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Abstract

healthy controls (n =6).

colocalization and quantification analyses.

found between YKL-40 and tau immunoreactivities.

Background: The innate immune system is known to be involved early in the pathogenesis of Alzheimer’s disease
(AD) and other neurodegenerative disorders. The inflammatory response in the central nervous system can be
measured postmortem or through a series of inflammatory mediator surrogates. YKL-40 (also named Chitinase-3-like 1)
has been frequently investigated in body fluids as a surrogate marker of neuroinflammation in AD and other
neurological disorders. However, the expression pattern of YKL-40 in the human brain with neurodegenerative
pathology remains poorly investigated. Our aim was to study the cellular expression pattern of YKL-40 in the brain of
patients with clinical and neuropathological criteria for AD (n = 11); three non-AD tauopathies: Pick's disease (PiD; n = 8)
, corticobasal degeneration (CBD; n = 8) and progressive supranuclear palsy (PSP; n=9) and a group of neurologically

Methods: Semiquantitative neuropathological evaluation and quantitative confocal triple immunofluorescence studies
were performed. An in-house algorithm was used to detect and quantify pathology burden of random regions of
interest on a full tissue-section scan. Kruskal-Wallis and Dunn's multiple comparison tests were performed for

Results: We found that brain YKL-40 immunoreactivity was observed in a subset of astrocytes in all four diseases and
in controls. There was a strong colocalization between YKL-40 and the astroglial marker GFAP but not with neuronal
nor microglial markers. Intriguingly, YKL-40-positive astrocytes were tau-negative in PSP, CBD and PiD. The number of
YKL-40-positive astrocytes was increased in tauopathies compared with that in controls. A positive correlation was

Conclusions: This study confirms that YKL-40 is expressed by a subset of astrocytes in AD and other tauopathies. YKL-
40 expression is elevated in several neurodegenerative conditions and correlates with tau pathology.
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Background

There is growing evidence that the immune system is in-
volved early in the pathogenesis of Alzheimer’s disease
(AD) and in other neurodegenerative diseases [1, 2]. The
activation of the immune system in AD (often referred
to as “neuroinflammation”) is known to be present at all
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stages of AD and is believed to play an active role in the
disease process. The activation of microglia and astrocytes
as a reaction to ongoing deposition of Af triggers the pro-
duction of several proinflammatory signal molecules in-
cluding cytokines, chemokines, complement molecules,
growth factors and cell adhesion molecules [3]. The recent
association of gene encoding inflammatory proteins, such
as TREM2 and CD33 with AD [4-6], has further sup-
ported the role of the innate immune response in the aeti-
ology and progression of AD. In addition, the increased
feasibility of measuring a wide range of inflammatory
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molecules in biofluids from patients at different AD stages
has expanded our understanding about the type of im-
mune responses observed in neurodegenerative diseases.
A variety of cytokines, chemokines and other inflamma-
tory mediators are increased in cerebrospinal fluid (CSF)
or in plasma in AD [1]. One of the proteins that has been
frequently measured in body fluids as a surrogate marker
of neuroinflammation in AD and other neurological disor-
ders is YKL-40 (also named Chitinase 3-like I) [7, 8]. It
has been described that YKL-40 participates in connective
tissue cell growth, endothelial cell migration and inhib-
ition of mammary epithelial cell differentiation and pro-
motes tumour angiogenesis [9]. However, its biological
and physiological functions in the central nervous system
remain unclear. YKL-40 is increased in the CSF of mul-
tiple sclerosis (MS) patients, and YKL-40 levels correlate
well with disease progression [10]. In previous studies, we
and others [11, 12] found elevated YKL-40 levels in the
CSF of AD patients. Interestingly, increased levels of YKL-
40 were found in the preclinical stages of AD [13, 14] indi-
cating that the immune system activation occurs early in
the disease. These studies have also shown that CSF levels
of YKL-40 and tau strongly correlate [11, 12]. Additional
studies have indicated that YKL-40 is also elevated in the
CSF of patients with other tauopathies, such as frontotem-
poral dementia (FTD), corticobasal degeneration (CBD)
and progressive supranuclear palsy (PSP) [11, 13, 15, 16].

Despite the wide use of YKL-40 as a biochemical
marker in neurodegenerative diseases, its distribution
and pattern of expression in the human brain remains
unclear. A recent study found that expression levels of
chitinase genes in the brain regions of late onset AD
(LOAD) patients are increased compared with healthy
controls [17], but the cellular source of expression of
these proteins remains uncertain. Some studies have
suggested that YKL-40 is expressed in astrocytes in a
variety of acute neuroinflammatory conditions, such as
traumatic brain injury or multiple sclerosis [18, 19].
Other studies, however, support the idea that YKL-40 is
also expressed in macrophage/microglia cell types in
these conditions [19, 20]. In AD, studies show a variable
pattern of YKL-40 expression that includes astrocytes,
microglia or, on rare occasions, neurons [12, 21, 22].
The aim of the present work was to determine the cellu-
lar pattern of YKL-40 expression in the human brain tis-
sue in AD and other tauopathies. We also investigated
the relationship between YKL-40 expression and tau ag-
gregates in these disorders.

Methods

Standard protocol approval and patient consent

A written informed consent was given by all donors and/
or next of kin for the use of brain tissue for research. This
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study was approved by the local ethics committee at Hos-
pital de Sant Pau, Barcelona, Spain.

Human brain samples

Human brain samples were provided by the Neuro-
logical Tissue Bank (NTB) of the Biobanc-Hospital
Clinic-IDIBAPS and processed as previously described
[23] and as internationally recommended [24]. The ini-
tial study group consisted of 40 patients who met clin-
ical and neuropathological criteria for AD (n=11), PSP
(n=10), CBD (n=9), Pick’s disease (PiD; n=10) and a
group of healthy controls (n = 7).

Neuropathologic assessment

We assessed formalin-fixed and paraffin-embedded tissue
blocks from frontal cortex Brodmann areas 8/9. Immuno-
histochemistry was performed on 5-um-thick sections on
an automated stainer (DAKO Autostainer Plus; DAKO,
Glostrup, Denmark) using the following primary anti-
bodies: anti-amyloid B (clone 6F/3D, dilution 1:400;
DAKO) and anti-phosphorylated tau (clone AT8, dilution
1:2000; Thermo Scientific, Waltham, MA). Reaction was
visualized by the EnVision+ system peroxidase procedure
(DAKO).

Immunoreactive structures of AT8 (NFTs, NTs, pretan-
gles, dystrophic neurites, balloon cells, Pick bodies, rami-
fied astrocytes, astrocytic plaques, tufted astrocytes and
coiled bodies) and B-amyloid (mature, primitive and dif-
fuse plaques) were systematically assessed in all cases.
Neurofibrillary pathology was staged according to Braak
criteria [25, 26]. B-amyloid phases were evaluated accord-
ing to Thal criteria [27]. The National Institute on Aging-
Alzheimer’s Association Guidelines for neuropathologic
assessment of AD was also applied [24]. Healthy controls
without tau or amyloid pathology were included. Neuro-
pathologic evaluation was carried out by three investiga-
tors on a multiheaded microscope.

Immunohistochemistry (IHC) and immunofluorescence (IF)
Formalin-fixed and paraffin-embedded brain sections of
frontal cortex were dewaxed and pretreated with Tris/
EDTA buffer pH 9 at high temperature. The following
primary antibodies were incubated overnight at 4 °C:
polyclonal goat anti-YKL-40 (R&D Systems, AF2599,
dilution 1:200), rabbit anti-GFAP (Sigma, G9269, dilu-
tion 1:500), phosphorylated tau clone AT8 (Thermo Sci-
entificc, MN1020, dilution 1:1000), monoclonal mouse
anti-MAP2 (Sigma, M4403, dilution 1:500) and rabbit anti-
Iba-1 (Wako Chemicals, 019-19741, 1:500). For IHC, the
endogenous peroxidase activity was blocked, sections were
HRP-labelled (Dako, Glostrup, Denmark, dilution 1:200)
and the reaction was visualized by the EnVision+ system
peroxidase procedure (DAKO, Glostrup, Denmark). For IF,
sections were incubated for 1 h with Alexa Fluor 488, 555



Querol-Vilaseca et al. Journal of Neuroinflammation (2017) 14:118

Page 3 of 10

IBA1

Merge Inset

Control

AD

Fig. 1 (See legend on next page.)




Querol-Vilaseca et al. Journal of Neuroinflammation (2017) 14:118

Page 4 of 10

(See figure on previous page.)

Fig. 1 YKL-40 expression pattern in human brain tissue from an AD patient and a healthy control. Representative images of double
immunofluorescence performed with YKL-40 (red) and three different cellular markers, GFAP (astroglial, green), MAP2 (neuronal, green) and IBA-
1 (microglial, green). Nuclei are marked in blue. a—h YKL-40 immunoreactivity was detected in the cytoplasm of GFAP+ cells (asterisk), indicating an
astroglial origin. i-p No colocalization was observed between YKL-40 and the neuronal marker, MAP2 or (g-x) with the microglial marker, IBA-1. Scale

bar =20 um

or 647 (Invitrogen, Carlsbad, CA, USA, dilution 1:1000)
secondary antibodies and stained with Sudan black B
(Merck, Whitehouse Station, NJ, USA) to mask tissue
autofluorescence. Nuclei were stained with Hoechst 33258
(Life Technologies, Carlsbad, CA, USA, dilution 1:1000),
and coverslips were added with Immu-Mount (Fisher Sci-
entific, Rockford, USA) mounting medium.

Image acquisition and analysis

Fluorescence images were acquired with a Leica inverted
fluorescent confocal microscope (Leica TCD SP5-AOBS,
Wetzlar, Germany) with a x40 1.4 NA oil objective. Alexa
Fluor 488, 555 and 647 were sequentially excited with
488-, 561- and 633-nm laser lines and captured with a
spectral window of 498 to 530, 571 to 620 and 645 to
720 nm, respectively. A pulsed 405-nm laser was used for
Hoechst visualization capturing images in a spectral range
of 415 to 475 nm. Sections without antibodies or with sec-
ondary antibodies only were imaged to ensure specific and
independent fluorophore visualization. For each case, at
least 10 images per area were acquired. Pictures were
taken in 4-5 z planes with a 0.7-pm pinhole. Maximal in-
tensity projection of each type of aggregate was used for
figure visualization.

For colocalization analyses, images were acquired avoid-
ing saturated pixels. Saturation was only minimally ap-
plied for presentation purposes in the figure. Protein
colocalization was evaluated using FIJI imaging software
[28]. All images were analyzed following the same semi-
automated in-house algorithm. Briefly, for each channel,
the lowest intensity signals within a z-stack were removed
to minimize background. An automated threshold was
then estimated to create binary images. To quantify the
overlap between proteins, Manders’ colocalization coeffi-
cient was calculated for each channel [29, 30].

For quantification analysis of IHC stains, full-section
scans were obtained with Pannoramic MIDI II (3DHis-
tech, Budapest, Hungary). Cortical grey matter of each
case was delimited blinded to clinical phenotypes. An
in-house computer-based algorithm was developed to
quantify tau pathology burden and GFAP immunoreac-
tivity with MATLAB R2015b software (The MathWorks,
Inc., Natick, MA, USA) (Additional file 1: Figure S1).
Briefly, the algorithm allows defining random regions of
interest (ROIs) on a full-section scan, to compute dens-
ities of protein expression and to quantify the number of
immunoreactive objects. This procedure was adapted

from a published digital image analysis [31]. An outlier
test was performed, and cases reported as statistical out-
liers were removed from the analysis. Five cases were ex-
cluded such that the final sample included the following
cases: 11 AD, 9 PSP, 8 CBD, 8 PiD and 6 healthy con-
trols. All quantitative analyses performed with the devel-
oped semi-automated method were manually validated
in a subset of images. YKL-40-positive objects were
manually validated by two investigators in order to en-
sure the correct identification of immunoreactivity pat-
terns by the automated algorithm. Both investigators
were blinded to clinical phenotypes.

Statistical analysis

Kruskal-Wallis and Dunn’s multiple comparison tests
were performed for colocalization and quantification ana-
lyses. Correlation between proteins was measured by the
Spearman coefficient. Statistical significance was set at 5%
(¢ =0.05). All data were analyzed using the GraphPad
Prism 6.0 software (GraphPad Software, Inc., CA, USA).

Results

YKL-40 is expressed by astrocytes in human brain tissue
We first examined the cellular expression of YKL-40 in
human brain tissue from an AD patient and a healthy
control. Using a double immunofluorescence technique,
we investigated the colocalization between YKL-40 and
three different markers: MAP2 as a neuronal marker,
GFAP as an astroglial marker and IBA-1 as a microglial
marker (Fig. 1). In both the AD and control brains, we
found that YKL-40 colocalized in some cells labelled
with the astrocytic marker GFAP, with a perinuclear
cytoplasmic pattern extending to some proximal astro-
glial processes (Fig. la—h). Conversely, there was no
colocalization between YKL-40 and the neuronal marker,
MAP2, or with the microglia marker, IBA-1 (Fig. li—x).
These findings indicate that YKL-40 is expressed by
astrocytes in the frontal cortex of healthy and diseased
human brain tissue.

YKL-40 is expressed in a subset of astrocytes in AD and
other non-AD tauopathies

We next investigated whether the pattern of YKL-40
was similar between AD and other neurodegenerative
diseases. YKL-40 expression pattern was examined in
the frontal cortex from patients with different forms of
frontotemporal lobar degeneration (FTLD) such as PiD,
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Fig. 2 YKL-40 immunoreactivity pattern and colocalization analyses in different tauopathies. Representative images of the triple immunofluorescence
studies performed with YKL-40 (red), GFAP (green) and tau (magenta) antibodies. Nuclei are marked in blue. All four tauopathies investigated, a—e AD,
f-j PiD, k-0 CBD and p-t PSP, showed a cytoplasmic astroglial expression pattern of YKL-40. Scale bar = 20 um. u Colocalization analysis confirmed
that approximately 80% of YKL-40 colocalized with GFAP in all tauopathies. No colocalization was detected between YKL-40 and tau in any condition.
As expected, non-AD tauopathies showed an overlap between tau and GFAP. ***p < 0.001; *p < 0.05

CBD and PSP. Since tau is known to aggregate in astro-
cytes in these subtypes of FTLD [32], we explored the
relationship between YKL-40 expression and the differ-
ent forms of tau aggregates in these conditions.

We performed triple immunofluorescence studies with
antibodies against YKL-40, GFAP and tau in different
cases of AD and non-AD tauopathies (1 =40) (Fig. 2).
We confirmed that 75—-85% of YKL-40 immunoreactivity
colocalized with GFAP indicating an astroglial origin in
cases with AD, PiD, CBD and PSP (Fig. 2u). The immu-
noreactivity of YKL-40 was mainly cytoplasmic while
GFAP immunoreactivity extended distally to astrocytic
processes and plasma membrane, which explains the lack
of complete overlap. No differences in the expression pat-
tern of YKL-40 between the AD and FTLD cases were
found (all p > 0.05). Interestingly, in PSP, CBD and PiD,
where tau-positive astrocytes are commonly found, most
YKL-40-positive astrocytes were tau negative and vice
versa. Accordingly, colocalization between YKL-40 and
tau was negligible (<7%). On the other hand, as previously
described [32], substantial overlap between tau and GFAP
immunoreactivity was found in PiD (~37%), CBD (~37%)
and PSP (~51%), whereas no overlap was found in AD.
The distribution of YKL-40-positive astrocytes was mainly
isolated but occasionally found surrounding blood vessels.
These data support the idea that the immunoreactivity
patterns of astroglial YKL-40 and tau are spatially distinct
in non-AD tauopathies.

Relationship between YKL-40 expression, tau pathology
and astrogliosis

We next investigated the differences in total YKL-40 im-
munoreactivity between the neurodegenerative conditions
and healthy control brains. Immunohistochemistry for
YKL-40, GFAP and tau was performed on three consecu-
tive sections from the frontal cortex from each case, re-
spectively. Full-section scans of all samples were obtained,
and quantification of tau, YKL-40 and GFAP was per-
formed. Representative images of YKL-40, tau and GFAP
immunoreactivity are shown in Fig. 3(a—0). A similar
YKL-40 expression pattern was observed across all neuro-
degenerative conditions although expected differences in
tau deposits were detected between conditions.

We next applied our in-house semi-automated algo-
rithm to quantify total immunoreactivity (density/um?)
and number of objects of Tau and GFAP markers
(Additional file 1: Figure S1). YKL-40 levels were

increased in all neurodegenerative diseases (except PiD)
compared with controls (p <0.05). No differences were
observed between the different tauopathies (Fig. 3p).
Less than 10% of GFAP-positive astrocytes expressed
YKL-40 (10% in PSP, 7% in CBD, 5% in AD, 4% in PiD
and 1% in healthy controls).

We next examined the correlation between YKL-40,
tau and GFAP markers. We found a positive correl-
ation between tau pathology burden scores and YKL-
40 (n=36; r=0.447; p=0.006) (Fig. 3q) and between
GFAP and tau pathology (n=36; r=0.651; p <0.0001)
(Fig. 3s). However, we did not detect a correlation be-
tween YKL-40 and GFAP (n=36; p=0.776) scores
(Fig. 3r).

Discussion

In the present study, we found that YKL-40 is expressed
by astrocytes in human brain tissue in healthy controls
and in different neurodegenerative diseases. The immu-
noreactivity pattern of YKL-40 was mainly cytoplasmic
extending to proximal astrocytic processes. We also ob-
served that this protein is expressed in a subset of astro-
cytes (<10%) that do not contain tau aggregates in non-
AD tauopathies.

To date, the pattern of expression of YKL-40 in the
central nervous system has remained controversial and
has not been fully elucidated. Some studies have de-
scribed that YKL-40 is expressed in microglia [33, 34]
while others have found it in astrocytes [12, 35]. These
discrepancies may be because YKL-40 expression seems
to vary depending on the disease and the severity of the
neuroinflammatory response [19, 35]. It has been shown
that in multiple sclerosis, YKL-40 is expressed by macro-
phages/microglial cells (CD68+) in low and high inflamma-
tory activity lesions [19]. However, YKL-40 expression was
also expressed in the cytoplasm of astrocytes (GFAP+) in
high inflammatory activity lesions [19]. Another study re-
ported that in human brain infarction, YKL-40 astrocytic
expression depends on the stage of underlying inflamma-
tion, increasing during the acute inflammation phase and
diminishing as the inflammation resolves [35]. Moreover, it
has been shown by others that YKL-40 is also expressed by
peripheral cells including chondrocytes [36], synoviocytes
[37], vascular smooth muscle cells [38], macrophages [39]
and neutrophils [40]. For example, it has been reported that
expression of YKL-40 in breast cancer tissue correlates with
tumour grade [41] and that YKL-40 macrophage expression
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Fig. 3 Quantification of YKL-40, tau pathology burden and astrogliosis in different tauopathies. a—o Representative images of YKL-40, tau and
GFAP immunoreactivity of controls and the four tauopathies under study. a—e YKL-40 expression pattern. f—j Main tau deposits and aggregates of
each condition. k-0 Astrogliosis among the tauopathies and controls. Scale bar = 20 pm. p YKL-40 immunoreactivity (objects/um?) measured in
all conditions. g-s Correlation between different markers. Levels of YKL-40 and GFAP correlated positively with tau aggregation. Solid lines indicate
the linear regression, and dotted lines indicate 95% Cl. RS, Spearman rho coefficient.

is upregulated in patients with chronic obstructive pulmon-
ary disease and correlates with its severity [42]. In vitro
studies have shown a dramatically increase of YKL-40 ex-
pression during astrocyte differentiation [43]. Other studies
based on immunohistochemical techniques suggested that
YKL-40 together with SSEA-4 marker expression represent
an unexplored astrogenic lineage [44]. Here, we have con-
firmed that YKL-40 shows an astroglial cytoplasmic immu-
noreactivity pattern in postmortem human frontal cortex
from healthy controls and AD patients. We did not detect
YKL-40 expression in microglia or in neurons.

We also found YKL-40 in the cytoplasm of astrocytes
in non-AD tauopathies, including PiD, CBD and PSP.
Although YKL-40 was typically found in isolated astro-
cytes, we occasionally observed focal astrocytic YKL-40
immunoreactivity around blood vessels. Previous studies
have suggested that YKL-40 transcription is induced in
astrocytes by proinflammatory factors released from
macrophages [21]. One possible explanation for this ob-
servation is that perivascular macrophages may induce
YKL-40 expression in astrocytes that are in close prox-
imity. The colocalization between YKL-40 and GFAP was
around 80% indicating that GFAP immunoreactivity, typ-
ically extending towards the astrocyte membrane and pro-
cesses, surrounds that of YKL-40. Interestingly, YKL-40
immmunoreactivity was independent of tau, indicating
that in non-AD tauopathies, YKL-40 is expressed in a tau-
negative subset of astrocytes. Whether YKL-40 could be a
compensatory response to inhibit tau aggregation or, on
the contrary, represents an initial event that facilities tau
deposition requires further investigation. As expected,
colocalization between tau and GFAP was found in non-
AD tauopathies reflecting the distinctive glial tau aggrega-
tion in these disorders [32]. The 15% overlap observed in
AD may be explained by neuropil threads crossing astro-
cyte processes in close proximity that are measured as
colocalization due to the resolution limits.

Recent studies have demonstrated that YKL-40 levels are
increased in the CSF of patients with AD and FTD com-
pared with those in the healthy controls [11-16, 45, 46]. In
addition, a positive correlation between YKL-40, total tau
and p-tau has been reported in CSE, suggesting that inflam-
mation and tau-associated neurodegeneration are related
pathophysiological processes. In agreement, animal models
and co-culture studies have shown that activated glia-
induced neuronal tau phosphorylation and aggregation
[47]. In postmortem brains, our semi-automated method

revealed that total YKL-40 levels were statistically increased
in all tauopathies (except PiD) compared with healthy con-
trols. These results are in agreement with studies that in-
vestigated YKL-40 levels in CSF of AD and FID patients
[11-16, 45, 46]. It is important to note that only a limited
proportion of astrocytes (always less than 10%) expressed
YKL-40 in human frontal cortex. Interestingly, we found a
positive correlation between YKL-40 and tau pathology
burden (r = 0.447) suggesting that inflammation and neuro-
degeneration may be closely related processes in humans.
The lack of correlation between YKL-40 and GFAP to-
gether with the positive correlation between tau and GFAP
(r=0.651) in our study also may indicate that YKL-40 ex-
pression is independent of astrocyte activation in neurode-
generative disease.

Conclusions

In conclusion, this is, to our knowledge, the first detailed
neuropathologic characterization of YKL-40 expression
in human brain tissue. Moreover, the study includes tis-
sue samples from healthy controls and four neurodegen-
erative diseases. Combining confocal microscopy and
the application of a semi-automated method to quantify
pathology burden, we have shown that the immunoreac-
tivity pattern of YKL-40 in AD and other tauopathies is
astroglial. YKL-40 is expressed by a subset of astrocytes
that do not contain tau aggregates in non-AD tauopa-
thies. Finally, we have found that YKL-40 inflammatory
marker is associated with tau pathology in neurodegen-
erative diseases that accumulate tau.

Additional file

Additional file 1: Figure S1. Semi-automated method for pathological
burden quantification. For all conditions tau and GFAP were assessed
using a randomized computer-based quantification of patterns and sever-
ity in immunohistochemical stains. Cortical grey matter of each case was
delimited blinded to clinical phenotypes (A). We developed an in-house
algorithm that allows defining randomized regions of interest (ROIs) on a
full-section scan (B-C), to compute density of protein expression (D) and
to quantify the number of pathological objects (E). (TIF 4423 kb)
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