42 64.1 (11.1)/66.5 

(3.5)/61.0 (7.9) 
32/19/31 Not distinguished 

Liang, 2017 [40] China Faeces 170-200 5 /97/33-36 5 67.2 (11.6)- 63.4 
(9.6)/60.5 (4.7)/59.3 
(5.8)-53.2 (12.2) 

59-52/52/39-28 Stage subset (n = 111) 
17/42/43/9/111 

Liang, 2021 [39] China Faeces 210/115 + 86 6 /265 67.0 
(11.3)/61.1 (6.8) + 60.2 
(5.0)/58.1 (7.7) 

59/57 + 57/42 31/68/73/28 

Konishi, 2022 [38] Japan Faeces 462/240/317 56/ - /66 52 / - /53 68/107/77/130/44 
Guo, 2018 [37] China Faeces 215/ N/A /156 61.2 (12.3)/ N/A / 48.6 

(10.3) 
55/ N/A / 45 38/59/75/43 

Gao, 2022 [36] China Faeces 35/31/34 66.1 (10.8)/64.4 
(8.4)/57.8 (5.7) 

57/58/17 3/21/9/2 

Goedert, 2015 [47] China Faeces 2/20/24 65 (61–69) of n = all N/A/60/29 1/0/1/0 
Gao, 2020 [35] China Faeces 55/85/110 N/A /63.1 (12.8)/65 

(10.4) 
N/A /63/29 N/A 

Coker, 2022 [34] China Faeces 118/140/128 73.2 (10.4)/65.8 
(5.5)/64 (6.8) 

54/59/46 N/A 

Ai, 2017 [33] China/France Faeces 42/47/52 62.9 (1.5)/58.9 
(1.5)/52.3 (1.5) 

43/51/40 I/II 12 III/IV 30 

Rezasoltani, 2018 [43] Iran Faeces 20/42/31 60.9 (13.5)/58.6 
(13.5)/59.8(17) 

56/55/52 20/0/0/0 

Zeller, 2014 [50] France Faeces 53/42/61 70.5-65.0 ∗ /62.0- 
68.0 ∗∗ /63.0 

55/71/46 15/7/10/21 

Young, 2021 [49] UK Faeces 430/665/666 7 68.1 (5.0)/66.3 
(4.7)/66.6 (4.3) 

67/65/52 Not distinguished 

Tarallo, 2019 [48] Italy Faeces 29/27/24 Not disclosed Not disclosed Not distinguished 
Flemer, 2017 [46] Ireland Faeces 69/23/62 65.3 (10.8)/60.4 

(13.4)/63.9 (11.1) 
67/78/51 Not distinguished 

Oral mucosa 45/21/25 65.7 (10.9)/59.2 
(15.1)/51.5 (12.4) 

56/71/38 

Eklöf, 2017 [45] Sweden Faeces 39/134/65 N/A 51/60/54 2/21/8/7 
Clos-Garcia, 2020 [44] Spain Faeces All: 99/69/77 

Analysis: 83/62/74 
70.2/68/65 (all) 62/60/45 (all) 3/22/22/30/6 (analysis) 

Zackular, 2014 [53] North America Faeces 30/30/30 59.4 (11.0)/ 
61.3(11.1)55.3 (9.2) 

70/60/37 Not distinguished 

Baxter, 2016 [52] USA/Canada Faeces 120/198/172 60 (median, range 29-89) Not disclosed Not distinguished 
Co-metabolome (different cohort) 

Yachida 2019 [19] Japan Faeces 178/45/149 + 34 
with history of 
colorectal surgery 

0 63.7 (8.5), I/II 63.6 
(8.8), III/IV59.5 
(11.5)/64.4 (8.5)/64.1 
(10.9) + 60.6 (11.9) 

0 50, I-II 65, III-IV 
53/ 78/58 + 47 

30/51/29/44/24/34 

Gao, 2022 [36] China Serum 35/31/34 66.1 (10.8)/64.4 
(8.4)/57.8 (5.7) 

57/58/17 3/21/9/2 

Chen, 2022 [54] China Serum Faeces 84/19/53 58 (7.2) 3 /53.8 (7.3) 72 3 /38 8/9/18/20/19 (29 no 
record) 

Bosch, 2022 [51] the Netherlands Faeces N/A /19/19 N/A /73 (6.1)/68 (10.4) N/A /90/68 N/A 

1 CRC = colorectal cancer, AP = adenoma and/or polyp, HC = healthy controls 
2 Unless differently defined 
3 Stage 0 = Intramucosal carcinoma/polypoid adenomas with high-grade dysplasia, pTis/Stage 0 CRC (as defined by Yachida et al. [19] ) 
4 Colonic occult blood loss 
5 HC and CRC based on two separate cohorts 
6 Asymptomatic and symptomatic patients with AP. Analyses used in this review only on asymptomatic patients. 
7 Normal and non-neoplastic colonoscopy grouped together 
∗ Divided in stage I/II and III/IV, 
∗∗ Divided in small and large adenoma 

4 
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For early stages of CRC, the overall performance of solely bacteria-
erived biomarkers, based on AUC as well, showed a range from 0.54
o 0.89 and sensitivity ranging from 60 to 100 per cent. The studies
f Yachida et al. and Konishi et al. were the only ones that included
tage 0 in their analyses and reported an AUC of 0.73 and 0.54, respec-
ively [ 19 , 38 ]. For stage I, an AUC range between 0.74 and 0.97 was
een, with a sensitivity ranging from 90 to 100 per cent, and stage I/II
r only stage II showed a range between 0.82-0.89, with a sensitivity
anging from 60 to 100 per cent. Although some articles demonstrated
ery high performance in patients with stage I, performance generally
ncreased with increasing stage. The study of Rezasoltani et al. reported
he highest performance, with an AUC of 0.97 (no 95% CI available) and
 sensitivity and specificity of 100 and 77, respectively [43] . This was
ased, however, on a very small sample size of only 20 patients with
tage I CRC combined with 43 patients with adenomas. 

Most panels were based on multiple bacteria ranging from single up
o 50; however, no better performance was seen for the detection of
recursor lesions or CRC when more bacteria in the panels were ap-
lied. However, the performance of bacterial panels was generally en-
anced when combined with other characteristics such as body mass
ndex (BMI), age, sex and ethnicity. Likewise, the addition of other fae-
al markers like FIT or gFOBT strengthened the accuracy of the models
verall. The use of only two bacteria ( Fusobacterium nucleatum and Parvi-

onas micra ) combined with FIT, faecal DNA methylation (i.e. Septin9,
DRG4, BMP3) or mutation markers (i.e. KRAS, BRAF, PI3KCA) resulted

n a reported increase in AUC from 0.57 to 0.73 for the detection of pre-
ursor lesions when compared to the bacterial model alone [27] . How-
ver, sensitivity and specificity of respectively 39 and 83 for only the
acteria model changed in respectively 28 and 94 when combined. Liu
t al. added Fusobacterium nucleatum and pks + Escherichia Coli to the
FOBT and two blood-based markers (carcinoembryonic antigen (CEA)
nd carbohydrate antigen (CA) 19-9) with a reported AUC of 0.85 (95%
I 0.57-1.0) [41] . Again, this was accompanied by a drop in sensitivity

rom 91 per cent based on a measurement of bacteria alone to 67 per
ent when combined. However, there was an increase in specificity from
5 to 90 per cent for the combined model. CEA as an additional marker
as also used by Xie et al. with FIT and two bacteria ( Clostridium symbio-

um and Fusobacterium nucleatum ) with a reported AUC of 0.82 (95% CI
.77–0.87) [29] . A summary of the performance capacity of each study
s outlined in Table 2 . 

nalytical methodology of bacteria-derived biomarkers 

Biomarkers in faecal samples for early CRC detection were typically
ased on the relative abundance of bacteria. Relevant bacteria were ei-
her preselected from relevant literature or associations were discovered
ith selected bacteria between the CRC, precursor lesions and healthy

ontrols. (See Supplementary file S4 for the bacteria and the analyt-
cal methods used for the detection of early CRC). For the detection
f these bacteria, different techniques were used. 11 articles used 16S
RNA gene sequencing [ 28 , 31-33 , 38 , 44 , 46 , 47 , 49 , 52 , 53 ], whereas nine
sed qPCR [ 27 , 29 , 30 , 37 , 39-41 , 43 , 45 ] and six used metagenomic shot-
un sequencing [ 19 , 34-36 , 48 , 50 ]. Universal primers were used in most
rticles using 16S rRNA gene sequence analysis. However, a large range
as seen in the variable region used for the analysis per study, ranging

rom V1 to V4. For qPCR, different primers were sometimes used (See
upplementary file S4). It is important to note that studies using 16S
ere only capable of giving bacterial taxa, whereas studies employing
PCR or metagenomics were able to identify or use bacteria on their
pecies level for the detection of early CRC. Furthermore, between the
ncluded articles, a high heterogeneity was seen between sample collec-
ion methods as well as processing kits for DNA extraction which (see
upplementary Table S2 for a summarised description of sample collec-
ion and DNA processing kits per article). 

Statistical approaches for the classification models for the predic-
ion of early CRC were based on different models. Besides simple lo-
5 
istic regression models (LRM) [ 27 , 29 , 30 , 35 , 37-41 , 43 , 45 ], a random
orest model (RFM) was often used [ 28 , 31 , 34 , 36 , 47-49 , 52 ], followed
y LASSO logistic regression models [ 32 , 44 , 50 ] and Bayesian meth-
ds [ 33 , 53 ]. Two studies even used two classification models [ 19 , 46 ].
nly the study by Ai et al. investigated on forehand the best classi-
cation model, comparing Bayesian methods, RFM, LRM, F measure
nd Matthews correlation coefficient, finding the best model based on
ayesian methods [33] . 

icrobiome-derived biomarkers based on co-metabolome 

The metabolome may provide an alternative source of novel
iomarkers. The metabolome, defined as the collection of all small low-
olecular-weight compounds ( < 1kDa) in a biological sample, is a time-
ependent, multiparametric analysis of the functional output of a bio-
ogical system and its exposome [55] . The metabolome expression will
herefore vary with subtle or early changes in a given disease state
 56 , 57 ]. The co-metabolome, defined as the set of compounds which
re the product of more than one genome interacting in a symbiotic
ystem, is of particular pertinence in the diagnosis of colorectal can-
er [55] . Five articles investigated the diagnostic performance of the
aecal co-metabolome next to, or in conjunction with, bacteria-derived
iomarkers [ 19 , 28 , 34 , 36 , 44 ]. Only two articles were found that solely
nvestigated the diagnostic performance of the co-metabolome for the
etection of early CRC [ 51 , 54 ]. The overall performance for precursor
esions based on the co-metabolome reported a range in AUC from 0.69
o 0.84, whereas stage I and II of CRC ranged between 0.65 to 0.93.
hen et al. demonstrated the best performance for precursor lesions
nd stage I and II of CRC of 0.84 (sensitivity 63 per cent, specificity 85
er cent) and 0.93 (sensitivity 88 per cent, specificity 85 per cent), re-
pectively, based on a model of eight gut-microbiome associated serum
etabolites (GMSM-panel) in a matched faeces and serum cohort [54] .
heir panel, based on bacterial metabolism, emphasised on secondary
ile acids and described an upregulation in serum concentrations of un-
onjugated primary bile acids (CA) and deoxycholic acid (DCA) in CRC
atients (see Supplementary file S4 for all specific metabolites used).
nterestingly, the study of Yachida et al. [19] reported an alteration
n bile acid metabolism as well, with a significant increase in DCA in
atients with stage 0 CRC. These findings suggest a role for bacterial
etabolism, especially bile acid metabolism, in early CRC. Four arti-

les described the performance of metabolites compared with bacterial
pecies. Yachida et al. [19] reported an increase in performance, based
n AUC, from 0.73 based on 29 bacterial species and 0.65 based on
etabolites to 0.78 when combined. Gao et al. [36] , interestingly the

nly study who looked solely at the serum metabolomic profile instead
f the faecal metabolomic profile, reported an AUC of 0.91 when com-
ined with bacterial species for the detection of precursor lesions. Coker
t al. [34] reported an AUC of 0.69 based on metabolites and an AUC
f 0.84 based on 14 bacterial species. They reported an AUC of 0.88
hen these 14 species were combined with the two most distinctive
etabolites (L-Asparagine and Phenyllactic acid). Finally, the study of
los-Garcia et al. [44] reported a low AUC of 0.30 when metabolites
nd bacteria were combined. This study showed the lowest AUC as well
ased only on bacteria of 0.28. A summary of the results is presented in
able 3 . 

nalytical methodology of co-metabolomic markers 

The methods used to detect metabolites were all based on mass
pectrometry (MS), with variations in chromatography techniques.
ost used liquid chromatography MS [ 28 , 36 , 44 , 51 , 54 ], and only

ne used gas-chromatography GS-MS [34] , and one applied capil-
ary electrophoresis MS [19] . Most studies investigated the faecal co-
etabolome [ 19 , 28 , 34 , 44 , 51 ], with only two studies investigating the

erum co-metabolome either solely or in conjunction with the faecal
etabolome [ 36 , 54 ]. 
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Table 2 

Included studies assessing microbiome-derived biomarkers for early CRC detection 

Reference Comparison of interest 1 Biomarker Performance for early CRC detection Analytical method 2 

AUC (95% CI) Sens/spec 

Zhang Y, 2021 [32] AP vs HC 13 OTU 3 0.61 (0.55–0.66) 34 / 80 16S 
AP vs HC 13 OTU + FIT 0.64 (0.58–0.69) 41 / 80 
AP vs HC 13 OTU + FIT + APCS 4 0.71 (0.65-0.75) 46 / 80 

Zhang S, 2020 [31] AP vs HC 5 OTU 0.95 (0.91-0.99) 16S 
Yachida, 2019 [19] Stage 0 vs HC 29 species 0.73 Metagenomics 

16 KO genes 0.75 
29 species + 24 metabolites + 16 KO 
genes 

0.78 

Yao, 2021 [30] Stage I/II vs HC 5 species N/A I 62 / -, II 72 / - qPCR 
Stage I/II vs HC 5 species + FIT N/A I 70 / -, II 89 / - 

Xie, 2017 [29] Stage I/II vs HC Fusobacteria nucleatum 0.59 (0.54-0.64) qPCR 
Clostridium symbiosum 0.73 (0.68-0.77) 
Clostridium symbiosum + FIT 0.81 (0.75-0.86) 
Clostridium symbiosum and 
Fusobacteria nucleatum + FIT + CEA 

0.82 (0.77-0.87) 

Wei, 2022 [28] AP vs HC 5 OTUs 0.71 (0.63-0.80) 16S 
Mo, 2021 [27] AP vs HC Fusobacterium nucleatum and 

Parvimonas micra 

0.57 39 / 83 qPCR 

Fusobacterium nucleatum and 
Parvimonas micra + DNA 
methylation/mutation 5 + FIT 

0.73 28 / 94 

Stage I/II Fusobacterium nucleatum and 
Parvimonas micra + DNA 
methylation/mutation + FIT 

N/A I 60 / -, II 85 / - 

Liu, 2021 [41] AP vs HC Fusobacterium nucleatum 0.74 (0.56-0.91) 71 / 65 qPCR 

pks + Escherichia coli 0.82 (0.64-0.98) 91 / 75 
Fusobacterium nucleatum, pks + 
Escherichia 

coli + CEA + CA19-9 + FOBT 

0.85 (0.57-1.0) 67 / 90 

4 species + FIT N/A 49 / 81 
Liang, 2017 [40] Stage I/II vs HC 4 species + FIT N/A I 77 / -, II 100 / - qPCR 

Liang, 2021 [39] AP vs HC 4 species 0.67 (0.62-0.72) 39 / 83 qPCR 
4 species + FIT N/A 49 / 81 

Konishi, 2022 [38] AP vs HC 50 OTUs 0.52 (0.45 – 0.60) 16S 
Stage 0 vs HC 0.54 (0.45 – 0.62) 
Stage I vs HC 0.74 (0.68 – 0.80) 
Stage II vs HC 0.86 (0.81 – 0.90) 

Guo, 2018 [37] Stage I vs HC 3 taxa 0.80 90 / 60 qPCR 
Stage I/II vs HC 0.89 90 / 76 

Goedert, 2015 [47] AP vs HC 5 taxa + 7 genera 0.77 16S 
Gao, 2022 [36] AP vs HC 12 species 0.66 (0.57-0.75) Metagenomics 

Stage I vs HC 0.88 (0.72-1.00) 
Stage II vs HC 0.96 (0.91-1.00) 

Gao, 2020 [35] AP vs HC 18 genera 0.62 (0.52-0.71) 84 / 39 Metagenomics 
18 genera + FIT 0.72 (0.63-0.81) 

Coker, 2022 [34] AP vs HC 14 species 0.84 (0.80-0.89) Metagenomics 
14 species + 2 metabolites 0.88 (0.84-0.92) 

Ai, 2017 [33] AP vs HC 6 species 0.87 16S 
Rezasoltani, 2018 [43] AP + Stage I vs HC 5 taxa 0.97 100 / 77 qPCR 
Zeller, 2014 [50] CRC vs HC ̂ 22 species 0.84 Metagenomics 

CRC vs HC ̂ 22 species + FOBT 0.87 
Young, 2021 [49] AP vs HC ∗ 15 taxa 0.72 (0.68-0.75) 16S 

AP vs HC ∗∗ 15 taxa 0.82 (0.79-0.84) 
AP vs HC ∗ 15 taxa + age + sex 0.71 (0.67-0.74) 
AP vs HC ∗∗ 15 taxa + age + sex 0.84 (0.82-0.86) 

Tarallo, 2019 [48] AP vs HC hsa-miRNA + bsRNA + mbDNA 6 0.47 sRNA 7 /Metagenomics 

Flemer, 2017 [46] AP vs HC 16 OTUs (faecal) 0.87 16S 
12 OTUs (oral) 0.89 (0.80-0.89) 67 / - 
16 OTUs (faecal) + 12 OTUs (oral) 0.98 (0.95-0.98) 88 / 94 

Eklöf, 2017 [45] AP vs HC clbA + bacteria, Fusobacterium 

nucleatum 

N/A 47 / 63 qPCR 

clbA + bacteria, Fusobacterium 

nucleatum + FIT 
N/A 61 / 63 

Clos-Garcia, 2020 [44] AP vs HC 16 genera 0.28 16S 
Zackular, 2014 [53] AP vs HC 5 OTUs 0.84 (0.74–0.94) 16S 

5 OTUs + age + race + BMI 0.90 (0.82–0.98) 90 / 80 
Baxter, 2016 [52] AP vs HC 22 OTUs 0.67 18 / 97 16S 

23 OTUs + FIT 0.76 

1 CRC = colorectal cancer, AP = adenoma and/or polyp, HC = healthy controls 
2 Analytical method: 16S = 16S rRNA gene sequence, qPCR = real-time quantitative PCR, metagenomics 
3 OTU = operational taxonomic unit 
4 APCS = Asia-Pacific Colorectal Screening, a validated risk-stratification tool 
5 Methylated genes: Septin9, NDRG4, BMP3. Mutated genes: KRAS, BRAF, PI3KCA 

6 hsa = Homo sapiens microRNAs, bsRNA = bacterial small RNAs, mbDNA = microbial DNA 

7 sRNA = small RNA sequencing 
ˆ Based on CRC vs HC, but similar changes in microbial abundance observed in early-stages of CRC 
∗ Healthy controls with normal colonoscopy 
∗∗ Healthy controls, blood negative in stool 

6 
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Table 3 

Co-metabolome as screening tool for early CRC detection. 

Reference Comparison of interest Biomarker Performance for early CRC detection Analytical method 1 

wAUC (95% CI) Sens/Spec 

Yachida, 2019 [19] Stage 0 vs HC 24 metabolites 0.65 CE-TOFMS 
Wei, 2022 [28] AP vs HC 4 metabolites 0.73 (0.63-0.82) UPLC-MS/MS 

4 OTUs + 5 metabolites 0.90 (0.85-0.96) 
Gao, 2022 [36] Stage I vs HC 3 metabolites 0.82 (0.68-0.97) UPLC-MS/MS 

Stage II vs HC 0.87 (0.79-0.95) 
Stage I/II vs HC 0.85 (0.76-0.93) 
AP vs HC 12 OTUs + 3 metabolites 0.91 (0.83-0.99) 

Coker, 2022 [34] AP vs HC 11 metabolites 0.69 (0.62-0.81) GC-TOFMS 
11 metabolites + age + gender + obesity 0.75 (0.69-0.81) 
4 metabolites + 6 species 0.75 (0.69-0.81) 

Clos-Garcia, 2020 [44] AP vs HC 16 genera + 6 metabolites 0.30 UHPLC-MS 
Chen, 2022 [54] AP vs HC 8 metabolites 0.84 63 / 85 UPLC-MS 

Stage I/II vs HC 0.93 88 / 85 
Bosch, 2022 [51] AP vs HC 3 metabolites 0.79 (0.64–0.94) 79 / 74 UPLC-MS 

1 CE-TOFMS = capillary electrophoresis time-of-flight mass spectrometry, U(H)PLC-MS/MS = Ultra-(High)-Performance Liquid Chromatography Tandem Mass 
Spectrometry 
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It has been reported that volatile components of the co-metabolome
re more prone to variations in storage conditions and sampling method-
logies than the microbiome [ 58 , 59 ]. The sampling methodologies were
xtracted per study, although not all studies disclosed details of sample
ollection, showing a large heterogeneity between trial designs (see Sup-
lementary Table S2 for a detailed description). The study of Yachida
t al. was the only study to collect faeces on site and immediately stored
or analysis under appropriate conditions (dry ice and -80°C for long-
erm storage) [19] . Two studies let the patient collect the faeces at home
nd stored in their own freezer, leaving time until long-term storage un-
lear [ 44 , 51 ]. 

isk of bias and applicability 

The QUADAS-2 tool was used to assess the risk of bias and applica-
ility. The results are summarised in Supplementary Table S3 as well as
resented in Supplementary Fig. S1. 

Overall the risk of bias for the first domain, ’patient selection,’ was
ow in 17 studies, high in 10 and unclear in one since most of the stud-
es were cohort studies. For the second domain ‘index test’, the risk of
ias was very high, with 23 studies high risk, zero low and five unclear.
he third domain ’reference test’ showed a low risk of bias with zero
igh, one unclear and 27 low risk. For the last domain ’flow and tim-
ng’, low risk was seen in 19 studies, high risk in two and unclear in
even studies. Since we preselected articles only applicable to the de-
ection or description of early CRC, all studies showed a high degree of
pplicability. 

iscussion 

A total of 28 studies assessed microbiome-derived biomarkers for
he detection of early CRC. Despite this, a large degree of heterogene-
ty was observable in cohort sizes, demographic properties, microbiome
equencing analyses and statistical models used, making a robust inter-
retation of these data challenging and preventing meta-analysis. There-
ore, results were only reported in a descriptive manner, summarising
he diagnostic performance of microbiome-derived biomarkers for early
RC detection. The biomarkers identified in these analyses are also yet
o be externally validated. Despite this, it appears that the faecal and
ral microbiome may have some diagnostic utility for the early detec-
ion of CRC. 

iagnostic performance of microbiome-derived biomarkers 

The diagnostic performance demonstrated a wide confidence inter-
al across the reported studies for the measurement of the relative abun-
7 
ance of faecal bacteria (0.28 – 0.98 for precursor lesions and a range
f 0.54-0.89 for early CRC, based on AUC). Diagnostic performance
ncreased when the bacterial panel was added to existing screening
ests, like the gFOBT or FIT, or added to DNA-makers for methylated
Septin9, NDRG4, BMP3) or mutated genes (KRAS, BRAF, PI3KCA), sug-
esting that bacteria-derived biomarkers could be used to augment cur-
ent screening programs. Diagnostic performance did not significantly
ary in those studies that used small numbers of bacteria as compared
o studies using a multitude of bacteria in their panels. This is in con-
rast to recent literature investigating the microbiome as a biomarker in
all stages of) CRC [ 60 , 61 ]. Many of these studies were not prospective
r powered to a primary diagnostic endpoint, or performed in clinically
epresentative populations (e.g. within population demographics typi-
ally called for screening).. Moreover, many did not make a distinction
etween stage or anatomical location (e.g. right or left colon) of CRC
n their analysis [62–65] . Similarly, some studies simply group cancer
tages together to produce summary diagnostic statistics [66–71] . As ex-
ected, studies that did compare the performance of the gut microbiome
cross AJCC different stages often report an increase in performance in
tage III and IV cancers [36–38] . 

The optimal diagnostic performance across all studies showed an
UC of 0.98, with a sensitivity and specificity of 88 and 94 per cent, and
mployed an oral mucosa-based detection of bacterial strains [46] . Bac-
erial taxa statistically associated with CRC, such as Fusobacterium, Pep-

ostreptococcus, Porphyromonas, and Parvimonas , were consistently de-
ected in the oral cavity of those patients with CRC [46] . However, this
bservation is not CRC-specific, as these bacteria have also been ob-
erved to be enriched in other gastro-intestinal (GI) tract cancers, such
s oesophageal [42] and pancreatic cancer [72] . Interestingly, these
acteria were however abundant in precursor lesions for bowel cancer.
his is important as colonic adenoma detection rates range from 26 to
7% in the screening populations [73] and prevalence rates of cancer
ithin these polyps have been reported in 0.9–2.8 % of polyps ≤ 5 mm
nd 5.3–15.5 % of polyps between 6 and 9 mm [74] . The risk of ade-
oma progression to cancer is dependent on their histological subtype
nd anatomical location (right vs left) but also on environmental fac-
ors (e.g. diet or obesity) that are co-regulated by the gut microbiome
75] . A recent prospective analysis of 231 patients undergoing screening
olonoscopy analysed faecal swabs using 16S RNA and demonstrated a
lassification accuracy for adenomas > 75% for Naïve Bayes and Neu-
al Network models using informative OTUs [76] . Previous analysis of
aecal samples by 16 sRNA of patients with conventional adenomas is
epleted in a network of Clostridia operational taxonomic units from
amilies Ruminococcaceae, Clostridiaceae, and Lachnospiraceae and en-
iched in the classes Bacilli and Gammaproteobacteria, order Enterobac-
eriales, and genera Actinomyces and Streptococcus [15] . 
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Of all the screened articles, only seven investigated the potential
f the co-metabolome as a diagnostic tool for early CRC detection. A
imilar effect was reported with an AUC ranging from 0.69 – 0.84 for
recursor lesions and 0.65 – 0.93 for stages I and II of CRC. However,
here were insufficient articles on the efficacy of the co-metabolome
or early CRC detection to form any proper conclusions. Oncogenic co-
etabolites produced by luminal and mucosal gut microbiota (e.g. bile

cids) are over-abundant in those populations at high risk of colonic
ancer, while beneficial microbial co-metabolites, like short-chain fatty
cids (SCFAs), are often decreased [ 76 , 77 ]. Changes in metabolic pro-
les may therefore reflect an early pro-oncogenic environment making
hem valuable in screening programs, however this hypothesis is yet to
e tested at scale. 

Currently, most research regarding the investigation of a
icrobiome-derived biomarker for (early) CRC is based on differ-

nces in taxonomic variation. However, some studies suggest a higher
ensitivity for the detection of CRC based on bacterial genes [78] . A
irect comparison of bacterial taxa vs bacterial genes for the detection
f CRC has been recently investigated by Norouzi-Beirami et al. [79] .
his study noticed a small increase in sensitivity and specificity for
he detection of CRC based on genes in comparison to bacterial taxa.
owever, the increase was almost gone when tested in an independent
ohort. Superior accuracy was however detected based on functional
eatures (AUC 0.71) compared to taxa or gene level (with a correspond-
ng AUC of both of 0.59). Most studies have been referring to bacterial
axonomy because this is the most standardised technique in this field,
ainly based on only one bacterial gene, the 16S rRNA gene. To use

ther bacterial genes as biomarkers requires standardised procedures
nd bioinformatic pipelines as well as the establishment of universally
sable primers for these specific genes, which are also very challenging
t this specific moment considering the advances in whole genome
hotgun sequencing. Nevertheless, one major limitation of taxonomic
dentification as well as gene level, especially in regard to early CRC,
s that it does not give any insight into, or is necessarily associated
ith, functional variation of the genetic content. When investigating
 more accurate and sensitive biomarker for the prediction of early
RC, it is the functional level rather than bacterial taxa or genes that
ould provide insight into microbiome changes associated with the
evelopment of CRC and therefore be used as a possible biomarker for
he detection of early CRC. 

imitations of microbiome-derived biomarkers 

The gut microbiome demonstrates significant inter-individual vari-
tion and macro and microscopic anatomical heterogeneity, governed
y factors such as age, gender, BMI, diet and antibiotic use. When com-
aring healthy controls with colorectal patients, these factors should
deally be incorporated in the analyses via matching of the groups of
nterest. Unfortunately, most of the included articles only reported pos-
ible influencing factors on the microbiome composition without any
atching between the two groups. Pilot studies in CRC have also iden-

ified significant variation between cancers [80] , in part because the
ut microbiome is dynamic and evolves with the pathology, in part be-
ause it is subject to confounding environmental factors, such as diet,
edication, smoking and other lifestyle factors [81] . These were rarely

ccounted for in the analyses, and most were often not reported. The
eterogeneity in the diversity of the faecal microbiome exists at both a
hyla and strain level between geographically discrete populations and
cross countries [ 82 , 83 ]. The majority of included articles were per-
ormed in Asia, potentially limiting the translation to other regions, and
t is unclear therefore how many of these studies are translatable. 

One other major limitation in these studies has been the lack of stan-
ardisation in both sample collection and processing. Sample collec-
ion showed a wide heterogeneity between studies (e.g. before or after
owel-cleansing agents required for the colonoscopy) as well as temper-
ture and time until long-term storage at -80°C. These factors are known
8 
o influence microbiome composition [ 84 , 85 ]. Furthermore, DNA ex-
raction was carried out using a range of DNA extraction kits, adding an
dditional variable influencing the outcome of microbiome composition
see Supplementary Table S2 for a summary of sample collection and
NA processing of the included studies). A lack of standardisation was
lso seen in the analytical approaches employed by the included stud-
es. All studies used different analytical methods to identify bacteria,
ither 16S rRNA, qPCR or metagenomics. 16S rRNA analysis is largely
estricted to taxonomic analysis with an inferred functional interpreta-
ion. Metagenomics permits species-level identification and deep func-
ional insights, bypassing some of these challenges [86] , although it is
ot yet affordable for population-level analyses and its interpretation
equires significant computing power. Within these methods, there was
gain a large heterogeneity in the choice of primers used, leading to po-
ential biases and making comparisons between them almost impossible
87] . 

esearch priorities and the ideal microbiome biomarker study 

If the microbiome is to be realistically mined for its biomarker poten-
ial in CRC, there is an urgent need to move away from small-scale pilot
tudies into prospectively, adequately powered, multicentred trials that
re quality assured from a sampling and analytical methodology. Cur-
ently, there is a lack of consensus on the most robust method of either
ualitatively or quantitively analysing the gut microbiome for early can-
er detection in terms of its function, absolute or relative abundance, its
iversity or species richness. Given the significant inter-individual vari-
tion in the global microbiome and its evolutionary instability within
nd on CRC, it is not yet clear if the microbiome is a viable biomarker
or early cancer. Therefore future studies must seek to test biomarkers
hat are mechanistically linked to established molecular pathways and
hich are established to exist across vulnerable populations. However,

his is potentially where the microbiome has its greatest potential, as it
an provide future clinicians with noninvasive, actional information on
he anatomical location or progression of the disease. 

onclusion 

Gut microbial-derived biomarkers could be leveraged to enhance
urrent screening programs for CRC. However, significant barriers must
e overcome before this can be achieved. Current analyses cannot be
eta-analysed due to large observed variations in study design and an-

lytical precision. Future CRC microbiome studies therefore require pre-
ision and must account for environmental and sampling confounding
nd bias, and provide methodological quality assurance and establish
ost-effectiveness. 
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