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Abstract: In this paper, we present a new type of guided-mode resonance (GMR)-based sensor that
utilizes a planar waveguide structure (PWS). We employed a PWS with an asymmetric three-layer
waveguide structure consisting of substrate/Au/photoresist. The ellipsometric characterization of
the structure layers, the simulated reflectance spectra, and optical field distributions under GMR
conditions showed that multiple waveguide modes can be excited in the PWS. These modes can
be used for refractive index sensing, and the theoretical analysis of the designed PWS showed a
sensitivity to the refractive index up to 6600 nm per refractive index unit (RIU) and a figure of merit
(FOM) up to 224 RIU−1. In response to these promising theoretical results, the PWS was used to
measure the relative humidity (RH) of moist air with a sensitivity up to 0.141 nm/%RH and a FOM
reaching 3.7 × 10−3%RH−1. The results demonstrate that this highly-sensitive and hysteresis-free
sensor based on GMR has the potential to be used in a wide range of applications.

Keywords: guided-mode resonance; planar waveguide structure; humidity sensor; sensitivity;
resonance wavelength; figure of merit

1. Introduction

Recent progress in controlling and guiding light using a planar waveguide has been strongly
motivated by the acquisition of new optical devices with unique properties [1]. Guided mode
resonance (GMR) is a very promising development that is based on the excitation of guided modes
in a planar waveguide under phase-matching condition using a special coupling element such as
a prism or diffraction grating [2]. Some of the guided light in the waveguide can leak and under
certain phase-matching conditions these leaky modes can interfere with the non-coupled reflected or
transmitted light waves. This interaction causes an ultra-narrow resonance dip or peak in the reflectance
or transmittance spectra at a particular wavelength, angle, and polarization [3]. Due to its controllable
linewidth, the GMR effect has become an important concept in optical devices such optical sensors,
optical polarizers, band-pass and band-stop filters, electro-optical switches, and modulators [2–8].

The resonant condition of GMR is very sensitive to changes in the refractive index in the
surrounding environment, hence GMR-based structures are very good candidates for high-performance
refractive index (RI) sensors [2]. Changes in the refractive index of the surrounding medium are
accompanied by a shift in wavelength [9], angle [10], intensity [11] or phase [12], which can be detected
by the corresponding detection scheme. The RI describes the optical parameters of a material, which are
directly related to its composition, thus RI detection is an important concept in relation to sensing in
biology, chemistry, and other fields [13]. GMR-based biosensors play an important role because they
are label-free and able to provide real-time detection [14,15].
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The structural parameters and the optical properties of the GRM structure are crucial factors
that determine the performance of the GMR-based sensor [3]. Some classic planar dielectric
waveguides include a metal layer in the waveguide architecture, and these can provide unique optical
properties [16]. Interesting results have been found for the symmetric metal-dielectric-metal (MDM) and
dielectric-metal-dielectric (DMD) geometries and also their asymmetric types [1,17,18]. In particular,
metal-cladding waveguide structures have shown very interesting results in high-performance
sensing applications. Zhou et al. presented absorption-based sensing by employing a symmetrical
metal-cladding waveguide, in which liquid analyte served as the guiding layer [19]. Wang et al. studied
and fabricated an RI sensor with high sensitivity based on an asymmetric metal-cladding dielectric
waveguide structure. In this waveguide structure, an analyte was used as the guiding layer and gold
and air were used for the cladding layers [13,20]. Nesterenko et al. performed an analytical study of a
low-loss waveguide structure and demonstrated the degree of waveguide mode loss by controlling the
thickness of the spacer layer between the absorptive and waveguide layer [17]. Yang et al. theoretically
studied a metal-dielectric multilayer structure with high sensitivity due to the coupling between the
surface plasmon polariton mode and multi-order waveguide modes [21]. Our goal was to theoretically
and experimentally investigate a metal-cladding waveguide structure with a photoresist guiding layer
and an analyte (a moist air) as an infinite dielectric cladding. This waveguide geometry shows very
promising sensing properties.

In this paper, we present a highly sensitive GMR-based sensor that utilizes a planar waveguide
structure (PWS) consisting of substrate/Au/photoresist layers intended for the measurement of relative
humidity of moist air. The reflectance was evaluated using a transfer matrix method and showed
sensitivity to the refractive index up to 6600 nm per refractive index unit (RIU) and a figure of
merit (FOM) up to 224 RIU−1. Following the theoretical analysis, the PWS was used to measure
the relative humidity (RH) of moist air. The spectral reflectance measurements were performed for
s- and p- polarized waves reflected from the PWS. To attain resonance excitation of guided modes,
we employed a BK7 coupling prism and the attenuated total reflection. The GMR effect of the PWS
caused by the excitation of guided mode, which is manifested in the form of a narrow, well-pronounced
reflectance dip, had a high sensitivity to the change in relative humidity (RH) of the moist air.
The sensitivity to the RH and FOM were as high as 0.141 nm/%RH and 3.7 × 10−3%RH−1, respectively.

2. Structure Design and Theoretical Background

We proposed a PWS in the form of asymmetric three-layer waveguide as shown in Figure 1,
in which the TE and TM guided modes can be excited if the resonant condition is fulfilled. A fused
silica glass slide with a thickness of ts = 0.7 mm and the refractive index ns was used as a substrate.
The metal cladding layer, which serves as a coupling layer is formed by an Au film with a thickness of
tAu = 30 nm and the complex permittivity εAu. The waveguide layer consists of dielectric material
AZ1505 photoresist with a thickness of tp ≈ 200 nm and the refractive index nd. The external medium
is formed by moist air with a refractive index nair.

The first aim was to determine the spectral reflectance and sensing properties of the PWS. In the
case of multilayer structures, there are several approaches for obtaining the reflection and transmission
coefficient of the electromagnetic field. One of these is a transfer matrix method (TMM), which is
considered as one of the most powerful methods in contemporary theoretical physics [22]. The TMM
considers the multilayer system of m layers and the incident light in the form of the plane wave.
Each layer of system j, ( j = 1, 2, . . . , m) has the thickness t j and the optical properties are described
by the wavelength-dependent complex refractive index ñ j = n j + ik j and complex dielectric function
ε j = εr j + iεi j = ñ2

j , respectively. The transfer matrix of the whole multilayer system is called a
scattering matrix (S) and is a product of the interface matrices (I) and layer matrices (L) [23,24]. In the
case of the proposed three-layer system (substrate/Au/photoresist) shown in Figure 1, the scattering
matrix takes the form:

S = I01L1I12L2I23L3I34, (1)
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where Iij is the matrix of refraction at the ij interface and Lj is the phase matrix describing the
propagation through j-th layer, and they are defined as:

Ii j =
1
ti j

[
1 ri j
ri j 1

]
, (2)

L j =

[
eiβ j 0
0 eiβ j

]
. (3)
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Coefficients ti j(λ) and ri j(λ) are Fresnel transmission and reflection coefficients at interface ij and
are different for s- and p-polarized light wave, see [24], and β j is the phase thickness of the layer j
given as:

β j(λ) =
2π
λ

n j(λ)t j cosθ j =
2π
λ

t j
[
n2

j (λ) − n2
0(λ) sin2 θ

] 1
2 , (4)

where θ j is the angle of refraction in the layer j. Reflectance Rs,p(λ) for TE (s) and TM (p) waves of the
multilayered structure can be expressed by the matrix elements of the scattering matrix S as:

Rs,p(λ) =

∣∣∣∣∣∣S21(λ)

S11(λ)

∣∣∣∣∣∣2
s,p

. (5)

In the reflectance evaluations, the refractive index values of an external medium (moist air) were
changed in the range of 1–1.005 with a step of 0.001 and the following dispersions of materials of
the PWS were used. To model the response of the PWS, a BK7 coupling prism was included, whose
dispersion is given by a Sellmeier formula:

n(λ) =

√
1 +

aλ2

λ2 − d
+

bλ2

λ2 − e
+

cλ2

λ2 − f
, (6)

where λ is the wavelength in µm and the Sellmeier coefficients are as follows: a = 1.03961212,
b = 0.231792344, c = 1.01046945, d = 6.00069867 × 10−3 µm2, e = 2.00179144 × 10−2 µm2 and
f = 1.03560653 × 102 µm2. The dispersion of the substrate and AZ1505 photoresist was measured by a
spectral ellipsometry method, when an ellipsometer RC2 (J. A. Woollam Co., Inc., Lincoln, NE, USA)
was employed and the dispersion data fulfilled a Cauchy formula:

n(λ) =
a
λ2 +

b
λ
+ c + dλ+ eλ2, (7)
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where λ is the wavelength in µm and the Cauchy coefficients for the substrate are a = 0.01411 µm2,
b = −0.04034 µm, c = 1.549, d = −0.03365 µm−1 and e = 0.007592 µm−2, and for the photoresist
they are a = 0.03849 µm2, b = −0.1192 µm, c = 2.184, d = −0.1672 µm−1 and e = 0.05318 µm−2.
The refractive indices of the substrate and AZ1505 photoresist given by Equation (7) are shown in
Figure 2a. The dispersion of the Au layer obtained from ellipsometric measurements was described by
the complex dielectric function given by the Drude–Lorentz model [25]:

εAu(λ) = 1−
1

λ2
p

(
1/λ2 + i/γpλ

) − 2∑
j=1

A j

λ2
j

(
1/λ2 − 1/λ2

j

)
+ iλ2

j /γ jλ
, (8)

where λ is the wavelength in nm and the parameters are specified in Table 1. The real and imaginary
part of the dielectric function of Au given by this model is shown in Figure 2b.
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(a)          (b) 

 
(a)           (b) 

 

Figure 2. Dispersion of used materials. The refractive index of the substrate (blue line) and AZ1505
photoresist (red line) given by the Cauchy formula (a) and the real part (blue line) and imaginary part
(red line) of the complex permittivity of the Au layer given by the Drude–Lorentz model (b).

Table 1. Parameters of the dielectric function of Au.

Drude Term
Parameter Value Oscillator 1

Parameter Value Oscillator 2
Parameter Value

ε∞ 1 A1 1.860 A2 3.439
λp (nm) 138.831 λ1 (nm) 419.828 λ2 (nm) 294.231
γp (nm) 21,687.402 γ1 (nm) −39.047 γ2 (nm) −4192.008

Figure 3 shows the theoretical spectral reflectances, Rs(λ) and Rp(λ) for given refractive index
values of the analyte layer calculated for the angle of incidence θ = 42.2◦ with the following parameters:
tAu = 30 nm, tp = 200 nm. The calculated reflectance spectra exhibit well pronounced dips with a
constant width corresponding to guided modes TE1, TE0 (Figure 3a) and TM1 (Figure 3b), respectively.
The resonance wavelength shifts toward longer wavelengths with the increasing values of the refractive
index of analyte. In Figure 3 we can see that the largest resonance wavelength shift regarding the
change in RI is the TE0 mode, and on contrary, the mode with the smallest resonance wavelength shift
is the TE1 mode.
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Figure 3. Theoretical spectral reflectances Rs(λ) (a) and Rp(λ) (b) for the PWS and analyte refractive
index values in the range 1–1.005 with a step of 0.001.

To describe the sensing properties of guided modes, it is necessary to determine the RI sensitivity
Sn, which is defined as the change in the resonant wavelength δλr with respect to the RI change δn
(Sn = δλr/δn). The resonance wavelength of the TM1 and TE0 modes as a function of the analyte
RI is shown in Figure 4a with a second-order polynomial fit, from which the RI sensitivity can be
determined. The RI sensitivity Sn shown in Figure 4b is linearly dependent and changes approximately
in the range 2300–3000 nm/RIU for the TM1 mode, and 3900–6600 nm/RIU for the TE0 mode, and the
FOM, which is defined as a ratio of the sensitivity and the full width at half maximum (FWHM) of the
dip (FOM = Sn/FWHM), achieves a value of 224 RIU−1.
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Figure 4. (a) Resonance wavelength and (b) sensitivity of the TM1 and TE0 modes as a function of the
refractive index of the external medium.

In some cases, it is advantageous to consider the interference between the modes [26], which is
attained when both the polarizer and analyzer are oriented 45◦ with respect to the plane of incidence,
and the corresponding reflectance R45(λ) is expressed as:

R45(λ) =
1
4

{
Rs(λ) + Rp(λ) + 2

√
Rs(λ)Rp(λ) cos

[
δsp(λ)

]}
, (9)

where δsp(λ) is the phase difference between the s- and p-polarized waves. Figure 5a shows the
theoretical spectral reflectance R45(λ) that correspond to the reflectances, Rp(λ) and Rs(λ) shown in
Figure 3a,b. It is clear that the interference affects the depth of the dips. For the TM mode the depth is
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increased, while for the TE modes it is decreased. As demonstrated in Figure 5b, a slight shift in the
resonance wavelength is present in comparison with Figure 4a, and the sensitivities are the same as
those shown in Figure 4b.
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(a)          (b) 

 

 
(a)          (b) 

 

 

Figure 5. Theoretical spectral reflectances R45(λ) (a) and resonance wavelength as a function of the
refractive index of the external medium (b).

A more detailed description of the GMR effect, that is, the optical field intensities |E|2 in the
PWS divided by |E0|

2, where E0 is the incident s-polarized or p-polarized electric field, are shown in
Figure 6a,b, respectively. The normalized optical field intensities in the PWS shown in Figure 6a were
calculated for the angle of incidence θ = 42.2◦ and a wavelength of 536.9 nm and correspond to the
TE1 mode, and for the same angle of incidence and a wavelength of 1478.8 nm they correspond to
the TE0 mode. While the TE1 mode only exhibits a 3-fold enhancement, the TE0 exhibits a 42-fold
enhancement with very promising sensitivity. Figure 6b shows the normalized optical field intensity in
the PWS for the angle of incidence θ = 42.2◦ and a wavelength of 726.3 nm and corresponds to the TM1

mode, which exhibits a 47-fold enhancement, however, with faster exponential decay in the analyte
than for the TE0 mode. Thus, it is confirmed that theTE0 mode has higher sensitivity than the TM1

mode for the considered analyte.
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(a)          (b) 

 

 
(a)          (b) 

 

 
Figure 6. The normalized optical field intensity distribution in the PWS for the angle of incidence
θ = 42.2◦ and for the wavelength (a) with λ = 536.9 nm exciting the TE1 mode and λ = 1478.8 nm
exciting the TE0 mode, and (b) λ = 726.3 nm exciting the TM1 mode.
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3. Experimental Setup

The PWS structure under study consists of substrate/Au/photoresist layers. Fused silica glass
slide serves as a substrate. The Au film was deposited on the chemically cleaned substrate, by a
thermal evaporation process using a vacuum evaporator (K975X, Quorum Technologies Ltd., Laughton,
East Sussex, UK). The thickness of the Au layer was measured using a film thickness monitor (10983,
Quorum Technologies Ltd.) integrated in the evaporator during the evaporation process with a
resolution of 0.1 nm thickness. The thin photoresist layer was deposited using an unadulterated
positive photoresist AZ1505 using a spin-coating process (SPIN150, Semiconductor Production Systems
Ldt., Coventry, UK). To remove the solvent from the photoresist layer, the samples were post-baked at
80 ◦C for 2 min. The ellipsometry measurements confirmed a homogeneous photoresist layer with a
thickness 200 ± 10 nm over the 1 × 1 cm2 area.

The experimental setup shown in Figure 7 was used to measure the reflectance response of the
PWS and the RH sensing ability in the VIS and NIR spectral ranges. We used a halogen lamp (HL-2000,
Ocean Optics, Dunedin, FL, USA) as a white light source (WLS) with launching optics connected to
an optical fiber (OF) with a collimating lens (CL). The collimated light beam of a 1 mm diameter was
then polarized using a linear polarizer (P) (LPVIS050, Thorlabs, Newton, MA, USA) oriented 45◦ with
respect to the plane of incidence to generate both p- and s-polarized components. The polarized light
beam was coupled to the PWS using an equilateral prism made of BK7 glass (Ealing, Inc., South Natick,
MA, USA) with index-matching fluid (Cargille, Cedar Grove, NJ, USA, nD = 1.516). The reflected light
from PWS merges with a linear analyzer (A) (LPVIS050, Thorlabs) oriented 0◦, 90◦ and 45◦ with respect
to the plane of incidence to generate the reflectances Rp(λ), Rs(λ) and R45(λ) [26], respectively. The
reflected light was launched into a spectrometer (USB4000, Ocean Optics) via a read optical fiber (ROF)
(M15L02, Thorlabs) during the VIS measurements. In the NIR measurements, the reflected light was
launched into an FT-NIR spectrometer (FT-NIR Rocket, ARCoptix S.A., Neuchatel, Switzerland) via a
microscope objective and ROF (P400-2-VIS-NIR). The PWS was attached to a sensing chamber with
a volume of approximately 22 mL via an O ring. To control the RH values in the sensing chamber,
an electrical humidity and temperature sensor (HTS) (HTU21D, Arduino, Ivrea, Italy) connected to a
controller board (Arduino UNO) was used. The adjusting system of the RH in the chamber comprises
a humidifier and a two-line peristaltic pump (BT100M, Baoding Chuang Rui Precision Pump, Co., Ltd.,
Baoding, China). Adjusting the RH is described in detail in [26].Sensors 2020, 20, x FOR PEER REVIEW 8 of 18 
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4. Results and Discussion

The GMR-based relative humidity measurements were performed at a temperature of 22.8 ◦C
(which was kept constant to avoid temperature cross-sensitivity), while the RH in the sensing chamber
varied approximately in the range of 35%RH to 85%RH. This was based on the spectral reflectance
measurements for s- and p-polarized waves reflected from the PWS. The reflectance ratios that induce
the GMR effect as a function of the wavelength λ were measured for two external angles of incidence
(see Figure 7), α = 16.6◦ and α = 20.6◦, respectively. The resulting reflectance spectra are shown below
and show the excitation of the guided modes accompanied by well-pronounced resonance dips in the
spectra. The position of the dips that determines the resonance wavelength is red-shifted when the
relative humidity of moist air increases. Figure 8a shows the measured reflectance ratio Rs(λ)/Rp(λ) as
a function of the wavelength for the external angle of incidence α = 16.6◦ and the relative humidity of
the air in the range of 38.2%RH to 80.1%RH. The figure shows the GMR for the TE1 mode accompanied
by a well-pronounced dip. The resonance wavelength shift versus the RH change in the moist air is
shown in Figure 8b with a second-order polynomial fit. The resonance wavelength was determined
with a precision of 0.01 nm using a zero-crossing in the first derivative of the smoothed reflectance ratio.
Figure 9a shows the GMR for the TE1 mode at the external angle of incidence α = 20.6◦. The relative
humidity of the air was changed in the range of 36.1%RH to 85.1%RH. Figure 9b shows the resonance
wavelength versus the RH change in moist air with a linear fit. The nonlinear to linear change in
the resonance wavelength dependence on the RH can be attributed to the attenuated optical field in
the surrounding medium. When the RH decreased, no hysteresis needed to be resolved in a quick
response to the RH changes indicating that the surface optical field, as shown in Figure 6 is responsible
for the sensing.

Figure 10a shows the wavelength dependence of the measured reflectance ratio R45(λ)/Rs(λ)

responsible for the TM1 mode excitation, for the external angle of incidence α = 16.6◦ and the relative
humidity of air in a range of 39.7%RH to 84.4%RH. In Figure 10b, shows the resonance wavelength
shift towards longer wavelengths as the relative humidity of the air increases with a second-order
polynomial fit of the measured data. Figure 11a shows the wavelength dependence of the measured
reflectance ratio R45(λ)/Rs(λ) for the external angle of incidence α = 20.6◦ and the relative humidity of
air in the range of 35.3%RH to 85.7%RH. Figure 11b shows the resonance wavelength shift again with
the second-order polynomial fit of the measured data.
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Lastly, the same measurements were performed for the TE0 mode excited by the s-polarized wave.
Figure 12a or Figure 13a show the measured reflectance ratio Rs(λ)/Rp(λ) for the external angle of
incidence α = 16.6◦ and α = 20.6◦, respectively. Figure 12b shows the resonance wavelength shift
measured for the relative humidity ranging from 38.8%RH to 84.6%RH when the dependence was
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linearly fitted. Figure 13b shows the resonance wavelength measured for the relative humidity in a
range of 36%RH to 85.8%RH with a second-order polynomial fit.Sensors 2020, 20, x FOR PEER REVIEW 10 of 13 
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To estimate the sensing properties of the PWS structure, it is necessary to determine the sensitivity
to the relative humidity SRH, which is defined as the change in the resonant wavelength δλr with
respect to the change in the relative humidity δRH of moist air (SRH = δλr/δRH). From the measured
shifts in the resonance wavelength and their respective linear polynomial dependence on the RH,
as shown in previous figures, we can determine the sensitivity SRH of the excited guided modes to the
RH. The achieved sensitivities SRH in a range of 35%RH to 85%RH are shown in Figure 14.

For the TE1 mode, the sensitivity SRH exhibits a linear dependence on the RH in the range of
0.023 to 0.042 nm/%RH for the angle of incidence of 16.6◦, as shown in Figure 14a. The sensitivity
SRH of the same mode for the angle of incidence α = 20.6◦ is constant with a value of 0.033 nm/%RH.
The sensitivities SRH of the TM1 mode for the angles of incidence α = 16.6◦ and α = 20.6◦ are shown in
Figure 14b with values in the range of 0.036 to 0.063 nm/%RH and 0.037 to 0.068 nm/%RH, respectively.
Finally, the highest RH sensitivity exhibits the TE0 mode. For the angle of incidence α = 16.6◦,
SRH reaches a constant value of 0.103 nm/%RH and for the angle of incidence α = 20.6◦, the dependence
on the RH is linear and SRH varies in the range of 0.085 to 0.137 nm/%RH, as shown in Figure 14a.
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The highest FOM, which is defined as a ratio of the sensitivity and the FWHM of the dip
(FOM = SRH/FWHM), corresponds to the TE0 mode, which has the highest sensitivity SRH and the
narrower resonance dip. The FOM attains a value of 3.1 × 10−3%RH−1 for the angle of incidence
α = 16.6◦, as it is evident from Figure 12, and for the angle of incidence α = 20.6◦, the FOM is as high as
3.7 × 10−3%RH−1, as is shown in Figure 13.

Table 2 summarizes various optical RH sensors with different principles and parameters, such
as RH range and sensitivity, and the proposed RH sensor outperforms a number of them [26–28] in
terms of sensitivity. These include sensors based on surface plasmon resonance [26], surface Bloch
resonance [26], whispering gallery mode resonance [27] and guided mode resonance [28]. Some of the
RH sensors [29–31] based on photonic crystal mode resonance [29] and lossy mode resonance [30,31]
have higher sensitivity. However, to achieve a substantially higher sensitivity, fiber-optic RH sensors
need to be implemented [32,33].

Table 2. Optical RH sensors with different parameters.

Material Method RH
Range

Sensitivity
(nm/%RH) Ref.

plasmonic multilayer surface plasmon wave resonance 20–80% 0.072 [26]
dielectric multilayer surface Bloch wave resonance 22–80% 0.065 [26]

polymer coating whispering gallery mode resonance 0–60% 0.013 [27]
agarose gel guided mode resonance 20–80% 0.150 [28]

porous thin film photonic crystal mode resonance 11–84% 0.296 [29]
indium tin oxide lossy mode resonance 65–90% 0.212 [30]

copper oxide lossy mode resonance 30–90% 0.636 [31]

5. Conclusions

In this paper, we employed a three-layer PWS consisting of substrate/Au/photoresist to achieve
highly sensitive and hysteresis-free measurement of the relative humidity of moist air. The measurement
was based on resolving GMR for s- and p-polarized waves reflected from the PWS. The GMR effect
in the PWS was caused by the excitation of TE1, TM1 and TE0 guided modes, leading to narrow and
well-pronounced dips in the reflectance spectra and a high sensitivity to the change in relative humidity
of the moist air. We analyzed the sensitivity of all of the excited guided modes, and the sensitivity to
the RH and FOM were as high as 0.141 nm/%RH and 188%RH−1, respectively.

Finally, this simple sensing structure has a number of advantages, including a high sensitivity
to the RI and FOM that achieved 6600 nm/RIU and 224 RIU−1, respectively. In addition, there is the
potential to adjust the sensitivity as a constant by choosing a suitable angle of incidence. The use
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of the sensor can be extended to liquid analytes (working at different angles of incidence than for a
moist air) where the polymer layer is substituted by a dielectric layer such as SiO2 [26]. Moreover,
the sensor can be operated in aggressive environments because the layer acts as a protective overlayer
for Au thin film, and the fiber-optic realization is possible because the sensor can be operated in the
telecommunication window, near a wavelength of 1550 nm.

Thus, the GMR-based sensor has the potential to be used in a wide range of applications.
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