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Medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system. Sex
reversal from female-to-male (masculinization of XX fish) can be induced through cortisol
elevation from exposure to environmental stress such as high temperature during sexual
differentiation. However, the effects of oxidative stress, generated via metabolic reactions
and biological defense mechanisms, on the sexual differentiation of medaka are unclear.
Here, we investigated the effect of oxidative stress on medaka sexual differentiation using
hydrogen peroxide (H2O2), which induces oxidative stress in vertebrates. H2O2 treatment
from 0 to 5 days post-hatching induced masculinization of wild-type XX medaka, but not
of gonadal soma-derived growth factor (gsdf) or peroxisome proliferator-activated
receptor alpha-a (pparaa) knockout XX fish. Co-treatment with an oxidative stress
inhibitor caused masculinization recovery but co-treatment with a cortisol synthesis
inhibitor did not. H2O2 treatment significantly upregulated gsdf and pparaa expression
in XX medaka. However, H2O2 did not elevate cortisol levels in medaka larvae during
sexual differentiation. These results strongly indicate that oxidative stress induces
masculinization of XX medaka without causing elevation of cortisol.

Keywords: oxidative stress, cortisol, masculinization, environmental sex determination, medaka Oryzias latipes
INTRODUCTION

In the offspring of many vertebrates sex is determined genetically through sex chromosomes
inherited from their parents—with parthenogenesis being the exception (1–3). Sex determination
systems differ across species. For example, most mammals exhibit a male heterozygous XX/XY
system, and birds and some reptiles exhibit a female heterozygous ZZ/ZW system. Sex
determination can also be influenced by environmental stresses (e.g., temperature and pH)
during the sexual differentiation period in some reptiles (4, 5), amphibians (6, 7), and fish (8, 9).
However, the molecular mechanisms underlying environmental sex determination in these species
are poorly understood.
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Medaka (Oryzias latipes) is commonly used as a model
laboratory organism because it has a short generation interval,
a small genome size, and is easy to handle and rear. dmy/
dmrt1bY, the medaka sex-determining gene located on the Y
chromosome, has been identified (10, 11). Medaka also make an
excellent vertebrate model organism for molecular biology and
genetic experiments because transgenic techniques and gene
knockout (KO) systems using transcription activator-like
effector nuclease (TALEN), or clustered regularly interspaced
short palindromic repeat (CRISPR)/CRISPR-associated protein
9 (Cas9) have been established in this species (12–15).

Exposure to high temperature (HT) causes female-to-male sex
reversal (masculinization) of medaka during the sexual
differentiation period (16–18). Exposure to HT elevates cortisol
levels and increases expression of gonadal soma-derived growth
factor (gsdf), a TGF-beta superfamily gene related to testis
differentiation in teleosts, and decreases the expression of
cyp19a1a, which encodes cytochrome P450 aromatase, an ovary
differentiation factor (19). Therefore, it was concluded that HT
promotes male development and suppresses female development.
Moreover, it was recently reported that peroxisome proliferator-
activated receptor alpha-a (pparaa), which regulates the expression
of fatty acid-related genes, is activated by HT and cortisol and its
activation leads to the masculinization of XXmedaka (20). Recently,
it was reported that lipid metabolism may regulate female-to-male
sex reversal in starved medaka (21). Hence, changes in the lipid
metabolism system, induced as a stress response, may also be
involved in the masculinization of XX medaka.

Reactive oxygen species (ROS) generated by metabolic
reactions (e.g., fatty acid oxidation and the mitochondrial
respiratory chain) have a physiological function in intercellular
signaling, but excessive ROS cause oxidative damage in various
cellular molecules (e.g., DNA, RNA, proteins, and lipids) (22–
26). For example, oxidative stress from excessive ROS has been
linked to diseases such as alcoholic liver disease (27–29). Zhang
et al. (2016) reported that inorganic mercury (Hg) exposure
caused oxidative stress and histological damage in the gonads of
adult zebrafish, and altered sex hormone levels by disrupting the
transcription of genes involved in the hypothalamic-pituitary-
gonadal axis. (30). However, the effect of oxidative stress on
sexual differentiation was not examined.

In the present study, we investigated the effect of oxidative
stress on the sexual differentiation of medaka using hydrogen
peroxide (H2O2), which induces oxidative stress in vertebrates
(31). We then assessed sex-reversal ratio and fertility in the
adults, and investigated cortisol levels and expression patterns of
sex-related genes in medaka larvae. Finally, we studied the
relationship between masculinization by oxidative stress and
GSDF or PPARa function using gsdf and pparaa KO medaka.
MATERIALS AND METHODS

Ethics Statement
This study was performed using protocols approved by the
Animal Care and Use Committee of Kumamoto University
Frontiers in Endocrinology | www.frontiersin.org 2
(A2020-014). All methods were carried out in accordance with
the relevant guidelines and regulations. The study was performed
according to the ARRIVE guidelines along with the general
guidelines and ethical approval.

Animals
Wild-type, pparaa KO (20), and gsdf KO lines (32) originating
from an FLFII medaka line (33) were used in this study. pparaa
KO and gsdf KO lines were generated using the CRISPR/Cas9
system and maintained by brother-sister mating of the
genetically homogenous medaka (20, 32). pparaa KO and gsdf
KO XX medaka do not masculinize with cortisol treatment (20,
32), while some gsdf KO but not pparaa KO XY fish become
females having ovaries under normal conditions, while others
become normal males having testes (34). Fish embryos and
larvae were maintained in embryo-rearing medium (ERM: 17
mMNaCl, 0.4 mMKCl, 0.27 mMCaCl2.2H2O, 0.66 mMMgSO4,
pH 7) at 26°C under a 14-h light and 10-h dark cycle.

Experimental Treatment
To confirm the masculinization of XX medaka by oxidative stress,
H2O2 treatments were performed with 0.75 and 2mMH2O2 (purity
30%, CAS RN: 7722-84-1; Wako Pure Chemical, Osaka, Japan)
using wild-type larvae from 0 to 5 days post-hatching (dph) in 6-
well culture plates (Corning, Glendale, AZ) with the water being
changed daily. A rescue test to reduce oxidative stress through
antioxidant supplementation was conducted with either 1 or 10 mM
N-acetyl-L-cysteine (NAC; Wako) dissolved in Dimethyl sulfoxide
(DMSO; Sigma-Aldrich, Saint Louis, MO) as previously described
(20), using larvae from 0 to 5 dph in 6-well culture plates with the
water being changed daily.

To investigate whether other XX medaka lines undergo
masculinization from oxidative stress, pparaa KO, and gsdf KO
medaka larvae were treated with 2 mM H2O2 under the
conditions outlined above. Finally, treatment with 5 mM
metyrapone (Sigma-Aldrich) dissolved in ethanol (Wako) as
previously described (17), was used in conjunction with 2 mM
H2O2 in FLFII medaka larvae to investigate the relationship
between cortisol and oxidative stress-induced masculinization.
The survival rates and the body sizes in adults are shown in
Supplementary Tables S1, S2, respectively.

Genetic Sexing
The genetic sex of the adults (about 2 months old) was determined
by genomic PCR. The PCR was performed using specific primers
for dmy/dmrt1bY as previously described (17). PCR conditions were
as follows: preheating at 95°C for 10 min, 40 cycles of 94°C for 30
sec, 59°C for 30 sec, 72°C for 1 min, and a final extension at 72°C for
5 min. The genetic sex of the larvae at 5 dph was determined by the
appearance of leucophores as previously described (33).

Histological Analysis of Gonads
Histological analysis was performed as previously described (17).
Adult fish were prepared for examining the gonadal phenotype
and calculating sex ratios. The tissue was fixed in Bouin’s
solution at 4°C overnight, embedded in paraffin, sectioned
serially at a thickness of 5 mm, stained with hematoxylin and
June 2022 | Volume 13 | Article 878286
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eosin, and then imaged with an Eclipse Ci-E microscope (Nikon,
Tokyo, Japan).

Fertility Assessment
The fertility of adult XX male medaka (approximately 2 months
old) after H2O2 treatment from 0 to 5 dph was assessed by
natural mating with fertile partners (wild-type XX female
medaka). A minimum of 80 eggs were analyzed to determine
the fertilization rate. Adult XY male medaka (approximately 2
months old) without H2O2 treatment were used as the control
group. Fertility assessment was conducted with three
mating pairs.

Quantitative Real-Time PCR
Gene expression analysis by quantitative real-time PCR was used
to further investigate the mechanism of XX medaka
masculinization by oxidative stress. Total RNA was extracted
from the gonad regions of wild-type larvae (N = 4, 10 pooled
samples) treated with or without 2 mM H2O2 from 0 to 5 dph
using ISOGEN (Nippon Gene, Tokyo, Japan) as previously
described (19). Briefly, reverse transcription was performed at
37°C for 30 min using a ReverTra Ace® qPCR RT Master Mix
(Toyobo, Osaka, Japan). Quantitative real-time PCR was
performed with specific primers (Supplementary Table S3) on
a LightCycler 480 (Roche, Mannheim, Germany) using SYBR
Green I Master Mix (Roche). The PCR conditions were as
follows: 95°C for 5 min, then 45 cycles of 95°C for 5 min, 59°C
for 10 s, and 72°C for 10 s. Relative gene expression levels were
calculated using a delta-CT method. The RefFinder tool, which
integrates four specific algorithms [GeNorm (35), NormFinder
(36), BestKeeper (37), and the comparative delta-Ct method
(38)], was used for the assessment and screening of three
candidate reference genes [elongation factor 1 alpha (ef1a), b-
actin, and glyceraldehyde-3-phosphate dehydrogenase (gapdh)].
ef1a was the most stably expressed gene and was used as a
reference gene (Supplementary Table S4).

Cortisol Measurement
To confirm the stress level in each treatment, a cortisol
measurement was performed. Wild-type medaka larvae were
Frontiers in Endocrinology | www.frontiersin.org 3
treated with or without 2 mMH2O2 from 0 to 5 dph. Metyrapone
(5 mM) was added to the 2 mM H2O2 treatment group and
cortisol (5 mM) treatment was used as a positive control.

Steroid hormones were extracted as previously described (39).
Briefly, five pooled larvae were homogenized in phosphate-
buffered saline (137 mM NaCl, 2.68 mM KCl, 8.1 mM
Na2HPO4, 1.47 mM KH2PO4; pH 7.4). Steroids were extracted
three times from the homogenates into diethyl ether according to
previous methods used for teleosts (40–42), and cortisol levels
were measured using a cortisol EIA kit (Cayman Chemical, Ann
Arbor, MI) according to the manufacturer’s instructions.
Individual cortisol levels (per fish) were determined by dividing
the average measurement by the number of pooled samples.

Statistical Analysis
Statistical analysis was performed using Statcel 3 with Excel
(OMS, Saitama, Japan). Significant differences in sex-reversal
ratio among the treatments were determined by the chi-squared
test. Student’s t-test was used to detect significant differences in
fertility. One-way ANOVA, Tukey-Kramer, and Scheffe’s F tests
were used to statistically analyze the gene expression and cortisol
measurement data.
RESULTS

The Effect of Oxidative Stress on Sex
Differentiation of XX Medaka
To investigate whether oxidative stress causes the masculinization
of XX medaka, we treated medaka larvae with H2O2 from 0 to 5
dph, which is the shortest temperature-sensitive period
determined by our previous study (17, 19). The sex-reversal
ratio (at approximately 2 months of age) for each treatment is
shown in Table 1. H2O2 treatment (0.75 mM H2O2; 14.3%, 2 mM
H2O2; 35%) caused the masculinization of wild-type XX medaka
in a concentration-dependent manner. Histological analysis
showed that control XY males had normal testes with
productive spermatogenesis Figure 1A) and XX female medaka
had normal ovaries with young oocytes (Figure 1B). H2O2-
TABLE 1 | Sex ratios in adult medaka. a and b: significant difference (p < 0.05).

No. of adult fish

Genotype Treatment XY♂ XY♀ XX♂ XX♀ % of XX sex-reversal

wild-type Control 10 0 0 11 0a

0.75 mM H2O2 21 0 3 18 14.3a

2 mM H2O2 17 0 7 13 35.0b

2 mM H2O2

+Metyrapone
11 0 4 9 30.8b

2 mM H2O2

+ 1 µM NAC
16 0 2 11 15.4a

2 mM H2O2

+ 10 µM NAC
17 0 2 11 15.4a

gsdf -/- Control 7 0 0 7 0a

2 mM H2O2 20 0 0 11 0a

pparaa -/- Control 10 0 0 8 0a

2 mM H2O2 13 0 0 20 0a
June 2022 | Volu
me 13 | Article 878286

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mukai et al. Oxidative Stress Causes Masculinization
treated, sex-reversed XX individuals had normal testes that
included spermatocytes (Figure 1C), while other H2O2-treated
XX individuals had normal ovaries, as in control females
(Figure 1D). This was also observed after treatment with 2 mM
H2O2 and metyrapone, a cortisol synthesis inhibitor (Figure 1E).
Treatment with 2 mM H2O2 and NAC, an oxidative stress
inhibitor, produced less masculinization (15.4%) than with 2
mM H2O2 alone (Figure 1F). No masculinization was observed
in the gsdf or pparaa KO XX medaka treated with 2 mM H2O2
Frontiers in Endocrinology | www.frontiersin.org 4
(Figures 1G, H), similar to the untreated gsdf and pparaa KO XX
medaka (20, 32). There was a significant difference in sex-reversal
ratio between XX controls and XX individuals treated with 2 mM
H2O2 or XX individuals treated with 2 mM H2O2 and
metyrapone (Table 1).

Wild-type XY males and sex-reversal XX males (from H2O2

treatment) had similar fertilization rates after mating with XX
females (Figure 2). Every fertilized egg developed into a
normal larva.
A B

D

E F

G H

C

FIGURE 1 | Gonads of adult medaka at 2 months post-hatching. (A) XY male, control, (B) XX female, control, (C) sex-reversal XX male, (D) no sex-reversal XX
female with H2O2 treatment, (E) H2O2 + metyrapone, (F) H2O2 + NAC, (G) gsdf KO XX female, (H) pparaa KO XX female with H2O2 treatment. SC, spermatocytes;
SG, spermatogonia; O, oocytes; OC, ovarian cavities; Scale bars: 100 mm.
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Effects of Oxidative Stress on Gene
Expression During Sex Differentiation
We analyzed the expression pattern of male-related genes [gsdf
and anti-Müllerian hormone (amh)], female-related genes
(cyp19a1b), which is expressed in the larval gonads and
regulated by cortisol (20), and pparaa in 5-dph larvae exposed
to H2O2-induced oxidative stress using quantitative real-time
Frontiers in Endocrinology | www.frontiersin.org 5
PCR. gsdf expression levels were significantly higher in XY
medaka than in XX fish and the expression was increased in
both sexes by H2O2 treatment (Figure 3A). amh expression was
detected in both sexes to the same extent, similar to the findings
in a previous study (43), and the expression in XX fish was
significantly increased by H2O2 treatment (Figure 3B). cyp19a1b
expression levels were significantly higher in XXmedaka than in XY
A B

DC

FIGURE 3 | Quantitative real-time PCR analysis of the expression of (A) gsdf, (B) amh, (C) cyp19a1b and (D) pparaa in the gonadal region of controls (white box)
and H2O2-treated medaka (black box) at 5 dph. Relative expression levels of the target genes were normalized to that of ef1a. Vertical bar: mean ± standard error of
quadruplicate samples; a, b, c, d, and ab: significant difference (p < 0.05).
FIGURE 2 | Fertility assessment of adult XY male without H2O2 treatment (white box) and sex-reversal XX male medaka with H2O2 treatment from 0 to 5 dph (black
box) using natural mating with fertile partners (XX female medaka). Vertical bar: mean ± standard error of triplicate samples.
June 2022 | Volume 13 | Article 878286
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fish and the expression was significantly increased in both sexes by
H2O2 treatment (Figure 3C). pparaa expression levels were detected
in both sexes to the same extent and the expression in XX fish was
significantly increased by H2O2 treatment (Figure 3D).

Change of Cortisol Levels in Medaka
Exposed to Oxidative Stress
To investigate if oxidative stress caused cortisol elevation in XX
medaka (in a similar way to high temperature treatment), we
assessed cortisol levels in wild-type medaka treated with: 0 or 2
mM H2O2, metyrapone, or cortisol, from 0 to 5 dph (Figure 4).
The cortisol levels were similar in the H2O2-, and metyrapone-
treated groups, in contrast to those in HT-treated medaka (17).
Significant differences were detected between the cortisol treated
group and the other groups.
DISCUSSION

To assess the effect of oxidative stress on sex differentiation of
medaka, we analyzed histological changes of the gonad, cortisol
levels, fertility rate, and sex-related gene expression using adults
or larvae treated with H2O2 from 0 to 5 dph. Previous studies
have shown that cortisol and HT treatments were more effective
during the 5 days after hatching than before hatching (17, 20),
although sexually dimorphic proliferation of germ cells has
occurred by the hatching stage (44). Therefore, in this study,
we treated larvae with H2O2 for 5 days after hatching. Our results
indicate that oxidative stress causes masculinization of XX
medaka. To our knowledge, this is the first report to show that
oxidative stress can cause masculinization of a vertebrate species.
Recently, it was reported that in a teleost, Atherinopsidae, whose
sex can be determined by temperature, masculinization by
continuous illumination was accompanied by significant
increases in the expression of the stress axis activation gene,
Frontiers in Endocrinology | www.frontiersin.org 6
crf, and ROS antagonist effector genes, gsr and cat, indicating that
both the stress axis and ROS response mechanisms are activated
at this time (45). Therefore, although the masculinizing effect of
oxidative stress in other species remains uncertain, there may be
a link between continuous light, oxidative stress, and
environmental sex determination in vertebrates.

The fertilization rate was similar between matings of H2O2-
treated, sex-reversed XX males with XX females, and of control
XY males with XX females. Moreover, the fertilized eggs
developed into normal individuals. A previous study reported
that Hg exposure induced oxidative stress in adult gonads and
caused alterations in gonadal histology, sex hormone production,
and sex-related gene expression in zebrafish (30). Additionally,
atretic oocytes, and a loss of contact between the oocyte cell
membrane and the follicular cell layer was observed. While the
fertilization rate was not confirmed, the structure of the gonads
was adversely affected and it was proposed that fertility would be
disrupted (30). In the present study, we found that XX males,
induced by oxidative stress from H2O2 treatment, exhibited
normal fertility, which indicates that sex reversal by H2O2

treatment resulted in a normal masculinization cascade and
had no toxic effects.

Previously, we showed that masculinization of XX medaka
was caused by elevated cortisol levels because masculinization by
HT was inhibited by treatment with metyrapone, an inhibitor of
cortisol synthesis (17). Although metyrapone completely inhibits
cortisol synthesis in medaka embryos (17), this drug did not
decrease cortisol levels of fish larvae after hatching in this study.
Therefore, higher concentrations of metyrapone may be needed
to block completely cortisol synthesis in the larvae. However,
masculinization of XX medaka by H2O2 treatment was not
suppressed by treatment with metyrapone and no increase in
cortisol levels was observed in the H2O2-treated group. These
results strongly indicate that oxidative stress causes
masculinization of XX medaka without elevating cortisol.
FIGURE 4 | Cortisol levels in medaka larvae at 5 dph. Control (white box), H2O2 (black box), H2O2 with metyrapone (dotted box), and cortisol treatment (stripe box)
groups. Vertical bar: mean ± standard error of quadruplicate samples; a and b: significant difference (p < 0.01).
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Moreover, we found that H2O2 treatment dose-dependently
induced masculinization of XX medaka but not all fish were
masculinized, similar to cortisol-induced masculinization (16–
18, 46). Some studies have been reported that cortisol induces
oxidative stress in teleosts (47, 48). Taken together, these results
strongly suggest that oxidative stress may act downstream of
cortisol s ignal ing in the process of stress-induced
masculinization, although further investigation is needed.

In our previous studies, pparaa or gsdf KO XX medaka were
not masculinized by cortisol treatment, which strongly indicated
that pparaa and gsdf are involved in masculinization of XX
medaka (20, 32). Consistently, in this study, masculinization of
XX medaka by H2O2 treatment was completely suppressed in
pparaa KO and gsdf KO fish, suggesting that masculinization of
XX medaka by oxidative stress also occurred via PPARa and
GSDF function. The gsdf is predominantly expressed in Sertoli
cells and granulosa cells in mature medaka gonads (49).
Moreover, deletion of gsdf results in phenotypic sex reversal of
males to females (34), while gsdf transgenic XX medaka show
masculinization (50). PPARa acts as a transcription factor that
regulates the expression of genes related to fatty acid oxidation
(51, 52). Hara et al. (2020) revealed that agonist-activation of
PPARa induces the masculinization of XX medaka whereas
treatment of pparaa KO medaka with cortisol or the agonist
did not induce masculinization of XX medaka (20). In the
present study, the expression levels of gsdf and pparaa were
significantly elevated in XX larvae by H2O2 treatment.
Surprisingly, the expression of amh, which is detected to the
same extent in both sexes (17), and cyp19a1b, which is more
highly expressed in XX individuals than in XY individuals (20),
were also significantly induced in XX larvae by H2O2 treatment.
Since molecular mechanisms and implications that oxidative
stress induces the expression of these genes remain unclear at
this time, it will be necessary to analyze them using amh and
cyp19a1b KO medaka in the future. Thus, oxidative stress
appears to cause masculinization of XX medaka by regulating
the expression of these sex-related genes during the sex
differentiation period.

Although this study shows that oxidative stress induces
masculinization of XX medaka, the molecular pathway of
stress-mediated masculinization was not fully elucidated.
Previously, it has been reported that ROS interact with low-
density lipoproteins to activate PPARa and subsequently limit
inflammation, as indicated by PPAR-dependent repression of
inducible nitric oxide synthase gene transcription (53).
Therefore, oxidative stress is likely to induce masculinization
of XX medaka through activation of PPARa, which in turn
causes induction of the expression of male-related genes. Future
studies will focus on the molecular pathway of masculinization
mediated by stress.
Frontiers in Endocrinology | www.frontiersin.org 7
In summary, H2O2 treatment induced masculinization of
wild-type XX medaka but not of gsdf or pparaa KO XX fish.
The masculinization could be prevented by co-treatment with
the oxidative stress inhibitor, NAC, but not with the cortisol
synthesis inhibitor, metyrapone. Moreover, H2O2 treatment
significantly upregulated gsdf and pparaa expression in XX
medaka. Notably, H2O2 did not elevate cortisol levels in
medaka larvae during sexual differentiation. These results
strongly indicate that oxidative stress induces masculinization
of XX medaka without causing elevation of cortisol.
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