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Abstract

 

Human T lymphocyte virus type I (HTLV-I)–associated chronic inflammatory neurological
disease (HTLV-I–associated myelopathy/tropical spastic paraparesis [HAM/TSP]) is suggested
to be an immunopathologically mediated disorder characterized by large numbers of HTLV-I
Tax–specific CD8

 

� 

 

T cells. The frequency of these cells in the peripheral blood and cerebrospi-
nal fluid is proportional to the amount of HTLV-I proviral load and the levels of HTLV-I 

 

tax

 

mRNA expression. As the stimulus for these virus-specific T cells are immunodominant pep-
tide–human histocompatibility leukocyte antigen (HLA) complexes expressed on antigen-pre-
senting cells, it was of interest to determine which cells express these complexes and at what
frequency. However, until now, it has not been possible to identify and/or quantify these pep-
tide–HLA complexes. Using a recently developed antibody that specifically recognizes Tax11-
19 peptide–HLA-A

 

*

 

201 complexes, the level of Tax11-19–HLA-A

 

*

 

201 expression on T cells
was demonstrated to be increased in HAM/TSP and correlated with HTLV-I proviral DNA
load, HTLV-I 

 

tax

 

 mRNA load, and HTLV-I Tax–specific CD8

 

� 

 

T cell frequencies. Further-
more, CD4

 

� 

 

CD25

 

� 

 

T cells were demonstrated to be the major reservoir of HTLV-I provirus
as well as Tax11-19 peptide–HLA-A

 

*

 

201 complexes. These results indicate that the increased
detection and visualization of peptide–HLA complexes in HAM/TSP CD4

 

� 

 

CD25

 

� 

 

T cell
subsets that are shown to stimulate and expand HTLV-I Tax–specific CD8

 

� 

 

T cells may play an
important role in the pathogenesis of HTLV-I–associated neurological disease.
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Introduction

 

The HTLV-I is an exogenous human retrovirus that infects

 

�

 

10–20 million people worldwide (1). The majority of in-
fected individuals remain healthy lifelong asymptomatic

carriers while 

 

�

 

0.25–3% develop an inflammatory disease
of the central nervous system termed HTLV-I–associated
myelopathy/tropical spastic paraparesis (HAM/TSP; 2–5).
HTLV-I is also the etiologic agent in adult T cell leukemia
and other inflammatory diseases including uveitis, arthritis,
polymyositis, Sjögren syndrome, and alveolitis (6).
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Abbreviation used in this paper:

 

 HAM/TSP, HTLV-I–associated myelopathy/
tropical spastic paraparesis.
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In patients with HAM/TSP, increased HTLV-I provirus
load and augmented immune responses to HTLV-I have
been reported. One of the most striking features of the cel-
lular immune response in HAM/TSP patients is the highly
increased numbers of HTLV-I–specific CTLs, which are
lower or absent in asymptomatic carriers (7–11). CTL ac-
tivity is predominantly restricted to the HTLV-I Tax pro-
tein, where in HLA-A

 

*

 

201 patients the HTLV-I Tax11-19
peptide (LLFGYPVYV) is defined as an immunodominant
epitope (12, 13). In HAM/TSP patients these CTLs have
been shown to produce IFN-

 

� 

 

and TNF-

 

� 

 

that are proin-
flammatory and neurotoxic cytokines (9, 14). Moreover, in
some HLA-A

 

*

 

201 HAM/TSP patients, the frequency of
Tax11-19–specific CTLs can be as high as 30% of all CD8

 

�

 

T cells in peripheral blood (11) and even higher in cere-
brospinal fluid (8, 15, 16). Neuropathological findings in
HAM/TSP have demonstrated that CD8

 

� 

 

T cells were fre-
quently observed in active chronic lesions (17–19). Col-
lectively, these findings support the view that HTLV-I
Tax–specific CTLs play a central role in the immunopatho-
genesis of HAM/TSP.

Therefore, it was of interest to address which cells are
stimulating the expansion of these pathogenic HTLV-I–
specific CD8

 

� 

 

CTLs in vivo in HAM/TSP patients. It
has been reported that HTLV-I infects both memory
(CD45RO

 

�

 

) CD4

 

� 

 

T cells (20) and effector/memory
(CD27

 

� 

 

CD45RA

 

�

 

) CD4

 

� 

 

T cells in vivo (21), although
recent work indicated that CD8

 

� 

 

T cells were also an in
vivo cellular reservoir for HTLV-I (22, 23). Because a sig-
nificant positive correlation between HTLV-I proviral load
and the proportion of CD4

 

� 

 

CD25

 

� 

 

T cells has been dem-
onstrated in PBMCs of HTLV-I–infected individuals (24),
it has been hypothesized that CD4

 

� 

 

CD25

 

� 

 

T cells may
also be infected with HTLV-I (25).

Virus-infected cells are known to present viral peptides
on HLA class I molecules that are recognized by virus-
specific CD8

 

� 

 

T cells through their antigen-specific TCR
(26). Because the frequency of HTLV-I Tax–specific
CD8

 

� 

 

CTLs in peripheral blood is proportional to the
amount of HTLV-I proviral DNA load and the levels of
HTLV-I 

 

tax

 

 mRNA expression (10, 11, 27), it has been
suggested that the stimulus for these HTLV-I Tax–spe-
cific CD8

 

� 

 

CTLs are immunodominant Tax peptide–HLA
complexes expressed on autologous HTLV-I–infected T
cells. However, because there has never been a direct way
to analyze such peptide–HLA complexes, it is unclear as to
which subset of T cells dominantly express the HTLV-I
Tax peptide–HLA complexes and at what frequency in
HAM/TSP. Recently, using a large human Ab phage dis-
play library, novel human recombinant Fab Abs have been
isolated that specifically bind to a particular peptide–HLA-
A

 

*

 

201 complex like TCR (28, 29). The use of these Abs
allowed, for the first time, the identification and/or quanti-
fication of peptide–HLA complexes on APCs. Using these
newly described peptide-specific, MHC-restricted Abs,
which specifically bind to Tax11-19 peptide–HLA-A

 

*

 

201
complexes (TaxA2-Ab; 29), we measured the level of

Tax11-19 peptide–HLA-A

 

*

 

201 complexes in peripheral
blood T cells from HAM/TSP patients. We analyzed
which subset of T cells are predominantly expressing these
complexes and correlated the HTLV-I proviral DNA load
of different T cell subsets using the quantitative PCR tech-
nique. In addition, we tested the capability of the Tax11-
19 peptide–HLA-A

 

*

 

201–expressing HTLV-I–infected T
cells to stimulate the proliferation of HTLV-I–specific
CD8

 

� 

 

T cells. The data presented here demonstrate that
CD4

 

� 

 

CD25

 

� 

 

T cells are the major reservoir of HTLV-I
provirus and predominantly express HTLV-I 

 

tax

 

 mRNA as
well as HTLV-I Tax peptide–HLA complexes that stimu-
late and expand HTLV-I Tax–specific CD8

 

� 

 

T cells. To
our knowledge, this is the first report that directly mea-
sured peptide–HLA complexes ex vivo using these unique
peptide-specific, MHC-restricted Fab Abs.

 

Materials and Methods

 

Subjects and Cell Preparation.

 

We used Ficoll-Hypaque (Bio-
Whittaker) centrifugation to separate PBMCs from six HLA-
A

 

*

 

201

 

� 

 

HAM/TSP patients (HAM 1-6) and six HLA-A

 

*

 

201

 

�

 

HTLV-I–seronegative healthy donors (A2HD). HAM/TSP was
diagnosed according to the World Health Organization’s guide-
lines. Blood samples were obtained after informed consent as part
of a clinical protocol reviewed and approved by the National In-
stitutes of Health institutional review panel. HTLV-I infection
was confirmed by ELISA (Abbot Laboratories) and Western blot
analysis (Genelabs). CD4

 

� 

 

T cells or CD8

 

� 

 

T cells were nega-
tively selected from PBMCs with magnetic beads (Miltenyi
Biotec), and CD25

 

� 

 

and CD25

 

� 

 

T cells or CD45RO

 

� 

 

and
CD45RO

 

� 

 

T cells were separated from the selected CD4

 

� 

 

or
CD8

 

� 

 

T cells using magnetic beads (Miltenyi Biotec).

 

Flow Cytometric Analysis.

 

The immortalized B cell line trans-
fected with a full-length HLA-A

 

*

 

201 cDNA (HmyA2.1; refer-
ence 30) was used to determine the reactivity of TaxA2-Ab and a
peptide-specific, MHC-restricted Ab specific for the melanoma
gp100 G9-154 peptide–HLA-A

 

*

 

201 complex (MelanomaA2-
Ab) with cell surface–expressed peptide–HLA-A

 

*

 

201 complexes.
HmyA2.1 cells were pulsed with Tax11-19 peptide (LLF-
GYPVYV) or melanoma gp100 G9-154 peptide (KTWGQY-
WQV) at the indicated concentrations for 1 h at 37

 

�

 

C in DMEM
medium (GIBCO BRL) supplemented with 10% fetal bovine se-
rum (Atlanta Biological), 2 mM 

 

l

 

-glutamine, 40 U/ml penicillin,
40 

 

�

 

g/ml streptomycin (all from BioWhittaker). The cells were
then washed once to remove any free peptide and stained with 1

 

�

 

g PE-labeled TaxA2-Ab or MelanomaA2-Ab for 1 h at 4

 

�

 

C, and
then washed once before analysis. PBMCs from A2HD and
HAM/TSP patients were also analyzed using the same procedure.
For peptide pulse analysis of peripheral blood T cells, purified
CD4

 

� 

 

or CD8

 

� 

 

T cells were incubated with peptides at the indi-
cated concentrations for 1 h at 37

 

�

 

C in RPMI medium (GIBCO
BRL) supplemented with 10% fetal bovine serum, 2 mM 

 

l

 

-gluta-
mine, 40 U/ml penicillin, 40 

 

�

 

g/ml streptomycin. The cells were
stained with 1 

 

�

 

g PE-labeled TaxA2-Ab or MelanomaA2-Ab
for 1 h, and then stained with Tricolor-labeled monoclonal
Ab against CD4 and allophycocyanin-labeled monoclonal Ab to
CD8 (all from Caltag) for the last 30 min at 4

 

�

 

C. For analyzing the
level of HLA-A

 

*

 

201 expression, CD4

 

� 

 

T cells from A2HD and
HAM/TSP patients were stained with 1 

 

�

 

g anti–HLA-A

 

*

 

201 Ab
(BB7.2; reference 31) for 30 min at 4

 

�

 

C. After washing, the cells
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were stained with PE-labeled anti–mouse IgG1Ab (Southern Bio-
technology Associates, Inc.) for 30 min at 4

 

�

 

C. For phenotypic
analysis, purified CD4

 

� 

 

T cells by magnetic beads from HAM/
TSP patients were cultured for 24 h at 37

 

�

 

C in RPMI medium
supplemented with 10% fetal bovine serum, 2 mM 

 

l

 

-glutamine,
40 U/ml penicillin, 40 

 

�

 

g/ml streptomycin. The cells were then
stained with 1 

 

�

 

g PE-labeled TaxA2-Ab for 1 h, and stained
with FITC-labeled monoclonal Ab against CD25, CD45RO,
CD45RA (all from Caltag), or CD27 (BD Biosciences) for the last
30 min at 4

 

�

 

C. All cells were washed twice before analysis on a
FACSCalibur™ (Becton Dickinson). Data were analyzed with
CELLQuest™ software (Becton Dickinson).

 

Proliferation Assay.

 

CD4

 

� 

 

CD25

 

� 

 

and CD4

 

� 

 

CD25

 

� 

 

cells were
separated from HAM/TSP patients and cultured for 24 h, and the
cells were irradiated (3,000 rad). 10

 

5 

 

autologous CD8

 

� 

 

T cells were
then mixed with 10

 

5 

 

of the irradiated CD4

 

� 

 

CD25

 

� 

 

or CD4

 

�

 

CD25

 

� 

 

cells and cultured for 4 d in round-bottom, 96-well cul-
ture plates. Incorporation of [

 

3

 

H]thymidine (1 

 

�

 

Ci/well) by pro-
liferating cells was measured during the last 16 h of culture. In ad-
dition, proliferation of HTLV-I Tax–specific T cells and CMV
pp65–specific T cells was analyzed using flow cytometry. The cul-
tured cells were stained with PE-labeled Tax11-19 peptide–loaded
HLA-A

 

*

 

201 tetramer (provided by National Institutes of Health
AIDS Research and Reference Reagent Program) or CMV pp65
peptide–loaded HLA-A

 

*

 

201 tetramer (Beckman Coulter) for 30
min at 4

 

�

 

C. The cells were stained with Tricolor-labeled anti-
CD4 Ab and APC-labeled anti-CD8 Ab (Caltag) for the last 15
min at 4

 

�C. The cells were then fixed and permeabilized with
Cytofix/CytoPerm kit (BD PharMingen), and stained with FITC-
conjugated anti-Ki67 Ab (BD Biosciences). All cells were washed
twice before analysis on a FACSCalibur™ (Becton Dickinson).

Real-Time PCR and Real-Time RT-PCR. HTLV-I proviral DNA
load and HTLV-I tax mRNA load were measured using an ABI
PRISM 7700 Sequence Detector (Applied Biosystems) as previ-
ously described (10, 11). DNA was extracted using Puregene
DNA Isolation Kit (Gentra) and 100 ng sample DNA solution
per well was analyzed. The HTLV-I proviral DNA load was cal-
culated by the following formula: copy number of HTLV-I (pX)
per 100 cells � (copy number of pX) / (copy number of 	 actin/
2) 
 100. RNA was extracted using RNeasy Mini Kit (QIAGEN)
according to the manufacturer’s instructions. cDNA was synthe-
sized using TaqMan Gold RT-PCR Kit (Applied Biosystems).
Sample cDNA from 300 ng RNA per well was applied and ana-
lyzed. We used the human housekeeping gene hypoxanthine
ribosyl transferase (HPRT) primers and probe set (Applied
Biosystems) for internal calibration. The relative HTLV-I tax
mRNA load was calculated by the following formula: HTLV-I
tax mRNA load � (value of tax) / (value of HPRT) 
 10,000.

Results
Specificity and Sensitivity of Anti–Tax11-19 Peptide–HLA-

A*201 Ab. To demonstrate the specificity of peptide-spe-
cific, MHC-restricted Fab Abs that bind to Tax11-19
peptide–HLA-A*201 complexes (TaxA2-Ab), a human im-
mortalized B cell line expressing HLA-A*201 (HmyA2.1)
was pulsed with 10 �M HTLV-I Tax11-19 peptide or con-
trol melanoma gp100–derived G9-154 peptides, and incu-
bated with PE-labeled TaxA2-Ab. The ability of TaxA2-Ab
to bind to Tax11-19 peptide–HLA-A*201 molecule was
then monitored by flow cytometry. As shown in Fig. 1 A,
TaxA2-Ab reacted only with Tax11-19 peptide–loaded

Figure 1. Peptide-specific, HLA-restricted binding of Ab. (A) Peptide-
specific binding of anti–Tax11-19 peptide–HLA-A*201 Ab (TaxA2-Ab)
on HmyA2.1 cells. HmyA2.1 cells were pulsed with HTLV-I Tax11-19
peptide or control melanoma gp100–derived G9-154 peptides, incubated
with PE-labeled TaxA2-Ab, and then analyzed by flow cytometry.
TaxA2-Ab reacted only with Tax11-19 peptide–loaded HmyA2.1 cells
(solid line), but not with cells loaded with the control peptide (dotted
line). (B) Peptide-specific binding of anti–melanoma gp100 G9-154 pep-
tide–HLA-A*201 Ab (MelanomaA2-Ab) on HmyA2.1 cells. HmyA2.1
cells were pulsed with melanoma gp100–derived G9-154 peptides or con-
trol HTLV-I Tax11-19 peptide, incubated with PE-labeled MelanomaA2-
Ab, and then analyzed by flow cytometry. MelanomaA2-Ab reacted only
with G9-154 peptide–loaded HmyA2.1 cells (solid line), but not with cells
loaded with the control peptide (dotted line). (C) Peptide titration study of
TaxA2-Ab staining on HmyA2.1 cells. HmyA2.1 cells were pulsed with
the indicated concentration of HTLV-I Tax11-19 peptide, incubated with
PE-labeled TaxA2-Ab, and then analyzed by flow cytometry. The levels
of Tax11-19 peptide–HLA-A*201 complexes are expressed by mean fluo-
rescence intensity. (D and E) Peptide-specific binding of TaxA2-Ab on
CD4� T cells (D) and CD8� T cells (E) from an HLA-A*201� healthy do-
nor (A2HD). CD4� and CD8� T cells from A2HD were pulsed with 100
�M HTLV-I Tax11-19 peptide or control melanoma gp100–derived G9-
154 peptides, incubated with PE-labeled TaxA2-Ab, and then analyzed by
flow cytometry. TaxA2-Ab reacted only with Tax11-19 peptide–loaded
HmyA2.1 cells (solid line), but not with cells loaded with the control pep-
tide (dotted line). (F) Peptide titration study of TaxA2-Ab staining on
CD4� and CD8� T cells from A2HD. CD4� (�) and CD8� (�) T cells
from A2HD were pulsed with the indicated concentration of HTLV-I
Tax11-19 peptide, incubated with PE-labeled TaxA2-Ab, and then ana-
lyzed by flow cytometry. The levels of Tax11-19 peptide–HLA-A*201
complexes are expressed by mean fluorescence intensity.
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HmyA2.1 cells, but not with cells loaded with the control
peptide. Conversely, a peptide-specific, MHC-restricted
Fab Ab specific for the melanoma gp100 G9-154 pep-
tide–HLA-A*201 complex (MelanomaA2-Ab) specifically
bound HmyA2.1 cells pulsed with the melanoma gp100
peptide, but not Tax11-19 (Fig. 1 B). Peptide titration stud-
ies demonstrated that the level of TaxA2-Ab staining on
HmyA2.1 cells correlated with the concentration of loaded
Tax11-19 peptide (Fig. 1 C).

As these peptide-specific, MHC-restricted Fab Abs have
never been used for the staining of ex vivo human T lym-
phocyte samples, we validated the ability of these Abs to
detect peptide–HLA complexes using ex vivo T cells from
HLA-A*201 HTLV-I–seronegative healthy donors (A2HD)
pulsed with Tax11-19 peptide. CD4� and CD8� T cells
were purified using magnetic beads from A2HD PBMCs,
pulsed with or without Tax11-19 peptide, and stained with
TaxA2-Ab followed by flow cytometry analysis. As shown

Figure 2. Detection and phenotypic analysis of endogenous HTLV-I
Tax11-19 peptide–HLA-A*201 complexes on T cells from HAM/TSP
patients. (A) Detection of naturally processed endogenous HTLV-I
Tax11-19 peptide–HLA-A*201 complexes on T cells from a HAM/TSP
patient. Representative histograms of the expression of Tax11-19 pep-
tide–HLA-A*201 complexes on CD4� and CD8� T cells from a HAM/
TSP patient before and after 24 h of culture. Percentage of positive stain-
ing for TaxA2-Ab is shown in the top right. (B) Phenotypic characteriza-
tion of HTLV-I Tax11-19 peptide–HLA-A*201–expressing CD4� T
cells from HAM/TSP patients. 24-h cultured CD4� T cells of HAM/
TSP patients were stained by anti-CD4 Abs in combination with anti-
CD25, anti-CD27, anti-CD45RO, or anti-CD45RA Abs. Representa-
tive histograms of Tax11-19 peptide–HLA-A*201 expression on each
population are presented.
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in Fig. 1, D and E, TaxA2-Ab could detect the Tax11-19
peptide–HLA-A*201 complexes on A2HD CD4� T cells
(Fig. 1 D) as well as on CD8� T cells (Fig. 1 E) when pulsed
with 100 �M Tax11-19 peptide, but not with control
G9-154 peptide. The binding of TaxA2-Ab to Tax11-19
peptide pulsed A2HD T cells were also peptide dose de-
pendent (Fig. 1 F).

Detection of Tax11-19 Peptide–HLA-A*201 Complexes on
T Cells from HAM/TSP Patients. Using this TaxA2-Ab,
the expression of Tax11-19 peptide–HLA-A*201 com-
plexes was analyzed on T cells from HAM/TSP patients. It
has been reported that HTLV-I infects both CD4� and
CD8� T cells (20, 22). Although HTLV-I antigen expres-
sion ex vivo is negligible, infected cells can start to ex-
press HTLV-I antigen after short-term culture (32). There-
fore, CD4� and CD8� T cells were separated using MACS
beads and the expression of Tax11-19 peptide–HLA-A*201
complexes on each T cell subset before and after culture
was investigated using the TaxA2-Ab. Before culture, the
Tax11-19 peptide–HLA-A*201 complexes could not be
detected both on ex vivo CD4� and CD8� T cells (Fig. 2
A). However, after 24 h of culture, the expression of
Tax11-19 peptide–HLA-A*201 complexes was demon-
strated on CD4� T cells, but not on CD8� T cells (Fig. 2
A). These results indicate that the peptide-specific, MHC-
restricted Fab Abs are capable of detecting the specific pep-
tide–HLA complexes after natural endogenous intracel-
lular antigen processing as previously reported (29), and in
HAM/TSP patients CD4� T cells present more Tax11-19
peptide–HLA-A*201 complexes than CD8� T cells.

As there are no direct methods for the enumeration and
phenotyping of individual cells bearing physiological levels
of peptide–HLA complexes in mixed cell populations, the
peptide-specific, MHC-restricted Fab Abs are ideally suited
to conduct such an analysis. Therefore, to investigate
which subset of CD4� T cells preferentially express endog-
enous Tax11-19 peptide–HLA-A*201 complexes, the
TaxA2-Ab staining on 24-h cultured CD4� T cells was an-
alyzed in combination with flow cytometric staining of cell
surface antigens (CD25, CD27, CD45RO, and CD45RA).
As shown in Fig. 2 B, Tax11-19 peptide–HLA-A*201
complexes were preferentially expressed on CD25�,
CD27�, CD45RO�, CD45RA� cells (i.e., phenotypi-
cally defining an activated, effector/memory population).
Among these cell surface markers, CD25 was shown to be
the best marker to discriminate Tax11-19 peptide–HLA-
A*201 complex–positive cells from –negative cells. Identi-
cal results were obtained from all six HAM/TSP patients
tested (not depicted).

CD4� CD25� T Cells Are the Main Reservoir for HTLV-I
and Express Virus. Increased detection of Tax11-19 pep-
tide–HLA-A*201 complexes on CD4� CD25� T cells from
HAM/TSP patients suggested two possibilities: HTLV-I
preferentially infects CD4� CD25� T cells, or HTLV-I–
infected T cells expressed CD25 during short-term culture
as previously reported (33). Although these two possibilities
are not mutually exclusive, to address whether CD4�

CD25� T cells are preferentially infected with HTLV-I, we
separated peripheral blood T cells from HAM/TSP patients
into CD4� CD25�, CD4� CD25�, CD4� CD45RO�,
CD4� CD45RO�, CD8� CD25�, CD8� CD25� T cells
using MACS beads, and measured HTLV-I proviral DNA
load within each population using a real-time quantitative
PCR method (TaqMan). As shown in Fig. 3 A (means of
six HAM/TSP patients), HTLV-I proviral DNA was high-
est in CD4� CD25� T cells, although HTLV-I also showed
a tropism for memory CD4� T cells (CD4� CD45RO�)
and is consistent with a previous report (20). This preferen-

Figure 3. HTLV-I tropism and preferential virus expression in CD4�

CD25� T cells in HAM/TSP patients. (A) HTLV-I tropism in CD4�

CD25� T cells in HAM/TSP patients. HTLV-I proviral DNA load
of CD4� CD25�, CD4� CD25�, CD4� CD45RO�, CD4� CD45RO�,
CD8� CD25�, CD8� CD25� T cells were assessed using quantitative
PCR method in six HAM/TSP patients. Data are mean � SE. (B)
HTLV-I virus load and the percentages of CD4� CD25� T cells in
PBMCs of HAM/TSP patients. HTLV-I proviral DNA load in PBMCs
and the percentages of CD4� CD25� T cells in PBMCs of six HAM/TSP
patients were plotted. (C) Increased HTLV-I tax mRNA expression of
CD4� CD25� than CD4� CD25� T cells in HAM/TSP patients. HTLV-I
tax mRNA load of 24-h cultured CD4� CD25� and CD4� CD25� T
cells were assessed using quantitative RT-PCR method in five HAM/
TSP patients. Data are mean � SE.
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tial infection for CD25� population was also observed in
CD8� T cells (Fig. 3 A).

These results directly demonstrated that CD4� CD25� T
cells are an important virus reservoir. To investigate how
much of the virus load of PBMCs was accounted for by
CD4� CD25� T cells, HTLV-I proviral DNA load in
PBMCs and the percentage of CD4� CD25� T cells in
PBMCs in each HAM/TSP patient were analyzed (Fig. 3 B).
Surprisingly, virus load and percentage of CD4� CD25� T
cells were similar in HAM/TSP patients with medium to
low virus load (HAM 3–6). Furthermore, in the patients
with high virus load (HAM 1 and 2), the number of virus-
infected cells (virus load) was demonstrated to be higher
than the percentage of CD4� CD25� T cells, suggesting

that other T cell populations were also infected with
HTLV-I in the patients with high virus load. As previously
reported (24), a positive correlation between HTLV-I
proviral load and the proportion of CD4� CD25� T cells
has also been observed.

Although both CD4� CD25� and CD4� CD25� T cells
were infected with HTLV-I (Fig. 3 A), it was shown that
CD4� CD25� T cells preferentially express Tax11-19 pep-
tide–HLA-A*201 complexes (Fig. 2 B), suggesting that
HTLV-I–infected CD4� CD25� T cells inherently express
virus relative to HTLV-I–infected CD4� CD25� cells. To
test this possibility, CD4� CD25� and CD4� CD25� T
cells were isolated from peripheral blood of five HAM/
TSP patients, cultured for 24 h, and the level of HTLV-I

Figure 4. Proliferation of
HTLV-I Tax–specific CD8� T
cells are stimulated by CD4�

CD25� T cells in HAM/TSP
patients. (A) Proliferation of
CD8� T cells stimulated by au-
tologous CD4� CD25� T cells
in HAM/TSP patients. Purified
CD4� CD25� and CD4� CD25�

T cells from three HAM/TSP
patients (HAM 4–6; HTLV-I
Tax11-19–HLA-A*201 tetramer–
specific T cell frequency in total
CD8 was 13.24, 5.70, and 1.78%,
respectively) were cultured for
24 h and irradiated. Autologous
CD8� T cells were then incu-
bated with the CD4� CD25� or
CD4� CD25� T cells for 4 d and
proliferation of CD8� T cells was
assessed by the incorporation of
[3H]thymidine (1 �Ci/well) dur-
ing the last 16 h of culture. In
these experiments, background
counts in the wells containing
APCs were �300 cpm. (B) Pro-
liferation of CD8� T cells stimu-
lated by autologous CD4� CD25�

T cells in a HAM/TSP patient.
Histograms of intracellular Ki-67 staining in CD8� T cells when stimulated by irradiated, cultured, autologous CD4� CD25� or CD4� CD25� T cells
are presented. Percentage of positive staining for Ki-67 is shown in the center. (C) Proliferation of HTLV-I Tax11-19–specific T cells stimulated by au-
tologous CD4� CD25� T cells in a HAM/TSP patient. Dot plots of intracellular Ki-67 staining in CD8� T cells, Tax11-19–HLA-A*201 tetramer�

CD8� T cells, and CMV pp65–HLA-A*201 tetramer� CD8� T cells when stimulated by irradiated, cultured, autologous CD4� CD25� or CD4�

CD25� T cells are presented. Percentage of positive staining for Ki-67 is shown in the top right.
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tax mRNA expression in each population was compared
using real-time quantitative RT-PCR (Fig. 3 C). Interest-
ingly, CD4� CD25� T cells expressed extremely high
HTLV-I tax mRNA levels (approximately eight times)
compared with CD4� CD25� T cells. These results are
consistent with the observations that in HAM/TSP, CD4�

CD25� T cells are the main reservoir for HTLV-I and ex-
press endogenous virus mRNA and Tax11-19 peptide–
HLA-A*201 complexes.

CD4� CD25� T Cells Stimulate the Expansion of HTLV-I
Tax–specific CD8� T Cells in HAM/TSP Patients. Having
observed that CD4� CD25� T cells are preferentially in-
fected with HTLV-I and express Tax11-19 peptide–HLA-
A*201 complexes, we tested whether these cells can stimu-
late the proliferation of autologous CD8� T cells (and more
specifically, HTLV-I–specific CD8� T cells) in HAM/TSP
patients. Peripheral blood T cells from three HAM/TSP pa-
tients were separated into CD4� CD25� and CD4� CD25�

cells and cultured for 24 h. After culture, both populations
were irradiated. Autologous CD8� T cells were then added
at a 1:1 ratio where proliferation of CD8� T cells was ana-
lyzed after 4 d of culture. As shown in Fig. 4 A, CD4�

CD25� T cells from HAM/TSP patients preferentially stim-
ulated the proliferation of autologous CD8� cells.

To determine whether proliferation of HTLV-I–specific
CD8� T cells were MHC restricted and HTLV-I spe-
cific, intracellular Ki-67 staining combined with HTLV-I
Tax11-19–HLA-A*201 tetramer or CMV pp65–HLA-
A*201 tetramer staining was performed in a HAM/TSP

patient who harbored detectable levels of both HTLV-I
and CMV tetramer� CD8� T cells. As shown in Fig. 4 C,
when HAM/TSP patient CD8� T cells were cultured with
autologous CD4� CD25�, the majority of HTLV-I
Tax11-19–specific CD8� T cells (90.1%) was shown to be
proliferating (Ki67�). By comparison, stimulation with au-
tologous CD4� CD25� cells resulted in the proliferation
of only 37.4% of the HTLV-I Tax11-19–specific CD8�

T cells. Surprisingly, CMV pp65–specific CD8� T cells
showed a similar degree of proliferation when stimulated
with autologous CD4� CD25� or CD4� CD25� T cells.
These results directly demonstrate that HTLV-I–infected
CD4� CD25� T cells can preferentially stimulate the ex-
pansion of HTLV-I–specific CD8� T cells through pep-
tide–HLA complexes in HAM/TSP patients.

Increased Detection of Tax11-19 Peptide–HLA-A*201
Complexes on CD4� T Cells in HAM/TSP Patients. The
inability to detect Tax11-19 peptide–HLA-A*201 com-
plexes directly from ex vivo T cells of HAM/TSP patients
(Fig. 2 A) could be reflective of a low concentration of
Tax11-19 peptide bound to endogenous HLA-A*201
molecules. As we had shown that the staining intensity of
the TaxA2-Ab was dependent on the concentration of the
peptide used for pulsing T cells in A2HD (Fig. 1 F), it was
of interest to determine whether this TaxA2-Ab staining of
peptide-pulsed ex vivo T cells was different between
A2HD and HLA-A*201 HAM/TSP patients. CD4� T
cells were separated from ex vivo peripheral blood T cells
of six A2HD and six HLA-A*201 HAM/TSP patients.

Figure 5. Increased detection
of Tax11-19 peptide–HLA-
A*201 complexes on CD4� T
cells in HAM/TSP patients. (A)
Representative histograms of in-
creased sensitivity of CD4� T
cells from HAM/TSP patients
for TaxA2-Ab staining. Fluores-
cence intensity for TaxA2-Ab
staining of CD4� T cells from a
HAM/TSP patient (bottom left)
was stronger than CD4� T cells
from A2HD (top left) when
pulsed with 10 �M Tax11-19
peptide (solid line) compared
with 10 �M control melanoma
gp100 G9-154 peptide (dotted
line). However, fluorescence
intensity for MelanomaA2-Ab
staining of CD4� T cells from a
HAM/TSP patient (bottom
right) was similar to that of
A2HD CD4� T cells (top right)
when pulsed with 10 �M mela-
noma gp100 G9-154 peptide

(solid line) compared with 10 �M control Tax11-19 peptide (dotted line). A2HD, HLA-A*201� healthy donor. (B) Fluorescence intensity for TaxA2-
Ab staining of CD4� T cells from six HAM/TSP patients was significantly stronger (P � 0.0039) than CD4� T cells from six A2HD patients when
pulsed with 10 �M Tax11-19 peptide. (C) No significant difference (P � 0.1093) of the fluorescence intensity of anti–HLA-A*201 staining between
CD4� T cells from six HAM/TSP patients and CD4� T cells from six A2HD patients. (D) Correlation between the level of Tax11-19 peptide–HLA-
A*201 expression and HTLV-I DNA load, RNA load, and HTLV-I Tax–specific CD8� T cell frequency. The levels of Tax11-19 peptide–HLA-A*201
expression on CD4� T cells were significantly correlated with HTLV-I proviral DNA load (P � 0.0490, r2 � 0.661), HTLV-I mRNA load (P �
0.0259, r2 � 0.749), and HTLV-I Tax11-19 tetramer–specific CD8� T cell frequencies (P � 0.0470, r2 � 0.668) in six HAM/TSP patients.
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These ex vivo T cells were pulsed at a concentration of 10
�M Tax11-19 peptide, previously determined to be in a
range where the TaxA2-Ab was unable to detect Tax11-
19 peptide–HLA-A*201 complexes (Fig. 1 F). In contrast
to HTLV-I Tax11-19 peptide–pulsed A2HD T cells (Figs.
5 A and 1 F), staining intensity of the TaxA2-Ab on com-

parably peptide-pulsed HAM/TSP T cells was significantly
higher (Fig. 5, A and B). To determine if this difference
between A2HD and HAM/TSP patients was specific for
the amount of Tax11-19 peptide–HLA-A*201 complexes
as defined by the TaxA2-Ab, CD4� T cells from the same
individuals were pulsed with the same concentration of
control melanoma gp100 G9-154 peptide, and the level of
G9-154 peptide–HLA-A*201 complexes was analyzed us-
ing the MelanomaA2-Ab. As shown in Fig. 5 A, staining
intensity with the MelanomaA2-Ab in HAM/TSP patients
was similar to that in A2HD. These observations were
confirmed using a wider range of peptide concentrations
(Fig. 6, A and B). As the staining sensitivity of the TaxA2-
Ab might be affected by the amount of expressed HLA-
A*201 complexes, we compared the amount of HLA-
A*201 expression on CD4� T cells between A2HD and
HAM/TSP using anti–HLA-A*201–specific Ab (BB7.2).
There was no statistically significant difference in the
amount of HLA-A*201 expression between A2HD and
HAM/TSP (Fig. 5 C), suggesting that differential levels of
HLA-A*201 expression do not contribute to the TaxA2-
Ab staining intensity between A2HD and HAM/TSP pa-
tients. In addition, we were able to identify two HLA-
A*0201 asymptomatic carriers from which sufficient cells
were available to analyze with the TaxA2-Ab. TaxA2-Ab
staining intensities on CD4� T cells of these two HLA-
A*0201 asymptomatic carriers were similar with those on
A2HD (unpublished data).

Because the level of staining intensity for Tax11-19 pep-
tide–HLA-A*201 complexes was different between HAM/
TSP patients, controls, and two HLA-A*0201 asymptom-
atic carriers, it was likely that increased detection of these
complexes on ex vivo CD4� T cells from HAM/TSP pa-
tients might reflect the amount of endogenously processed
Tax11-19 peptide. In support of this hypothesis, we deter-
mined if there was a correlation between the level of
Tax11-19 peptide–HLA-A*201 complexes and HTLV-I
proviral DNA load, HTLV-I tax mRNA load, and HTLV-
I Tax11-19 peptide–specific CTL frequencies. As shown in
Fig. 5 D, all three parameters significantly correlated with
the level of expression of Tax11-19 peptide–HLA-A*201
complexes in HAM/TSP patients. However, the level of
TaxA2-Ab staining did not correlate with the level of
HLA-A*201 expression (unpublished data), again suggest-
ing that the differential levels of Tax11-19 peptide–HLA-
A*201 complex expression is not reflective of the amount
of HLA expression. Collectively, these results suggest
the existence of endogenously processed Tax11-19 pep-
tide–HLA-A*201 complexes on ex vivo CD4� T cells
from HAM/TSP patients, which are stimulating HTLV-I
Tax11-19–specific CD8� T cells.

Discussion
Virus-specific T cells recognize antigens by engaging the

antigen-specific TCR with peptide–HLA complexes dis-
played on the surface of APCs. A major advance in immu-

Figure 6. Peptide titration studies using T cells from HAM/TSP pa-
tients and A2HD. Peptide–HLA*A201-specific binding of TaxA2-Ab or
MelanomaA2-Ab on T cells from HAM/TSP patients or A2HD. These
cells were pulsed with various concentrations of HTLV-I Tax11-19
peptide or melanoma gp100–derived G9–154 peptides, incubated
with PE-labeled TaxA2-Ab or MelanomaA2-Ab, and then analyzed by
flow cytometry. (A) Representative histograms for TaxA2-Ab and
MelanomaA2-Ab analysis. Fluorescence intensity for TaxA2-Ab staining
of T cells from a HAM/TSP patient was significantly higher than T cells
from A2HD when pulsed with Tax11-19 peptide at concentrations 10
�M (solid line). Melanoma gp100 G9-154 peptide was used as control
peptide (dotted line). There was no change in fluorescence intensity be-
tween a HAM/TSP patient and A2HD when pulsed with melanoma
gp100 G9-154 peptide (solid line) or Tax11-19 peptide (dotted line) and
stained with MelanomaA2-Ab. (B) Mean fluorescence intensity of
Tax11-19 peptide–HLA-A*201 complexes and Melanoma G9-154–
HLA-A*201 peptide complexes from A and B. T cells from A2HD were
pulsed with the indicated concentrations of HTLV-I Tax11-19 peptide
and incubated with PE-labeled TaxA2-Ab (�), or pulsed with the indi-
cated concentrations of melanoma gp100 G9-154 peptide and incubated
with PE-labeled MelanomeA2-Ab (�). T cells from HAM/TSP patients
were pulsed with the indicated concentrations of HTLV-I Tax11-19 pep-
tide and incubated with PE-labeled TaxA2-Ab (�), or pulsed with the
indicated concentrations of melanoma gp100 G9-154 peptide and incu-
bated with PE-labeled MelanomeA2-Ab (�).
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nology has been the description and use of polyvalent, sol-
uble peptide–HLA complexes that specifically bind the
TCR (tetramers; 34). Quantitative detection of antigen-
specific T cell populations by such peptide–HLA tetramers
has been useful for monitoring virus-specific T cell immu-
nity in laboratory and clinical settings (35). However, there
has been a tremendous shortage of reagents to study and vi-
sualize the ligand for the TCR, the peptide–HLA complex.
Recently, by using large human Ab phage libraries, unique
Abs with peptide-specific, HLA-restricted recognition pat-
tern, termed peptide-specific, MHC-restricted Abs, have
been isolated (28, 29). In this study we used these Abs,
which specifically recognize HTLV-I Tax11-19 peptide–
HLA-A*201 complexes (TaxA2-Ab), in analyzing ex vivo
T cells from HLA-A*201 healthy individuals and HTLV-I–
infected HAM/TSP patients. We have demonstrated spe-
cific binding of this Ab to exogenous peptide-pulsed as
well as naturally processed endogenous HTLV-I Tax11-19
peptide–HLA-A*201 complexes on peripheral T cells from
HAM/TSP patients, but not from HLA-A*201 healthy do-
nors or two HLA-A*201 asymptomatic carriers. We feel
this peptide-specific, MHC-restricted Ab will be useful in
the analysis of other infectious agents, tumors, and autoan-
tigens, and will further enhance our understanding of anti-
gen–host cell immunological interactions.

This study also has defined the in vivo cellular tropism of
HTLV-I using a reliable and accurate real-time quantitative
PCR technique (TaqMan). HTLV-I was originally isolated
from cultured CD4� T cells of a patient with cutaneous T
cell lymphoma (36). Soon after, HTLV-III/lymphadenop-
athy–associated virus was identified (37) and subsequently
renamed HIV-I. These retroviruses predominantly infect
CD4� cells (38, 39), a seminal observation that directly led
to defining CD4 as a receptor component for HIV-I (40,
41). Although the receptor for HTLV-I has not yet been
identified, it must clearly be ubiquitous because HTLV-I
infects a wide range of cells in vitro (42). Since 1990,
HTLV-I has been thought to preferentially infect memory
CD4� (CD4� CD45RO�) T cells in vivo (20). A recently
established real-time quantitative PCR technique (Taq-
Man) has demonstrated that CD8� T cells were also in-
fected with HTLV-I (22). Because HTLV-I Tax has been
known to transactivate the expression of IL-2R� chain
(CD25; 33), and a significant positive correlation between
HTLV-I provirus load and the proportion of CD4�

CD25� T cells has been demonstrated in PBMCs of
HTLV-I–infected individuals (24), it has been hypothe-
sized that CD4� CD25� T cells might be a reservoir for
HTLV-I (25). This study, again using real-time quantita-
tive PCR, supported this hypothesis but suggested two
possibilities: HTLV-I preferentially infects CD4� CD25� T
cells, or HTLV-I–infected T cells could induce CD25 in
vivo. Although these possibilities are not mutually exclu-
sive, the report that the HTLV-I receptor is an early T cell
activation marker (43) may support the former possibility
because CD25 is also a T cell activation marker, whereas a
study demonstrating that HTLV-I Tax protein transacti-

vates the promoters of IL-2 and CD25 (33) may support
the latter.

Here we demonstrate that a high HTLV-I proviral load in
CD4� CD25� T cells from HAM/TSP patients was associ-
ated with an increased ability to express HTLV-I mRNA
and process HTLV-I Tax11-19–HLA-A*201 complexes
on their cell surface. Of importance is the observation
that HTLV-I–infected CD4� CD25� T cells were directly
shown to stimulate the proliferation of HTLV-I–specific
CD8� T cells where the level of Tax11-19–HLA-A*201 ex-
pression correlated with HTLV-I Tax–specific CD8� CTL
frequency ex vivo. These increased antigen-presenting abili-
ties of HTLV-I–infected CD4� CD25� T cells may also be
associated with HTLV-I–induced overexpression of adhe-
sion molecules and down-regulation of immunosuppressive
cytokine as previously reported (44–46). These results sup-
port previous reports demonstrating that the frequency of
HTLV-I Tax–specific CD8� CTLs in the peripheral blood is
proportional to the amount of HTLV-I proviral DNA load
and the levels of HTLV-I tax mRNA expression (10, 11,
27). These results suggest the existence of continuous in vivo
HTLV-I antigen presentation, which may serve to drive
the increased numbers of HTLV-I–specific CD8� CTLs in
HAM/TSP patients. Moreover, the existence of such con-
tinuous HTLV-I antigen presentation in the presence of very
high frequencies of HTLV-I–specific CD8� CTLs (as high as
30% of total CD8� cells in some patients), also supports the
hypothesis that HTLV-I–specific CTLs might be insufficient
to control persistent HTLV-I infection (47, 48).

Recently, CD4� CD25� T cells have been reported to
include regulatory T cell populations that are engaged in
the maintenance of immunologic self-tolerance by actively
suppressing the activation and expansion of self-reactive T
cells that may cause autoimmune disease (49, 50). This nor-
mal CD4� CD25� regulatory T cell population constitutes
5–10% of peripheral CD4� T cells in mice and humans (49,
50). Removal of this population from normal rodents leads
to the spontaneous development of various autoimmune
diseases (49, 50). Importantly, CD4� CD25� T cells have
been reported to suppress the proliferation of CD4�

CD25� T cells as well as CD8� T cells induced either by
polyclonal or antigen-specific stimuli (49, 50). It has not es-
caped our attention that a proportion of HTLV-I–infected
CD4� CD25� T cells in HAM/TSP may also be regulatory
and infection with HTLV-I may alter function of these cell
populations. It is clear from the results in this study that
HTLV-I–infected CD4� CD25� cells are not suppressive
but are stimulatory for HTLV-I Tax–specific proliferation
of CD8� T cells. These results suggest that CD4� CD25�

cells infected with HTLV-I may lack regulatory T cell
function in HAM/TSP patients. This hypothesis is cur-
rently being examined.

In conclusion, using a recently developed peptide-
specific, MHC-restricted Ab that specifically recognizes
Tax11-19 peptide–HLA-A*201 complexes coupled with a
real-time quantitative PCR methodology, CD4� CD25� T
cells from HAM/TSP patients were demonstrated to be a
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major reservoir of HTLV-I proviral DNA. These cells
preferentially express HTLV-I mRNA and can present
Tax11-19 peptide–HLA-A*201 complexes that can stimu-
late the proliferation of HTLV-I–specific CD8� T cells.
Moreover, higher sensitivity to HTLV-I Tax11-19 pep-
tide–pulsed CD4� T cells in HAM/TSP patients suggest
the existence of endogenously processed Tax11-19 pep-
tide–HLA-A*201 complexes on ex vivo CD4� T cells.
This novel Ab demonstrated a significant correlation be-
tween HTLV-I DNA, RNA, peptide–HLA complexes,
and HTLV-I–specific T cell immune responses. These re-
sults indicate that the increased detection of HTLV-I
proviral DNA and Tax11-19 peptide–HLA-A*201 com-
plexes in HAM/TSP CD4� CD25� T cell subsets may
serve to stimulate and expand HTLV-I Tax–specific CD8�

T cells that are important in the pathogenesis of HTLV-I–
associated neurological disease.
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