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MALAT1 as master regulator 
of biomarkers predictive 
of pan‑cancer multi‑drug resistance 
in the context of recalcitrant NRAS 
signaling pathway identified using 
systems‑oriented approach
Santosh Kumar & Seema Mishra*

NRAS, a protein mutated in several cancer types, is involved in key drug resistance mechanisms 
and is an intractable target. The development of drug resistance is one of the major impediments in 
targeted therapy. Currently, gene expression data is used as the most predictive molecular profile in 
pan-cancer drug sensitivity and resistance studies. However, the common regulatory mechanisms that 
drive drug sensitivity/resistance across cancer types are as yet, not fully understood. We focused on 
GDSC data on NRAS-mutant pan-cancer cell lines, to pinpoint key signaling targets in direct or indirect 
associations with NRAS, in order to identify other druggable targets involved in drug resistance. 
Large-scale gene expression, comparative gene co-expression and protein–protein interaction 
network analyses were performed on selected drugs inducing drug sensitivity/resistance. We validated 
our data from cell lines with those obtained from primary tissues from TCGA. From our big data studies 
validated with independent datasets, protein-coding hub genes FN1, CD44, TIMP1, SNAI2, and SPARC​ 
were found significantly enriched in signal transduction, proteolysis, cell adhesion and proteoglycans 
pathways in cancer as well as the PI3K/Akt-signaling pathway. Further studies of the regulation of 
these hub/driver genes by lncRNAs revealed several lncRNAs as prominent regulators, with MALAT1 
as a possible master regulator. Transcription factor EGR1 may control the transcription rate of MALAT1 
transcript. Synergizing these studies, we zeroed in on a pan-cancer regulatory axis comprising EGR1-
MALAT1-driver coding genes playing a role. These identified gene regulators are bound to provide new 
paradigms in pan-cancer targeted therapy, a foundation for precision medicine, through the targeting 
of these key driver genes in the improvement of multi-drug sensitivity or resistance.

Cancer is a serious health issue and the second leading cause of death worldwide as estimated by World Health 
Organization1. Drug resistance which can be acquired or intrinsic, develops due to the failure of chemothera-
peutic drugs to treat cancer cells because of limited effectiveness2–4. While intrinsic antibiotic/drug resistance 
is a naturally occurring phenomenon primarily present before chemotherapy5,6, acquired drug resistance arises 
after the chemotherapeutic treatment of cancer2.

Intrinsic drug resistance may arise due to existential mutations in crucial genes, intrinsic heterogeneity of 
tumors, and/or activation of certain molecular pathways against anti-cancer drugs6. In one study, transcriptional 
repressors Snail and Slug were observed to induce radioresistance and chemoresistance in ovarian cancer through 
the antagonism of p53-mediated apoptosis7. Acquired drug resistance may be the result of activation of second-
ary proto-oncogenes, mutations or altered expression of drug targets and post-treatment changes in the tumor 
microenvironment. Reiterating, there are several possible mechanisms involved in cancer drug resistance, includ-
ing altered expression and mutation in target oncogenes, compensatory activation of the downstream signaling 
pathways, epigenetic abnormalities and histological transformations8,9. Drug resistance can also occur due to 
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alterations in the molecular structures of drug targets. As an example, imatinib resistance was reported due to 
gatekeeper mutation in the oncogenic kinase domain of BCR-ABL1 (T315) in chronic myeloid leukemia (CML) 
patients2. In one study, tumors were observed to develop enzalutamide-resistance through lineage plasticity10. 
ABC transporter family proteins have also been found to be responsible for multi-drug resistance in several 
tumors, with MDR1/P-glycoprotein or ABCB1 as one of the first factors identified in an in vitro model11. In order 
to overcome drug resistance, several cancer genomic biomarkers have been identified, which are highly associated 
with anti-cancer drug sensitivity in cancer cell lines12. Many new anti-cancer drugs have been screened at a large 
scale against a wide range of human cancer cell lines to uncover clinically meaningful gene-drug interactions13,14. 
Such studies on gene/protein-drug interactions are important in identifying and sorting the problem of drug 
resistance and in proposing novel therapeutic biomarkers.

An intensive search for the key genes frequently involved in cancer drug resistance led us to the RAS-RAF 
family of genes. Kinases encoded by the RAF gene family which play an important role in cell growth, prolifera-
tion and differentiation are regulated by RAS. Mutations in the RAS family of proteins can influence phenotypes. 
Several novel roles of this family of proteins in human genetic disorders have been proposed15. Studies suggest 
that mutations in NRAS and BRAF are associated with the declining survival rate of metastatic cancer patients16. 
In one study17, however, mutant NRAS was not found to be significantly associated with survival in colon cancer 
patients. It is suggested that NRAS mutations might arise under the conditions of chronic apoptotic stress18, and 
that the mutation of NRAS may suppress apoptosis18,19. Mutation in NRAS is associated with the mechanisms 
involved in drug resistance20,21. In the former study, it was found that in mutant BRAF melanoma cells with 
acquired vemurafenib-resistance mediated by secondary mutation in NRAS, PB04 inhibited the phosphorylation 
of ERK1/2, while in the latter study, it was observed that the acquired resistance to B-RAF inhibitor developed 
through NRAS mutations. RAS-targeted therapy has long been elusive22. Mutant NRAS is constitutively active, 
and very difficult to target directly. Hence, the development of drugs for NRAS is largely unsuccessful. Several 
strategies for targeting are beginning to be explored23. MEK inhibitor binimetinib was used in a phase III trial 
to assess the efficacy and safety against NRAS-mutant melanoma, however, data is as yet insufficient to reach a 
definite conclusion as to its efficacy improvement24–26. Phase 1 clinical trials of LXH254, a pan-RAF inhibitor, 
in patients with solid tumors harboring MAPK pathway alterations have just been completed in February 2022 
(https://​clini​caltr​ials.​gov/​ct2/​show/​NCT02​607813), and final results remain to be disseminated. Currently, to 
the best of our knowledge, there is no targeted therapy that has yet been approved for NRAS-mutant cancer, 
although several inhibitors are under investigation26,27.

It is widely known that bound RAS proteins activate several downstream pathways and, in this manner, 
can act as an effector28. In order to screen for druggable targets, which may be in direct or indirect association 
with NRAS, we hypothesized that such genes other than NRAS present in the MAPK signaling pathway, may be 
promising targets. Further, understanding the regulatory environment of such targets will be key to circumvent 
the effects of refractory mutant NRAS in drug resistance. Towards this, in addition to the omnipresent proteins 
as regulators, we focused on the identification of key long non-coding RNAs (lncRNAs), the newly emerging 
ones, to pinpoint key master regulators of select coding genes. LncRNAs through their actions on such predictive 
biomarker targets may directly or indirectly regulate pan-cancer drug sensitivity and resistance.

LncRNAs alter gene expression in a variety of cancer types29,30,31. Saleembhasha and Mishra 32, first published 
in 2017 working with a TCGA RNA-seq dataset of 5601 samples from 15 different primary cancer types, proposed 
a pan-cancer regulatory axis consisting of PVT1, E2F1 and FOXM1 as common gene expression regulatory entity. 
Other lncRNAs have also been implicated to function as master regulators of overexpressed common coding 
genes involved in primary pan-cancer development and among these, PVT1, SNHG11 and MIR22HG are deduced 
to be key regulatory lncRNAs32. Further, it has been shown that lncRNAs have a significant impact on the cancer 
drug resistance in many cancer types29,33. As an example, TP73-AS1 lncRNA was found to induce temazolamide 
(TZM) resistance in glioblastoma cancer stem cells by altering ALDH1A1 expression34 and HOTAIR1 lncRNA 
was shown to promote tamoxifen resistance in breast cancer by activating estrogen receptor (ER) signaling35. 
However, the exact molecular mechanisms of several lncRNAs involved in cancer drug resistance have not been 
fully characterized.

In this study, we probed the likely functional roles of predictive biomarkers and their regulatory mechanisms 
in pan-cancer drug resistance by employing microarray data and drug response data from the updated Genom-
ics of Drug Sensitivity in Cancer (GDSC) database. We validated our observations on significantly differentially 
expressed genes (DEGs) obtained from cell lines with those obtained from cancer primary tissues from patients, 
which is deposited in TCGA. We also constructed gene co-expression, protein–protein interaction and regulatory 
networks and analyzed the networks both qualitatively and quantitatively36 to pinpoint probable biomarkers. 
Further, comprehensive studies on the regulation of these druggable targets by lncRNAs at the mRNA level, pro-
vided novel insights into their regulatory pattern and mechanisms. These insights are expected to help improve 
pan-cancer drug sensitivity to these select drugs acting on the molecules involved in the NRAS signaling pathway, 
and will also be useful in drug repurposing studies utilizing our chosen targets.

Materials and methods
Drug response data analysis taken from genomics of drug sensitivity in cancer (GDSC) data‑
base.  GDSC database is the largest publicly available resource for information on drug sensitivity in cancer 
cells and molecular markers of drug response, gene expression, and copy number alteration for thousands of 
cancer cell lines. Currently, it contains approximately 2,12,774 drug dose–response measurements for drug sen-
sitivity/resistance. It harbors data for about 265 drugs with their sensitivities measured across thousands of can-
cer cell lines derived from primary cells of different tissues including cancers of lung (179 cell lines), hematopoi-
etic & lymphoid tissues (175 cell lines), skin (62 cell lines), CNS (58 cell lines) and breast (52 cell lines), among 
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others. (Supplementary Fig. S1a)13,37. These screened anti-cancer drugs include clinical drugs (n = 48), drugs in 
clinical development (n = 76), and experimental compounds (n = 141), targeting a wide range of biomarkers and 
biological pathways such as apoptosis, transcription regulation, DNA repair and protein kinase pathways. (Sup-
plementary Fig. S1b).

Cancer cell lines harboring mutant NRAS: drug sensitivity data.  For cell lines harboring mutant 
NRAS gene, analysis of variance (ANOVA) test to uncover the gene-drug associations for drug sensitivity and 
resistance in cancer cell lines based on drug IC50 value, has been performed and deposited in GDSC itself. From 
this ANOVA analysis on NRAS-mutant vs NRAS-wild type cancer cell lines, 12 drugs were found to be signifi-
cantly associated (threshold p < 0.0001, FDR ≤ 25%) with either drug sensitivity or resistance (https://​www.​cance​
rrxge​ne.​org; Supplementary Fig. S2) and therefore, were enlisted. In NRAS-mutant cell lines, drug sensitivity was 
attributed to MEK1/2, BRAF, TAK and MAP4K2 inhibitors (p-values = 3.04 × 10–10 for PD0325901, 3.38 × 10–4 
for PLX4720, 1.05 × 10–5 for TL-1–85 and 1.55 × 10–5 for NG-25), respectively. However, NRAS-mutant cancer 
cell lines were significantly resistant to Foretinib, a MET inhibitor (p-value = 2.61 × 10–4) and also resistant to 
Ponatinib (p-value = 2.99 × 10–5) and Cabozantinib (p-value = 1.61 × 10–4), which are multiple target inhibitors 
(Supplementary Table S1). A schematic representation of the methods used is depicted as a flow chart (Sup-
plementary Fig. S3a).

Drug sensitivity data.  We selected only those NRAS-mutant cancer cell lines that were commonly respon-
sive to all 10 drugs. We downloaded IC50 (log normalized) drug sensitivity data for these 10 drugs across NRAS-
mutant (total 41) cancer cell lines from different tissue types13. We excluded RDEA119 (Refametinib), also seen 
involved, from our further analysis due to contradictory drug LN_IC50 values deposited twice in GDSC. GDSC 
database suggested that the cancer cell lines with an LN_IC50 (Log Normalized Half-maximal Inhibitory Con-
centration) value greater than the maximum concentration of a drug are considered as drug-resistant cell lines, 
whereas cell lines with LN_IC50 value smaller than the maximum concentration of a drug are considered as a 
drug-sensitive cell line. We generated a clustered heatmap (unsupervised clustering) with uncentered correlation 
and average linkage using LN_IC50 values vs cancer cell lines in online tool GenePattern v11 and visualized it in 
TreeView version 1.1.

Validation with tissue samples.  To correlate the drug sensitivity and resistance of cancer cell lines with 
that of cancer tissues for the same drugs as a means for independent validation, we downloaded the predicted 
drug IC50 value of 10 drugs for the NRAS-mutant cancer tissue from the database CancerRxTissue (https://​manti​
core.​niehs.​nih.​gov/​cance​rRxTi​ssue), which extracts molecular data from patient samples deposited in TCGA 
to predict drug sensitivity, for the same cancer types as represented by the studied cell lines. NRAS and related 
genes mutation information was obtained from the TCGA database (https://​www.​cancer.​gov/​about-​nci/​organ​
izati​on/​ccg/​resea​rch/​struc​tural-​genom​ics/​tcga). We generated a heatmap using the above method as used for 
cancer cell lines.

Significant differential gene expression analysis.  In order to study significant differential gene 
expression in cancer cell lines, we downloaded basal gene expression profile data from the GDSC database and 
filtered the expression value of missing gene names from the column and performed an unpaired t-test using 
Multi Experiment Viewer (MeV) version 4.9.0 with unequal group variance (Welch approximation) between 
two subjects (drug-sensitive and -resistant cancer cell lines), with threshold cut off p-value < 0.05. We analyzed 
basal gene expression profile data of 17,417 genes in each of the NRAS-mutant cell lines which were gener-
ated using the Affymetrix Human Genome U219 Array. From our heatmap based on IC50 values, a total of 44 
drug-sensitive and 68 drug-resistant cell lines belonging to 5 out of 10 drugs were analyzed. In the case of the 
remaining 5 of these drugs, we were not able to clearly classify samples into drug-resistant/sensitive classes. For 
our analysis, we took gene expression data of cell lines selected as above, which was normalized using a robust 
multi-array average (RMA) algorithm. A volcano plot to visualize up- and down-regulated genes between the 
two groups using identified differentially expressed genes (DEGs) via the R package “ggplot2” with double filtra-
tion cut off p-value < 0.05, and logFC > 2 was also generated. To identify the names of these specific genes, and 
also visualize the pattern of gene expression in each drug-sensitive and resistant cell line, we further generated 
a heatmap using Comparative Marker Selection in Gene Pattern version 11 (https://​cloud.​genep​attern.​org) with 
default parameters.

To identify common genes differentially expressed across the multiple drugs, we used online web tool BioIn-
foRX (http://​apps.​bioin​forx.​com/​bxaf6/​tools) to generate a Venn diagram. Further, a bubble plot was generated 
to visualize these DEGs overlapping across multiple drugs (at least for three drugs) using the R package “ggplot2 
& ggpubr”.

Functional gene enrichment annotation analysis.  We performed functional gene enrichment analy-
sis to find out the functional implications of DEGs in drug-resistant/sensitive cancer cell lines. This was carried 
out in the context of 5 drugs using GeneCodis (Gene annotations co-occurrence discovery) version 4 web-
accessible bioinformatics tool (http://​genec​odis.​cnb.​csic.​es/​analy​sis). For a significant enrichment of genes, the 
threshold hypergeometric (defined as the Benjamini-adjusted Fisher’s exact test p-value) p-value < 0.05 (default) 
was used.

https://www.cancerrxgene.org
https://www.cancerrxgene.org
https://manticore.niehs.nih.gov/cancerRxTissue
https://manticore.niehs.nih.gov/cancerRxTissue
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://cloud.genepattern.org
http://apps.bioinforx.com/bxaf6/tools
http://genecodis.cnb.csic.es/analysis
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Construction and analysis of gene co‑expression network.  In order to study the molecular interac-
tion of these genes, we constructed a co-expression network. Using DEGs between drug-resistant and sensitive 
cancer cell lines, we submitted the list of DEGs set into an extensively validated online web server GeneMANIA 
program (https://​genem​ania.​org). It provides a significant gene–gene interaction network between DEGs, and 
also some additional genes from GeneMANIA are added by default, if found to be interacting with the submit-
ted gene list.

A node having a higher number of edges with interacting nodes is considered a key/hub gene node. The co-
expression network was analyzed to detect hub genes by using the network analyzer plugin of Cytoscape 3.8.2. 
Hub nodes were identified based on node degree distribution. The network was clustered using the Glay (com-
munity cluster) Cytoscape plugin app from clusterMaker for network clustering (with undirected edges). GLay 
clusters network based on densely interacting nodes and functional relevance of nodes.

Construction and analysis of protein–protein interaction (PPI) network.  While gene interaction 
network is used to identify hub genes, analysis of protein–protein interaction network allows us to assess the 
corresponding protein interactions inside the cells at a molecular level. PPI network was constructed using an 
online database named Search Tools for the Retrieval of Interacting Protein (STRING; version 11.0; https://​
string-​db.​org) which furnishes validated as well as predicted functional protein association network data. We 
imported the list of protein encoding genes from co-expression network clusters in the STRING database to 
observe the functional interaction relationship among them, with the cut-off interaction score for the network 
set to > 0.400 (medium confidence). To visualize the PPI network, Cytoscape software (version 3.8.2; https://​
cytos​cape.​org) was used. We identified hub proteins from the PPI networks of each cluster based on node degree 
(number of edges connected between protein nodes), which are the most highly connected nodes with key 
biological functions. GeneCodis4, an online web server was used to perform functional analysis for the GO and 
KEGG pathway of the proteins in the PPI network.

Analysis of LncRNA‑transcription factor‑gene regulatory network.  To construct a TF-Gene inter-
action regulatory network, we retrieved data from Open-Access Repository of Transcriptional Interaction data-
base (ORTI, http://​orti.​sydney.​edu.​au/​index.​html) which consists of experimentally validated transcriptional 
interactions. ORTI database consists of HTRI (chromatin immunoprecipitation followed by deep sequencing 
data) database which harbors TF-TG (driver genes) interactions data. Another dataset of lncRNAs-TFs and 
lncRNAs- driver genes regulatory interactions has been generated through manual text mining with due focus 
on quality dataset. All ambiguous data were discarded. This dataset harbors a collection of lncRNA-target regula-
tory relationships validated from low-throughput and high-throughput experimental methods and these regu-
latory interactions were included in the network. All these data were imported in Cytoscape 3.8.2 and merged 
into one master network. Quantitative directed network analyses were done on this lncRNA-TF-mRNA (driver 
genes) regulatory interaction network using lncRNA/TFs as a source to target driver genes. We further pre-
dicted hub bottleneck lncRNA-coding gene interaction sites using a validated human lncRNA-mRNA interac-
tion database (http://​rtools.​cbrc.​jp/​cgi-​bin/​RNARNA/​index.​pl) which contains a large data of lncRNA-mRNA 
and lncRNA-lncRNA interaction. This database provides the location of the lncRNA interaction sites on coding 
genes along with their binding energy.

Significance.  LncRNA and mRNA pan-cancer regulatory network modeling identifies EGR1-MALAT1-
coding genes regulatory axis with possible implication in multi-drug resistance. This approach may be used to 
understand how lncRNAs-mRNA regulatory interactions can influence pan-cancer multi-drug resistance, and 
improve targeted therapy.

Results
Pan‑cancer identification of drug‑sensitive and ‑resistant NRAS‑mutant cell lines for select 
drugs.  To identify individual drug-resistant and sensitive cell lines for each drug, we studied dose–response 
curves of all available drugs taken from GDSC. It was observed that 41 NRAS-mutant cancer cell lines were 
commonly responsive to 10 drugs, namely PD-0325901, Trametinib, Selumetinib, TL-1-85, CI-1040, NG-25, 
PLX4720, AP-24534 (Ponatinib), Xl-184 (Cabozantinib) and Foretinib. We collected the normalized IC50 value 
of these 41 cancer cell lines from the GDSC database for the 10 drugs and performed uncentered hierarchical 
clustering and generated the heatmap to cluster the drug-sensitive and -resistant cell lines. All the cell lines were 
derived from different cancer types classified at the TCGA matching label (Supplementary Table S2a).

The heatmap colors represent dose–response in terms of the IC50 value of a particular drug across cell lines. 
Each column in the heatmap represents cell lines and each row indicates the normalized IC50 score for a com-
pound. Cell lines with normalized IC50 value greater than 0 were considered as drug-resistant cell lines and 
cell lines with normalized IC50 value less than 0 were referred to as sensitive cell lines in response to the drug38 
(Fig. 1a). We selected the drug-sensitive (IC50 < -1) and -resistant (IC50 > 1) NRAS-mutant cancer cell lines based 
on IC50 value and color intensity and enlisted these (Supplementary Table S2b). As shown in the heatmap, there 
were no individual drug-sensitive cell lines found for four drugs (TL-1-85, NG-25, Cabozantinib, and PLX4720), 
on the other hand, in the case of PD-0325901, we found only one drug-resistant cell line.

Correlation and validation of drug IC50 data from cell lines with cancer tissues.  We wanted to 
further investigate if there existed any similarities in the pattern of drug-resistance and sensitivity in cancer cell 
lines and cancer tissue samples. A similar correlation pattern would indicate a similarity in gene expression pat-

https://genemania.org
https://string-db.org
https://string-db.org
https://cytoscape.org
https://cytoscape.org
http://orti.sydney.edu.au/index.html
http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl
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tern that may be responsible for causing drug-resistance or drug-sensitivity. We compared the drug-response 
heatmaps (Fig. 1a,b) generated for cancer cell lines and molecular data generated from cancer tissue samples 
from patients. Most of the cancer tissue samples exhibited resistance and sensitivity for all the drugs except in 
the case of cancer tissue samples from SKCM, where the tissue samples exhibited Trametinib- and PD-0325901–
specific drug sensitivity while few SKCM tissue samples also exhibited drug sensitivity towards Selumetinib. 
NRAS-mutant cancer tissue samples were not available in TCGA for LAML, ALL, MM, MB, NB, DLBC and 
SCLC cancer types.

FN1, CD44 and TIMP3 are among the nine genes most significantly differentially expressed 
between drug‑sensitive and ‑resistant cancer cell lines and common across multiple 
drugs.  Several studies have revealed that gene expression profiling reveals several important predictive bio-
markers in drug-sensitivity and resistance studies12,13,39. To identify and analyze significant DEGs that may be 
involved in drug sensitivity/resistance from our dataset, we used the normalized basal gene expression profiling 
data from the GDSC database associated with pan-cancer drug sensitivity and resistance. Several DEGs were 
identified that are differentially expressed between drug-sensitive and -resistant cancer cell lines (for pan-cancer 
NRAS-mutant cell lines) using Welch’s t-test (unequal group variance) with threshold p < 0.05, for 5 drugs. For 
the other 5 drugs, we did not perform this statistical test because as seen from Supplementary Table S2b, all 
of the chosen cancer cell lines were either uniformly sensitive (PD-0325901) or uniformly resistant (TL-1-85, 
NG-25, Cabozantinib, PLX4720) to these drugs and so, no differential effect can be seen in the individual cases. 
To statistically validate further, we applied double filtration (p value < 0.05, log2FC > 2) and generated volcano 
plots in the case of each drug (Supplementary Fig. S3b). The number of significantly differentially expressed 
genes was found to vary from 38 (CI-1040) to 467 (Foretinib) across 5 drugs (Supplementary Table S2c). As the 
volcano plot shows, significantly differentially expressed genes are shown as top blue dots and up-regulated and 
down-regulated genes in resistant cancer cell lines at right and left position, respectively (p < 0.05, log2 FC > 2). 
To validate further, we used an uncentered hierarchically-clustered drug vs cell lines heatmap generated above to 
discriminate differentially-expressed genes from these cell lines using comparative marker selection in GenePat-
tern (version 10.1) (Fig. 2a–e). It was observed that the results more or less coincided with our volcano plots.

We next scouted for the common differentially expressed genes between drug-sensitive and -resistant cancer 
cell lines across these 5 drugs. A total of nine genes including FN1, TIMP3, and CD44 were observed to be com-
mon across four drugs. Similarly, genes including SPARC, TIMP1, and SNAI2 were observed to overlap across 

Figure 1.   (a) Heatmap of drug dose–response in cell lines. Patterns of log normalized drug IC50 value clustered 
together. Rows represent drugs and columns represent cell lines. Drug-sensitive cell lines are shown in green 
and drug-resistant cell lines are shown in red color. (b) Heatmap of drug response in cancer tissues. Predicted 
drug IC50 value clustered together. Rows represent drugs and columns represent cancer tissue samples from 
patients. Drug-sensitive cancer tissue samples are shown in green and drug-resistant cancer tissue samples are 
shown in red color.
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Figure 2.   Differential gene expression analysis between drug-sensitive and -resistant cancer cell lines. (a–e) 
Heatmap of DEGs between drug-sensitive and -resistant cancer cell lines. Expression pattern of DEGs in cancer 
cell lines for each drug is shown. Red color: up-regulated genes, blue color: down-regulated genes. (f) Genes that 
are differentially expressed (reddish-brown bubble) between drug-sensitive and -resistant cancer cells in the case 
of multiple drugs.
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three drugs (Fig. 2f). These predictive analyses of gene expression data from the GDSC database revealed key 
significantly differentially expressed genes (DEGs) strongly associated with drug sensitivity or resistance, and 
we proceeded further using our narrowed down gene list to identify the biological processes involved as well as 
to perform integrated network analyses to identify key hub genes and their regulation.

Functional enrichment analysis through Gene Ontology (GO) and KEGG Pathway inform 
signal transduction, proteoglycans (pathway) in cancer as one of the major pathways 
involved.  Given this set of DEGs across multiple drugs naturally, the next step is to discern functional enrich-
ment of biological processes and KEGG pathways. We used the web tool, GeneCodis4, to annotate likely biologi-
cal processes and the KEGG pathway, with a default cut-off p-value (FDR) < 0.05. Gene ontology terms for bio-
logical processes DEGs significantly enriched for the drug Ponatinib include GO: 0007165- signal transduction, 
GO: 0006915-apoptotic process, and GO: 0006508 proteolysis, GO: 0008285-cell cycle, GO: 0006355-regulation 
of transcription, DNA-dependent and cell division (Supplementary Fig. S4).

In addition, KEGG pathway analyses revealed that DEGs were significantly enriched in hsa04151:PI3K-Akt 
signaling pathway, hsa05200: Pathway in cancer, has04510: Focal adhesion, and hsa01100: Metabolic pathway 
(Supplementary Fig. S4).

In the case of the other four drugs, the DEGs were enriched in biological processes and KEGG pathways were 
more or less the same. GO terms include GO: 0007165 signal transduction, GO: 0007155 cell adhesion, GO: 
0006915 apoptotic processes, GO: 0006508 proteolysis and KEGG pathways include hsa05205 proteoglycans 
(pathway) in cancer, hsa05200: Pathway in cancer, has04510: Focal adhesion, and hsa01100: Metabolic pathway 
(Supplementary Fig. S4).

Gene co‑expression network analysis of DEGs identifies FN1 among the top hub genes.  In 
order to undertake deeper functional analysis and to assess possible molecular interactions of these identified 
DEGs in drug-resistant cancer cell lines at the gene level, we constructed and analyzed the co-expression net-
work of DEGs and GeneMANIA-predicted genes for the five drugs enlisted from our previous analysis above. 
The generated networks are shown in Fig. 3a and quantitative analyses in Supplementary Table S3. The number 
of nodes and edges for the respective networks are shown in Table 1. From the quantitative network analyses, in 
the case of Ponatinib, top 34 hub genes were identified based on the highest node degree from the co-expression 
network (Supplementary Table S3). This network was then clustered into three modules using Glay (community 
cluster), a Cytoscape plugin. The identified clusters 1, 2, and 3 contain 35 nodes, 40 nodes, and 77 nodes, respec-
tively (Fig. 3b). Similarly for other drugs; 52 hub nodes for Foretinib, 48 hub nodes for Selumetinib, 35 hub 
nodes for Trametinib, and 13 hub nodes for CI-1040 (Table 1, Supplementary Table S3) were identified. Then, 
the network clustering generated different clusters in case of other four drugs: 6 clusters for Foretinib, 4 clusters 
for each Selumetinib and Trametinib, 3 clusters for CI-1040 (Supplementary Fig. S5). After our gene networks 
generation, we proceeded to generate protein–protein interaction networks in order to assess whether the same 
hub genes can also be found as hub proteins.

Protein–protein interaction network analysis of DEG‑encoded proteins shows FN1 and CD44 
among the key hub proteins.  Identification of key driver/hub proteins in the DEGs-encoded protein–
protein interaction (PPI) network in drug-resistant cancer cell lines provides an important source of interpreta-
tion of the regulatory mechanisms in drug-resistant cancer. We defined driver gene/protein as the one which is 
prominently associated with drug resistance and acting as a hub gene/protein. To study the same interactions 
at the functional protein level, and assess whether the gene and protein networks coincide in their overall pat-
tern, PPI network of genes from each clusters of the gene co-expression network for all the five drugs using 
STRING were constructed at median confidence score of 0.400, which quantifies the strength of corroborative 
evidence for the reported interactions in the PPI network40. The analyzed network for Ponatinib is shown in 
Fig. 3c and for other drugs, respective networks are shown in Supplementary Fig. S6a. Top hub proteins from 
all PPI networks generated were identified and are mentioned in the Supplementary Tables S4 and S5. We have 
also performed functional analysis of these proteins enriched in various GO terms and KEGG pathways (Supple-
mentary Fig. S6b). The PPI networks were observed to comprise 10 hub proteins for four drugs (Supplementary 
Table S5), whereas for drug CI-1040, only four hub protein nodes were identified. We were not able to acquire 
PPI networks for some of the clusters because of the lack of data for these clusters in STRING.

The node proteins from the PPI networks of the drugs studied were significantly enriched in distinct GO terms 
and KEGG pathways. These significant functional pathways belonged to cell migration, cell population prolifera-
tion, signal transduction, melanogenesis, cell adhesion, cytokine-mediated signaling and proteolysis for biological 
processes and from KEGG, we observed proteoglycans pathway and PI3K-Akt signaling pathways in cancer.

Upon further analysis, combining PPI networks and gene co-expression networks, common hub protein-
coding genes were selected. For Ponatinib, there were nine and four hub proteins for cluster3 and cluster2 
respectively, with shared common genes among the hub gene list from gene co-expression network and the 
STRING-generated top hub proteins (Table 2). Through chronological analyses, we were able to identify TYR, 
PMEL, MLANA, EDNRB, FN1, CD44, MMP1, TIMP1, MMP14, TIMP3, SPARC, SNAI2, and VEGFC as key 
hub proteins for Ponatinib common between co-expression and PPI network hub node. Similarly for other drugs, 
FN1, TIMP1 and CD44 for Foretinib, LCP2, FYB, IL7R, CD38, FN1, CD44, TIMP1, CCND1, CAV1, PTGS2, 
SNAI2 and LGALS1 for Selumetinib, CD44, CCL2, ANXA1, AHR, FN1, SPARC, CYR61, CTGF, ITGB5, LAMC1 
and TGFB1 for Trametinib, KRT7, KRT8, KRT19 and EPCAM for the drug CI-1040, were identified as common 
hub proteins between co-expression and PPI network hub node list.
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Figure 3.   Gene co-expression and PPI network. (a,b) Gene co-expression network of DEGs for Ponatinib 
predicted from GeneMANIA and visualized in Cytoscape. The co-expression network represents up- (red) and 
down-regulated genes (green) and GeneMANIA-predicted genes (blue); the top hub genes were detected by 
node degree (node size proportional to node degree) is seen in (a); (b) depicts Glay generated modules: cluster 
1, cluster 2 and cluster 3. C-D: PPI network of clusters. (c) Detection of hub proteins by analyzing node degree 
for Ponatinib (red nodes: up-regulated; green nodes: down-regulated, blue nodes-GeneMANIA predicted). 
Circle size is proportional to the node degree. (d) Venn diagram of common hub protein-coding genes 
identified across the drugs. (e) Diagrammatic representation of the interconnectivity of topmost genes FN1 
and CD44 in RAS and PI3K/Akt signaling pathways taken from KEGG. Dashed arrows represent several other 
proteins involved in signaling. Data are taken from KEGG Pathways (CD44 in signaling: https://​www.​kegg.​jp/​
kegg-​bin/​highl​ight_​pathw​ay?​scale=1.​0&​map=​map05​205&​keywo​rd=​cd44; FN1 in signalling: https://​www.​kegg.​
jp/​kegg-​bin/​highl​ight_​pathw​ay?​scale=1.​0&​map=​map04​151&​keywo​rd=​fn1).

https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map05205&keyword=cd44
https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map05205&keyword=cd44
https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04151&keyword=fn1
https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04151&keyword=fn1
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We next wanted to find common hub proteins across all the drugs studied. Among the hub protein nodes 
from PPI and co-expression networks as mentioned above, FN1 and CD44 were found to be common for 4 drugs; 
Ponatinib, Foretinib, Selumetinib and Trametinib. TIMP1 was common in the case of three drugs (Selumitinib, 
Ponatinib, Foretinib) while SPARC (Ponatinib and Trametinib) and SNAI2 (Ponatinib and Selumetinib) were 
common for two drugs, respectively (Fig. 3d). These hub proteins might be inducing drug-resistance in cancer 
through many divergent pathways, including proteoglycans pathway in cancer, focal adhesion pathway, metabolic 
and PI3K-Akt signaling pathways. Therefore, targeting these hub proteins is one likely mechanism to inhibit 

Figure 3.   (continued)

Table 1.   List of number of nodes/edges and identified hub nodes in gene co-expression network for each of 
the five drugs.

Drug name Number of nodes in network Number of edges in network Number of hub nodes
Lowest node degree for hub 
node selection

Ponatinib 152 1826 34 30

Foretinib 483 14,156 52 100

Selumetinib 256 2410 48 30

Trametinib 165 3019 35 50

CI-1040 49 211 13 10
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the upstream and downstream pathways in biological processes to curb the pan-cancer drug resistance. The 
interconnectivity of key hub proteins FN1 and CD44 with RAS and PI3K/Akt signalling pathways, taken from 
KEGG Pathways, is shown in Fig. 3e.

Gene‑regulatory modules: MALAT1 and EGR1 form an interaction loop to regulate key hub 
genes.  While identifying druggable genes/proteins involved in pan-cancer drug resistance is an important 
step, it is also critical to fully understand the regulatory mechanisms occurring to regulate these genes, if we 
are to target them. LncRNAs, apart from proteins, are another arm of the emerging regulatory mechanisms in 
drug resistance. To interrogate the specific lncRNAs regulating our enlisted hub genes/proteins, a lncRNA-TF-
mRNA (hub gene) interaction network was constructed and analyzed using Cytoscape. The relevant data for 
TF and regulated hub genes were retrieved from the ORTI database. We also performed literature search for 
other lncRNAs interacting with TFs and hub genes. A comprehensive regulatory interaction gene network was 
generated that consists of a total of 91 nodes (genes/proteins) and 125 edges (interaction between the nodes) 
including 48 lncRNAs, 38 TFs, and 5 hub protein-coding genes (Fig. 4a). We analyzed the network based on two 
parameters, node degree (outdegree), and betweenness centrality (node characterized by having shortest path 
passing through it). In the directed network analysis, it was observed that among lncRNAs, MALAT1 had the 
highest node degree and betweenness centrality. Among TFs, EGR1, AR and YBX1 had the highest node degree, 
and EGR1 had the highest betweenness centrality among these three TFs. The other lncRNAs with the highest 
out-degree and betweenness centrality were HOTAIR and lincRNA-p21, respectively Table 3. From our network 
analysis, we observed that the transcription factors EGR1, AR, and YBX1 regulate CD44, and FN1; YBX1 and 
AR regulate SPARC; and EGR1 and YBX1 regulate TIMP1. Further, we observed that lncRNA MALAT1 might 
regulate directly, two hub genes (SPARC​ and SNAI2) and six transcription factors including EGR1, as depicted 
from the regulatory subnetwork. It was also observed that MALAT1 indirectly regulated three hub genes (FN1, 
CD44, and TIMP1) via the transcription factor EGR1 (Fig. 4b). The regulation between the lncRNA MALAT1 
and the transcription factor EGR1 is a kind of mutual interaction as can be depicted from the ENCODE tran-
scription factor target dataset taken from the Harmonizome database (http://​amp.​pharm.​mssm.​edu/​Harmo​
nizome).

Mode of MALAT1 action on key driver genes.  In order to decipher the cis and trans regulatory actions 
of MALAT1 on these select target genes, we collected the genomic location information of these coding hub 
genes as well as MALAT1 from NCBI Gene (https://​www.​ncbi.​nlm.​nih.​gov/​gene/) database. We surmised that, 
due to the same location at chromosome 11 of MALAT1 and CD44 (Supplementary Table S6a), MALAT1 may 
regulate CD44 transcription through cis-acting mode of action. Chromosome 11 is among the most gene- and 
disease markers-rich chromosomes in humans. MALAT1 may regulate the other four hub genes (FN1, TIMP1, 
SNAI2 and SPARC) through trans-acting mode of action, owing to their differing chromosomal locations.

We further wanted to check whether MALAT1 may regulate these hub genes post-transcriptionally by directly 
interacting with their mRNAs. For this purpose, we obtained the predicted interactions of the lncRNA MALAT1 
with the hub gene mRNAs, from the lncRNA-mRNA interaction database (Fig. 4c). The interaction patterns 
suggest that MALAT1 interacts with the hub gene mRNAs at different interaction sites. For instance, MALAT1 
is observed to interact with CD44 and SPARC​ at the 3´UTR region. It is also observed to interact with TIMP1, 
and SNAI2 at the CDS region, as well as with FN1 at the 5´UTR (Supplementary Table S6b). This suggests that 
post-transcriptional regulation of these genes is also possible, as seen in several studies with other genes in the 
literature.

Hence, this EGR1-MALAT1-coding genes regulatory axis may regulate pan-cancer multi-drug sensitivity/
resistance through either or both cis and trans-acting mechanisms at the transcriptional and post-transcriptional 
level.

Table 2.   List of common hub nodes between gene co-expression and PPI network for each five drugs.

Drug name Cluster Common hub nodes between gene co-expression and cluster PPI network

Ponatinib

Cluster 1 -NA-

Cluster 2 TYR, PMEL, MLANA, EDNRB

Cluster 3 FN1, CD44, MMP1, TIMP1, MMP14, SPARC​, SNAI2, VEGFC, TIMP3

Foretinib Cluster 2 FN1, TIMP1, CD44

Selumetinib
Cluster 2 LCP2, FYB, IL7R, CD38

Cluster 3 FN1, CD44, TIMP1, CCND1, CAV1, PTGS2, SNAI2, LGALS1

Trametinib
Cluster 1 CD44, CCL2, ANXA1, AHR

Cluster 2 FN1, SPARC​, CYR61, CTGF, ITGB5, LAMC1, TGFB1

CI-1040 Cluster 2 KRT7, KRT8, KRT19, EPCAM

http://amp.pharm.mssm.edu/Harmonizome
http://amp.pharm.mssm.edu/Harmonizome
https://www.ncbi.nlm.nih.gov/gene/
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Figure 4.   Regulatory network of LncRNAs-TFs-Driver genes and working model (a) Master regulatory network of LncRNA-
TF-Driver genes. Regulatory interactions between lncRNAs, TFs and driver genes are depicted in this integrated network, 
b-c:EGR1 and MALAT1 subnetwork from the master regulatory network. (b) Transcription Factor EGR1 is observed to be 
regulating three hub genes (FN1, CD44 and TIMP1) and also being regulated by MALAT1 (c) EGR1-MALAT1 interaction 
(red-colored edge) and MALAT1-mRNA interaction (hub genes, green-colored edges) obtained from the ENCODE 
transcription factor targets dataset of the Harmonizome database and lncRNA-mRNA interaction database, respectively, (d): 
A working model for the regulation of key driver genes associated with pan-cancer multi-drug resistance: Transcription factor 
EGR1 may regulate MALAT1 transcription. After being transcribed, MALAT1 is predicted to bind to different sites, 5′-UTR, 
CDS, and 3′-UTR, of specific mRNAs, thereby regulating these key driver genes through cis-or trans-acting mechanisms.
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Discussion
Mutant NRAS is an intractable target indirectly and frequently involved in drug resistance in multiple cancer 
types. In an attempt to uncover connected signaling molecules with possible involvement in drug sensitivity or 
resistance, we performed a systematic big data analysis of coding genes in a pan-cancer context and their regu-
lation by long non-coding RNAs, utilizing drug dose–response of 5 drugs for NRAS-mutant cancer cells lines.

Upon identification of key differentially expressed genes between drug-sensitive and -resistant cancer, the 
GO terms for biological processes significantly enriched from this set of DEGs for most of the drug cases were: 
signal transduction, cell adhesion, apoptotic process, proteolysis, and cell cycle, and KEGG pathways gene set 
were enriched in proteoglycans pathway in cancer, focal adhesion pathway, metabolic pathway and PI3K/Akt 
signaling pathway. As these pathways are found overrepresented in our studies, this functional enrichment 
analysis revealed that these genes likely play a major role in oncogenesis and drug resistance in cancer. Further 
analyses, utilizing gene co-expression and PPI network clusters, confirmed similar functional modules of biologi-
cal processes and the KEGG pathway. Several studies such as Lee et al.8 and others have focussed on particular 
pathways involved in drug resistance using integrative meta-analysis.

Unifying the mRNA concentration and protein abundance profiles is of major importance in effective thera-
peutic biomarker identification. The construction of a PPI network in addition to gene co-expression network 
allows us to assess the functional role of a protein encoded by a hub gene. In parallel with the gene co-expression 
network analyses, hub (driver) proteins were identified from respective functional clusters of the PPI network 
for the drugs common with the co-expression hub gene list. The study identified FN1, CD44, TIMP1, SPARC​ 
and SNAI2 as common coding hub proteins for most of the drug-resistant cancer types. Driver genes/proteins 
were identified based on the topmost node degree from these networks. From heatmap analyses, it was observed 
that all of these protein-coding hub genes were up-regulated in the case of Ponatinib-resistant cancer and only 
FN1, CD44 and TIMP1 were up-regulated in Foretinib-resistant cancer. However, in the case of combined 
Selumetinib- and Trametinib-resistant cancers, FN1 and CD44 were down-regulated; TIMP1 and SNAI2 were 
down-regulated only in Selumetinib-resistant ones; while SPARC​ was down-regulated in the case of Trametinib-
resistant cancer. Previous studies have suggested that some of these identified hub genes function as biomarkers 
in a variety of cancer types such as breast, head and neck and serous ovarian cancer41,42. Previous studies have 
observed significant FN1 upregulation in tumors resistant to doxorubicin43. FN1 is also found to play an impor-
tant role in the activation of the Akt signaling pathway in drug-resistant cancer44. On the other hand, CD44 is 
known to be a proteoglycan that plays an important role in cell–cell and cell–matrix adhesion by binding to 
fibronectin45. Cancer cells with acquired drug-resistance possess a higher expression of CD44s isoform, which 
may play a role through regulation of multiple signaling pathways46. TIMPs, which include TIMP1, are secreted 
proteins that play a crucial role in cancer progression and invasion47,48. TIMP-1, overexpressed across almost 
all cancer types, is found to protect cells against chemotherapy-induced apoptosis49. SNAI2 is a member of the 
Snail family of zinc finger transcription factors, and is observed to be highly expressed in Fulvestrant-resistant 
and Tamoxifen-resistant breast cancer50. It is found to have an implication in several human malignancies51. 

Table 3.   Quantitative analyses of LncRNA-TFs-Gene (hub gene) regulatory network based on out-degree and 
betweenness centrality.

Sr no. Gene name Outdegree

1 MALAT1 8

2 EGR1 4

3 AR 4

4 YBX1 4

5 NFKB1 3

6 FOS 3

7 ETS1 3

8 HOTAIR 3

9 H19 3

10 HIF1A 2

Sr no. Gene name BetweennessCentrality

1 MALAT1 0.336730123

2 HIF1A 0.274132139

3 TP53 0.205823068

4 EGR1 0.174412094

5 YBX1 0.168868981

6 lincRNA-p21 0.138969765

7 ETS1 0.063493841

8 CTNNB1 0.051175812

9 SLNCR 0.044456887

10 SP1 0.039193729
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Similarly, SPARC​ is known to act as an oncogene in certain cancer types and is reported to act as a tumor sup-
pressor in other cancer types52.

Our studies then focused on identifying master regulators of these hub genes involved in drug resistance. 
LncRNAs have been associated with drug sensitivity and resistance in cancers and have been found to act as 
prognostic molecules which can modify chemosensitivity53–55. Therefore, we wanted to identify key lncRNAs 
which could regulate our identified key driver genes from co-expression and PPI network studies, in order to 
alter their expression in drug-resistant cancer.

From the directed network analyses of lncRNA-TFs-mRNA (driver genes) interaction regulatory network, we 
have identified lncRNA MALAT1 to be the major interacting component based on network parameters. MALAT1 
may bind to the corresponding mRNAs of these driver genes at 5′ UTR of FN1; CDS of TIMP1, SNAI2; and 3′ 
UTR of CD44 and SPARC​, and also may regulate their expression through the proven mechanisms of actions 
such as mRNA splicing56. These mechanisms are among the major ones functional in drug-resistant cancers57,58. 
Moreover, MALAT1 is a widely studied lncRNA originally reported to be associated with metastasis in the early 
stage of non-small cell lung cancer57,59 and is subsequently found to be involved in a variety of cancers. MALAT1 
is transcribed from human chromosome 11q13.1 and the transcript is localized in the nuclear speckles, a site for 
pre-mRNA splicing60. Driver genes SPARC​ and SNAI2 that were observed to be interacting with MALAT1 from 
our network interaction study, were found to be down regulated in MALAT1-depleted breast cancer samples61. 
Results from our studies using harmonizome ChIP-Seq data show that transcription factor EGR1 could tran-
scriptionally regulate MALAT1. We predict that EGR1 and MALAT1 might be regulating each other through 
a feedback loop regulatory system. Further, as MALAT1 and one of the select protein-coding genes, CD44, are 
located on the same chromosome 11, MALAT1 might be regulating CD44 in a cis-regulatory manner. Other 
select coding genes, FN1, TIMP1, SNAI2, SPARC​, reside at a different chromosomal location than MALAT1, 
and, therefore, could be regulated in a trans-regulatory manner. This further confirms the prevailing widespread 
notions of two plausible scenarios, first, that many lncRNAs can interact with or regulate one coding gene at a 
time, and second, that many coding genes may be regulated by one or multiple lncRNAs simultaneously.

Converging our above studies, we propose a working model of the mechanism of regulation of the select 
driver genes in pan-cancer (NRAS-mutant cancers) drug-resistance. This model features a regulatory axis com-
prising EGR1-MALAT1-driver genes (FN1, CD44, TIMP1, SPARC, and SNAI2) (Fig. 4d). Specifically, transcrip-
tion factor EGR1 may regulate MALAT1 transcription, since both these genes are observed to express at a similar 
level in Cisplatin-resistant cancer62. After being transcribed, MALAT1 is predicted to bind to different sites at 
5′-UTR, CDS, and 3′-UTR, of specific mRNAs, thereby regulating these key driver genes through either cis- or 
trans-acting mechanisms.

Taken together, our analyses suggest that these driver genes may be overexpressed or repressed via direct 
or indirect interactions with MALAT1 leading to drug resistance/sensitivity in context. Literature studies also 
corroborate our findings. Of note, from our comprehensive studies, we nominate few coding and non-coding 
genes as key targets that can overcome or replace recalcitrant NRAS as a drug target.

Our findings provide key insights that may help predict drug treatment response and enhance our under-
standing of pan-cancer multi-drug resistance in the context of mutant NRAS signaling and any other selected 
signaling pathways. Further studies are required to be done to assess the clinical relevance of identified drug 
targets as therapeutic targets in NRAS-mutant cancer types, as these data have been taken from cell lines and 
some tissue samples, and because tumor microenvironment is also found to play a role, so, these may vary in vivo. 
Top-ranked key driver genes and lncRNAs can be further assessed through knock-down or induced expression in 
specific drug-resistant cancer cell lines. Studies on transcriptional dysregulation of lncRNA itself and the impact 
on regulatory activity in drug-resistant cancers are also the need of the hour.

Conclusions
In our study, using the well validated GDSC (cell lines) and TCGA database (patient samples) which hosts 
molecular data from cancer patients, we performed large-scale gene expression, gene co-expression and pro-
tein–protein interaction network analyses on selected drugs inducing drug sensitivity/resistance. From our big 
data pan-cancer studies, among the identified hub genes (protein-coding), FN1, CD44, TIMP1, SNAI2, and 
SPARC​ were found to be common hub nodes between co-expression and PPI networks across multiple drugs, 
and these genes were significantly enriched in signal transduction, and PI3K/Akt-signaling pathway, among 
others. Further studies of the regulation of these hub/driver genes by lncRNAs revealed that MALAT1 may be a 
key regulator of these coding genes in drug resistance, acting through transcription factor EGR1. MALAT1 could 
be the pan-cancer master biomarker regulating these driver genes’ expressions at the transcriptional as well as 
at post-transcriptional level. These comprehensive studies provide key insights towards improving multi-drug 
sensitivity in a pan-cancer context. These can be deliberated further to develop more effective interventions 
utilizing the NRAS pathway for pan-cancer precision medicine therapy and to decrease the clinical burden.

Data availability
Datasets: All the datasets used in this study are publicly available in GDSC, TCGA and other databases. All the 
procedures were performed in accordance with the relevant guidelines and regulations.
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