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Abstract: In this paper, a fast and simple strategy for sensitive detection of streptavidin (SA) was
proposed based on terminal protection of small molecule-linked DNA and cationic conjugated
polymer-mediated fluorescence resonance energy transfer (FRET). In principle, we designed a biotin-
labelled DNA probe (P1) as the recognitive probe of SA, along with a complementary DNA probe
(P2) to form double-stranded DNA (dsDNA) with P1. SYBR Green I (SG I) as a fluorescent dye was
further used to specifically bind to dsDNA to emit stronger fluorescence. The cationic poly[(9,9-bis(6′-
N,N,N-triethy-lammonium)hexyl) fluorenylene phenylene dibromide] (PFP) acted as the donor to
participate in the FRET and transfer energy to the recipient SG I. In the absence of SA, P1 could not
hybridize with P2 to form dsDNA and was digested by exonuclease I (Exo I); thus, only a weak FRET
signal would be observed. In the presence of SA, biotin could specifically bind to SA, which protected
P1 from Exo I cleavage. Then, P1 and P2 were hybridized into dsDNA. Therefore, the addition of
SG I and PFP led to obvious FRET signal due to strong electrostatic interactions. Then, SA can be
quantitatively detected by monitoring FRET changes. As the whole reagent reaction was carried out
in 1.5 mL EP and detected in the colorimetric dish, the operation process of the detection system
was relatively simple. The response time for each step was also relatively short. In this detection
system, the linear equation was obtained for SA from 0.1 to 20 nM with a low detection limit of
0.068 nM (S/N = 3). In addition, this strategy has also achieved satisfactory results in the application
of biological samples, which reveals the application prospect of this method in the future.

Keywords: streptavidin; FRET; terminal protection; conjugated polymer

1. Introduction

Streptavidin (SA) is a 58.2 kDa protein secreted by the bacterium Streptomyces avidinii
and composed of four identical peptide chains contains tryptophan, which can bind to
biotin with high specificity and strong affinity [1,2]. The combination of SA and biotin,
one of the strongest non-covalent effects known in nature, has been a research hotspot
with great significance and prospect [3]. Furthermore, the streptavidin–biotin complex
play a role in biological anode technology and molecular biology due to their excellent
biological tolerance to extreme conditions such as proteolytic enzymes, detergents (e.g.,
SDS), denaturators (e.g., guanidinium chloride), and extremes of temperature and pH [4,5].
Besides, because of the specific interactions of SA and biotin, the development of a highly
sensitive SA detection strategy is very beneficial for applications in disease prediction,
chemical genetics, and drug development [6].

At present, an increasing number of methods have been developed for SA detection
and quantitative analysis, including protein-fragment complementation assay [7], affinity
chromatography [8], kinetic capillary electrophoresis [9] and surface plasmon resonance
mboxciteB7-polymers-1116075,B10-polymers-1116075. However, most of these traditional
methods have disadvantages such as small samples, expensive instruments, time-consuming
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detection and cumbersome operation processes, which greatly limit their application [11].
Therefore, it is urgent to obtain a fast, low-cost and highly sensitive detection approach for
the quantitative analysis of SA.

SYBR Green I (SG I) is a dye with Green excitation wavelength that can specifically
bind to double-stranded DNA (dsDNA) double helix groove region [12,13]. In the free
state, SG I fluoresces weakly, but when it binds to dsDNA, the fluorescence is greatly
enhanced. This phenomenon can be used to detect dsDNA based on the strength of the
fluorescence signal [14,15], with a maximum absorption wavelength at about 497 nm,
and the maximum emission wavelength at about 520 nm. On the other hand, PFP is a
novel kind of water-soluble cationic conjugate polymer with positive charge, which can
adsorb dsDNA through strong electrostatic interaction [16]. When SG I is mixed with PFP,
the PFP can occur fluorescence resonance energy transfer (FRET) by interacting with SG I
embedded in the double-stranded structure [17]. Therefore, quantitative detection can be
achieved according to the efficiency changes of FRET.

Recently, the special interaction between proteins and small molecules has attracted
attention due to its wide application value in molecular diagnosis, anticancer treatment,
drug development and other areas [4,18,19]. In addition, the research on the specific
binding of small molecules to proteins not only builds understanding on the mechanism of
small molecules and improve the detection methods of proteins, but also has important
significance in the fields of biochemistry and clinical medicine [20,21]. Currently, studies
have reported that the terminal modified DNA resistance to degradation by the 3’ single-
strand-specific exonuclease I (Exo I) by virtue of the tight connection is called the terminal
protection of small molecule-linked DNA [22–24]. Hence, this may be an ideal choice for
protein detection.

Herein, based on terminal protection-mediated FRET, an amplification method was
developed for the detection of SA. We designed a biotin-labelled DNA sequence called
P1 as the substrate of SA and a complementary hybrid DNA sequence called P2. In the
presence of SA, biotin can specifically bind to SA, which protects P1 from Exo I cleavage.
Then, P1 and P2 were hybridized into dsDNA. Therefore, the addition of SG I and PFP
led to obvious FRET signal due to strong electrostatic interactions. On the contrary, in the
absence of SA, P1 was cleaved by Exo I and cannot hybridize with P2, which prevents the
formation of dsDNA, so only weak FRET signal can be observed. As a result, SA can be
quantitatively detected by monitoring FRET changes. Furthermore, the proposed method
showed a high sensitivity and selectivity for SA detection.

2. Materials and Methods
2.1. Materials and Measurements

The DNA sequences are as follows. P1: 5′-CGACATCTAACCTAGCTGACT-3′ P2:
5′-AGTCAGCTAGGTTAGATGTCG-3′. The two oligonucleotides, P1 and P2, were pur-
chased and purified from Sangon Biological Engineering Technology & Services Co., Ltd.
(Shanghai, China). Streptavidin (SA), Carcinoembryonic antigen (CEA), alpha fetoprotein
(AFP) and Immunoglobulin G (IgG) were all obtained from Sigma-Aldrich (St. Louis, MO,
USA). The ultrapure water (18.2 MΩ.cm) used in the experiments was from a Milli-Q
water purification system (Millipore Corp, Bedford, MA, USA). The reaction buffer in the
experiment system was Tris-HCl buffer (20 mM Tris-HCl, 150 mM NaCl, 10 mM MgCl2,
pH7.5). Tris [Tris- (hydroxy- methyl) aminomethane], hydrochloric acid (HCl), sodium
chloride (NaCl) and agnesium chloride (MgCl2) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Exonuclease I were obtained from New England
Biolabs (Beverly, MA, USA). SYBR green I (20×) was purchased from ZeesanBiotech co.,
Ltd. (Xiamen, China). Poly[(9,9-bis(6′-N,N,N-triethy-lammonium)hexyl) fluorenylene
phenylene dibromide] (PFP) was purchased from Yuanye Co., Ltd. (Shanghai, China).
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2.2. Apparatus

An F-2700 fluorescence spectrophotometer (Hitachi, Japan) was used to record the
fluorescence measurement with both excitation and emission slit at 10.0 nm. The photo-
multiplier tube voltage was 700 V. The emission spectra were set in a range of 400–600 nm
when the excitation wavelength was set as 380 nm for the PFP. Each experiment was
carried out in a final volume of 100 µL. The result error was obtained from three repeated
measurements, and statistical methods were used to collate and analyze the data during
the experiment.

2.3. Method Optimization

In order to obtain the best detection system, several important conditions were opti-
mized, such as the concentration of P1, Exo I, P2, PFP, and the reaction time of SA and P1.
The concentrations range of P1, Exo I, P2, and PFP were 50–300 nM, 0–40 U/mL, 50–300 nM,
and 0.8–1.6 µM, respectively. The reaction time range of SA and P1 was 0–100 min. The fi-
nal volume of the reaction system was set at 100 µL, and each experiment was repeated
three times.

2.4. Detection of SA

The following method was performed to quantitatively detect SA. Firstly, for the
binding of SA to biotin labeled at the end of P1, SA with various concentrations ranging
from 0 to 100 nM and 200 nM P1 were added the reaction buffer (20 mM Tris-HCl, 150 mM
NaCl, 10 mM MgCl2, pH 7.5) at 37 ◦C for 60 min. Secondly, 15 U/mL Exo I was added the
above mixed solution and incubated for 30 min at 37 ◦C. Subsequently, Exo I was added
at 90 ◦C for 10 min. Then, 200 nM P2 was added to the solution and hybridized with P1
to form dsDNA. Finally, SG I and 1.2 µM PFP were added and the mixture was stored
in the dark at room temperature for 20 min before carrying out the F-2700 fluorescence
spectrophotometer. To evaluate the practical application of this assay, we detected different
concentrations of SA in diluted serum.

3. Results
3.1. Experimental Principles

The mechanism of SA detection proposed in this paper was illustrated in Scheme 1.
As is shown, a biotin-labelled DNA sequence called P1 (the blue) as the substrate of SA
and a complementary hybrid DNA sequence called P2 (the orange) were designed. In the
presence of SA, biotin labeled at the end of P1 can specifically bind to SA, which protects
P1 from Exo I cleavage [3]. Then, the DNA strand P1 can be hybridized with P2 to form
dsDNA. Subsequently, the added SG I bond to the dsDNA to produce high fluorescence.
When the PFP was added, due to strong electrostatic interaction, the dsDNA was moved
in close proximity to the PFP [25]. As a result, the efficient FRET from PFP to SG I was
occurred and an amplified fluorescence signal was detected. However, in the absence of SA,
the DNA strand P1 was cleaved by Exo I and cannot hybridize with P2, which prevents the
formation of dsDNA, so only a weak FRET signal can be detected. Accordingly, the amount
of SA can be quantitatively determined by monitoring FRET changes.
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Scheme 1. Working principal of the SA detective strategy based on terminal protection-mediated
fluorescence resonance energy transfer amplification.

3.2. Feasibility Assessment of the SA Detection Assay

To verify the feasibility of this proposed approach, we measured the fluorescence
emission spectra of the SA detection system under different conditions. As shown in
Figure 1, when only the P1 was added, PFP exhibited high fluorescence at 430 nm and SG I
showed low fluorescence at 535 nm because SG I could not bind with the ssDNA (curve
A). When the P1 and P2 were added, the fluorescence decreased at 430 nm and increased
at 535 nm, which was caused by the FRET because of the formation of dsDNA between
P1 and P2 (curve B). However, when Exo I was added before P2, it can be observed that
the FRET ratio (I535 nm/I430 nm) was significantly reduced, indicating that the digestion
by Exo I to P1(curve C). In contrast, when SA was added into the mixture, the FRET ratio
(I535 nm/I430 nm) increased dramatically again, owing to protection of SA to P1 and the
formation of dsDNA (curve D). These results implied that the detection system has good
feasibility and could carry out the following experiments.
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Figure 1. The feasibility of the proposed method. (A) P1 + SG I+ PFP; (B) P1 + P2 + SG I+ PFP;
(C) P1 + Exo I+ P2 + SG I + PFP; and (D) P1 + SA + Exo I + P2 + SG I + PFP. Concentrations of P1, SA,
Exo I, P2, SG I and PFP were 150 nM, 150 nM, 25 U/mL, 150 nM, 1 X and 0.8 µM, respectively.



Polymers 2021, 13, 725 5 of 9

3.3. Optimization of Experimental Conditions

As shown in Figure 2, to obtain the best reaction system, several conditions which
could have great influence on the reaction system were optimized. In each optimization
experiment, the concentration of other conditions remains unchanged. It was worth noting
that the reaction temperature of SA was a very important factor in this detection system.
However, through simple optimization of pre-experiment and combined with relevant
references, we finally chose 37 ◦C as the temperature of SA reaction and applied it in the
experiment [2]. Two parameters were included to evaluate the signal. I535 nm/I430 nm,
which refers to the ratio of the fluorescence intensity at 535 nm to 430 nm. F/F0 refers
to the ratio of the I535 nm/I430 nm in the presence and absence of SA. Firstly, P1 with a
concentration range of 50–300 nm was optimized, as shown in Figure 2A, 200 nm was the
optimal concentration of P1.
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As is indicated in Figure 2B, we explored the effect of Exo1 at concentrations of
0–40 U/mL on the experimental system by measuring the ratio of the I535 nm/I430 nm
and selected 15 U/mL for the next experiment. Next, the concentrations of P2 between
50 and 300 nm were optimized. As can be seen in Figure 2C, the F/F0 was highest at the
concentration of P2 at 200 nm, so 200 nm P2 was set as the optimal concentration. Then,
we investigated the optimal concentrations of PFP. It can be illustrated from Figure 2D that
1.2 µM was the optimal reaction concentration of PFP. Finally, we explored the optimal
incubation time for the effect of SA and P1. As shown in Figure 2E, after the reaction time
of SA and P1 reached 60 min, the I535 nm/I430 nm hardly changed. Therefore, 60 min was
selected in subsequent experiments.
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3.4. Quantitative Detection of SA

Under the above optimal reaction conditions, we selected the concentration range
of SA from 0 to 100 nM (0, 0.1, 1, 5, 10, 15, 20, 30, 40, 50, 70, 100 nM) for quantitative
detection of SA. Figure 3A shows the fluorescence emission spectra of SA with different
concentrations under the optimal detection system. It can be seen that the I535 nm/I430
nm increased gradually with the increase of SA concentration. As seen in Figure 3B,
the relationship between the I535 nm/I430 nm and the concentrations of SA can be observed.
As shown in the inset of Figure 3B, there was a good linear correlation (R2 = 0.9929)
between the I535 nm/I430 nm and SA concentration range of 0 to 20 nM. Moreover, the linear
regression equation of Y = 0.0728X + 0.9685 was obtained, where X is the concentration
of SA (nM) and F is the value of I535 nm/I430 nm. According to the 3σ rule, the limit of
detection (LOD) was estimated to be 0.068 nM. For example, Huang et al. reported a
paper-based electrochemiluminescence method based on reticulated DNA functionalized
PTCU nanoframes and analysis of triggered DNA Walker for SA determination [26]. Due to
the use of chain substitution cycle amplification strategy, the detection limit of this method
is lower than our method. However, because of the use of electrochemiluminescence
detection, this method is more complex than the method in this paper, and the cost is
also higher. In addition, compared with other most methods for SA detection in recent
years, the detection limit in this paper is comparable to or lower than that of most methods
mentioned above (Table 1).
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Figure 3. (A) Fluorescence emission spectra in the presence of increasing amounts of SA (0, 0.1,
1, 5, 10, 15, 20, 30, 40, 50, 70, 100 nM). (B) Graph depicting the changes in fluorescence output
at 430 nm (PFP) and 535 nm (SG I) as a function of SA concentration. Inset: Linear relationship
between fluorescence intensity and low SA concentrations. Error bars were estimated from three
replicate measurements.
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Table 1. Comparison of different methods for the detection of SA.

Material LOD (nM) Dynamic Range (nM) Reference

CuNP 0.1 0.5–1000 3
FAM 0.08 0.15–12 1

Copper nanocluster 0.47 1–200 2
Gold nanoparticle 5 5–50 7

SYBR Green I 0.016 0.01–0.1 18
SYBR Green I 0.4 0.4–200 4
SYBR Green I 0.068 0.1–20 This work

3.5. Selectivity of SA Assay

In order to further test the specificity of the SA detection system, 20 nM of interfering
proteins, such as IgG, AFP, CEA, SA and blank were selected for detection under optimized
experimental conditions. As displayed in Figure 4, there was a significant increase in
I535 nm/I430 nm ratio with only SA, while the FRET changes triggered by IgG, AFP, and CEA
were nearly negligible. This result was mainly attributed to the specific interaction between
SA and biotin, which indicated that the detection method in this paper has good selectivity.
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Figure 4. Fluorescence intensity in the presence of SA, IgG, AFP, and CEA. Error bars were estimated
from three replicate measurements.

3.6. Application of the Proposed Assay in Biological Systems

To further evaluate the application value of this method in biological samples, we
prepared 100-fold diluted human serum sample to detect SA. Then, we selected three
different concentrations of SA (5, 10, 14 nM) to add to the diluted serum, and the SA
concentrations were measured by the sensor platform proposed above. As seen in Table 2,
we obtained the recovery rates of SA at different concentrations in diluted serum, such as
97.5% for 5 nM, 103.9% for 8 nM, and 90.5% for 15 nM, and the RSD were 9.9%, 6.88%,
and 3.25%, respectively. Therefore, the results indicated that the proposed strategy could
be potential for SA detection in biological systems.

Table 2. Recovery experiments of SA in human serum samples (n = 3).

Sample Added (nM) Found (nM) Recovery (%) RSD (%)

1 5 4.87 ± 0.51 97.48 9.9
2 8 8.31 ± 0.63 103.85 6.88
3 15 13.57 ± 0.50 90.49 3.25
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4. Conclusions

The SA–biotin system composed of SA and biotin can bind to antigens, antibodies,
enzymes, oligonucleotide molecules and fluorescent substances, and has a wide range of
applications in biology, especially in the detection of immune detection, antigen, antibody
and nucleic acid molecules. However, the development of these detection methods also
faces great challenges, and the detection method based on FRET in this paper has high
experimental requirements. If the spectrum overlap between donor and recipient is not
good, it will lead to fluorescence interference, and it is difficult to observe instantaneous
molecular interactions, which requires a large number of samples. Currently, the SA–biotin
system is used in most of the various detection kits based on the principles of enzyme-
linked immune response, fluorescent molecular labeled immune response and molecular
hybridization. However, all the SA used in China are expensive imported products, so it is
of great practical significance and broad application prospect to develop a domestic SA
and find a highly sensitive SA detection method.

In conclusion, a simple, sensitive and specific method for the SA detection based on
terminal protection-mediated fluorescence resonance energy transfer amplification was
successfully established. Due to the application of the FRET amplification strategy in
the method, a low detection limit of 0.068 nM (S/N = 3) was obtained, and the linear
range was 0.1 to 20 nM under the optimized conditions. Compared with most other
fluorescence methods for SA detection, we obtained a lower detection limit and a wider
linear range, which indicated that our method was more sensitive and valuable for research.
Furthermore, the SA detection system has achieved satisfactory results in both selectivity
assays and the biological sample tests. The recoveries of the three samples were in the
range of 90%–110%, and the RSD was less than 10%. Therefore, it can be inferred that this
method proposed in this paper has great application prospects in the future development
of sensor platforms for SA detection.
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