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Abstract: The first example of the palladium-catalyzed tandem addition/cyclization of 2-(benzyl
idenamino)benzonitriles with arylboronic acids has been developed. This transformation features
good functional group tolerance and provides an alternative synthetic pathway to access
2,4-diarylquinazolines in moderate to good yields. A plausible mechanism for the formation of
2,4-diarylquinazolines involving sequential nucleophilic addition followed by an intramolecular
cyclization is proposed.
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1. Introduction

It is well-known that nitriles such as acetonitrile or benzonitrile are widely used as solvents
or ligands in organometallic reactions, presumably due to the inherently inert nature of the cyano
group [1–3]. The development of inert C≡N bond activation/carbon-carbon or carbon-heteroatom
bond-forming reactions catalyzed by transition metals has attracted significant attention of organic
chemists during the past several decades [4]. Since Larock’s pioneering work on the development of
the catalytic carbopalladation of nitriles [5–7], remarkable progress in the transition metal catalyzed
addition of organoboron reagents to nitriles has been documented during the past several decades
by several other groups [8–11] and our group [12–14]. In recent years, the scope of this chemistry
has been significantly expanded to other coupling partners, including sodium aryl sulfinates or
arylsulfinic acids [15–18], aryl halides [19,20], benzoic acids [21], arylhydrazines [22], and arylsulfonyl
hydrazides [23]. However, this transformation of nitriles exclusively provides aryl ketone products
(Scheme 1a). Therefore, the development of an efficient method that can incorporate the nitrogen atom
of nitriles into N-heterocycle products by intramolecular cyclization, rather than hydrolysis of ketamine
intermediates, still remains a longstanding challenge. In 2017, we have successfully developed a
tandem addition and cyclization strategy for the synthesis of isoquinolines and isoquinolones via
catalytic carbopalladation of nitriles [24,25].

Quinazolines have attracted increasing attention in the past few years because of their
broad applications in medicinal chemistry [26–30], material chemistry [31–33], and catalysis [34].
Hence, the design of effective methods for the construction of quinazolines has been an active
area of research in organic chemistry [35–37]. Although the transformation of nitriles into
various functional groups is well-established, only sporadic examples of the synthesis of
quinazolines from nitriles have been reported to date. In 1988, Stxekowski and co-workers
reported additions of Grignard reagents (or lithium reagents) to 2-(benzylideneaminoi)benzonitrile

Molecules 2019, 24, 463; doi:10.3390/molecules24030463 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-1935-0345
http://www.mdpi.com/1420-3049/24/3/463?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24030463
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 463 2 of 14

(Scheme 1b) [38]. For example, treatment of 2-(benzylideneamino)benzonitrile with phenylmagnesium
bromide in THF delivered the cyclization product 2,4-diphenyl-1,2-dihydroquinazoline
and the adduct N-benzhydryl-2-(imino-(phenyl)-methyl)aniline in a 3:1 ratio. However,
the reaction of 2-(benzylideneamino)benzonitrile with phenyllithium gave the adducts
2-(benzhydrylamino)benzonitrile or N-benzhydryl-2-(imino- (phenyl)methyl)aniline. In recent
years, Chen [39] and Liu [40] independently reported syntheses of quinazolines via a 2 + 2 + 2
cascade annulation of diaryliodonium salts (or aryldiazonium salts) with two nitriles. Replacing
Grignard reagents, organolithium reagents, diaryliodonium salts or aryldiazonium salts with
organoboron reagents such as arylboronic acids is more desirable due to their low toxicity, ease of
handling, and good functional group tolerance. Very recently, we developed a palladium-catalyzed
tandem reaction of functionalized nitriles (e.g., 2-(quinazolinone-3(4H)-yl)benzonitriles [41] or
N-(2-cyanoaryl)benzamides [42]) with arylboronic acids for the synthesis of quinazolines.

Molecules 2019, 24, x  2 of 13 

 

2-(benzylideneamino)benzonitrile with phenylmagnesium bromide in THF delivered the cyclization 

product 2,4-diphenyl-1,2-dihydroquinazoline and the adduct N-benzhydryl-2-(imino-(phenyl)-

methyl)aniline in a 3:1 ratio. However, the reaction of 2-(benzylideneamino)benzonitrile with 

phenyllithium gave the adducts 2-(benzhydrylamino)benzonitrile or N-benzhydryl-2-(imino- 

(phenyl)methyl)aniline. In recent years, Chen [39] and Liu [40] independently reported syntheses of 

quinazolines via a 2 + 2 + 2 cascade annulation of diaryliodonium salts (or aryldiazonium salts) with 

two nitriles. Replacing Grignard reagents, organolithium reagents, diaryliodonium salts or 

aryldiazonium salts with organoboron reagents such as arylboronic acids is more desirable due to 

their low toxicity, ease of handling, and good functional group tolerance. Very recently, we 

developed a palladium-catalyzed tandem reaction of functionalized nitriles (e.g., 2-(quinazolinone-

3(4H)-yl)benzonitriles [41] or N-(2-cyanoaryl)benzamides [42]) with arylboronic acids for the 

synthesis of quinazolines. 

As part of our efforts in our laboratory toward the development of the catalytic carbopalladation 

of nitriles, we herein report a palladium-catalyzed tandem addition/cyclization of 2-

(benzylideneamino)benzonitriles with arylboronic acids to afford 2,4-diarylquinazolines (Scheme 1c). 
It is noteworthy that this protocol provides the same 2,4-diarylquinazoline products as our previous 

work [42], ultimately from the same starting materials (2-aminobenzonitrile and arylboronic acid). 

 

Scheme 1. Design of new approach to 2,4-diarylquinazolines. 

2. Results and Discussion 

We began our investigation by examining the reaction between readily available 2-

(benzylideneamino)benzonitrile (1a) and phenylboronic acid (2a) to establish the optimal reaction 

conditions (Table 1). Trace amounts of the desired product 2,4-diphenylquinazoline (3a) was detected 

by GC/MS analysis when the combination of Pd(PPh3)4, trifluoromethanesulfonic acid (TfOH) and 

2,2′-bipyridine (L1) was used in THF/H2O (entry 1). The yield of 3a could be improved to 15% using 

PdCl2 as a catalyst (entry 2). Among the palladium catalysts used (entries 3–6), Pd(acac)2 exhibited the 

highest catalytic reactivity, giving a 27% yield (entry 6). Next, various bidentate ligands L2−L7 were 

evaluated (entries 7-12) and 5,5′-dimethyl-2,2′-bipyridine (L2) afforded the best result (45% yield, entry 7). 

In contrast, little to no product 3a was detected when sterically hindered ligands such as 6,6′-dimethyl-

2,2′-bipyridine (L4), 2,2′-biquinoline (L5) and 2,9-dimethyl-1,10-phenanthroline (L6) were used (entries 9–

Scheme 1. Design of new approach to 2,4-diarylquinazolines.

As part of our efforts in our laboratory toward the development of the catalytic
carbopalladation of nitriles, we herein report a palladium-catalyzed tandem addition/cyclization of
2-(benzylideneamino)benzonitriles with arylboronic acids to afford 2,4-diarylquinazolines (Scheme 1c).
It is noteworthy that this protocol provides the same 2,4-diarylquinazoline products as our previous
work [42], ultimately from the same starting materials (2-aminobenzonitrile and arylboronic acid).

2. Results and Discussion

We began our investigation by examining the reaction between readily available
2-(benzylideneamino)benzonitrile (1a) and phenylboronic acid (2a) to establish the optimal reaction
conditions (Table 1). Trace amounts of the desired product 2,4-diphenylquinazoline (3a) was detected
by GC/MS analysis when the combination of Pd(PPh3)4, trifluoromethanesulfonic acid (TfOH) and
2,2′-bipyridine (L1) was used in THF/H2O (entry 1). The yield of 3a could be improved to 15% using
PdCl2 as a catalyst (entry 2). Among the palladium catalysts used (entries 3–6), Pd(acac)2 exhibited
the highest catalytic reactivity, giving a 27% yield (entry 6). Next, various bidentate ligands L2−L7
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were evaluated (entries 7-12) and 5,5′-dimethyl-2,2′-bipyridine (L2) afforded the best result (45% yield,
entry 7). In contrast, little to no product 3a was detected when sterically hindered ligands such as
6,6′-dimethyl-2,2′-bipyridine (L4), 2,2′-biquinoline (L5) and 2,9-dimethyl-1,10-phenanthroline (L6)
were used (entries 9–11). An investigation of the effect of solvent revealed that the yield of 3a was
greatly increased to 57% in DMF (entry 17). Other solvents, including H2O, toluene, 1,4-dioxane,
and dimethylacetamide (DMA), were less efficient (entries 13–17). Replacement of TfOH with other
additives, including acetic acid (AcOH), trifluoroacetic acid (TFA), D-camphorsulfonic acid (CSA),
resulted in lower yields (entries 18-20). However, p-toluenesulfonic acid monohydrate (TsOH·H2O)
effectively promoted this reaction and exhibited the highest catalytic reactivity with 81% yield (entry
21). The reaction did not work using HCl as an addition (entry 22). The desired product 3a was not
detected if either palladium catalyst or additive was absent (entries 23–24).

Table 1. Optimization of the reaction conditions a.
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a Reaction conditions: 1a (0.3 mmol), 2a (0.6 mmol), Pd catalyst (10 mol%), ligand (20 mol%), additive (4 equiv.), KF
(2 equiv.), solvent (2 mL), 80 ◦C, 48 h, air. b Isolated yield. c THF/H2O (1 mL/1 mL).

With the optimized reaction conditions in hand, we evaluated the substrates scope of the
tandem reaction. First, the tandem reaction between 2-(benzylideneamino)benzonitrile (1a) and
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various arylboronic acids were investigated under standard conditions (Scheme 2). The influence of
substituents at the phenyl ring of arylboronic acid was examined, and the results demonstrated that
steric effects of substituents had only a small influence on the yield.
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For example, the tandem reaction of 1a with para- and meta-tolylboronic acid gave yields of
67% and 60%, respectively (3b, 3c), while the ortho-tolylboronic acid afforded a yield of 58% (3d)
(entries 2–4).The electronic properties of the substituents of arylboronic acid affected the yield to some
extent. In general, the aromatic amines bearing an electron-donating substituent (e.g., −tBu, −OMe)
(entries 5–6) delivered a slightly higher yield of the desired products than those analogues bearing a
halo substituent (e.g., −F, −Cl, −Br) (entries 8–10). Gratifyingly, (4-hydroxyphenyl)boronic acid was
treated with 2-(benzylideneamino)benzonitrile to afford the corresponding product 3g in 28% yield
(entry 7), in which hydroxyl group is hard to be compatible with Grignard reagent or our previous
protocol [42]. The reaction did not work when (4-acetylphenyl)boronic acid was used as substrate
(entry 11). Bicyclolboronic acids, such as biphenyl-4-ylboronic acid, naphthalen-1-ylboronic acid and
naphthalen-2-ylboronic acid, were also good partners and reacted with 1a efficiently, providing the
corresponding products 3l, 3m and 3n in 87%, 65% and 71% yields, respectively (entries 10–12).

We next turned our attention to the scope of this reaction with respect to the
substituted 2-(benzylideneamino)benzonitriles substrate (Scheme 3). First, reaction of various
2-(benzylidene-amino)benzonitriles with phenylboronic acid was examined (entries 1–10). The
influence of substitutions on the phenyl ring (Ar1) of the 2-(benzylideneamino)benzonitriles was
first investigated. The steric effects of substituents had an obvious impact on the efficiency of
this transformation. For example, when substrates bearing a para-, meta-, and ortho-methyl group
were examined, 3o and 3p were obtained in 74% and 71% yield respectively, the yield of 3q
was decreased to 48% (entries 1–3). Both, substrates bearing a strong electron-donating (e.g.,
−OMe) (entry 4) or electron-withdrawing (e.g., −NO2) (entry 5) group were compatible with
this reaction, affording the corresponding desired products 3r and 3s in 61% and 85% yields,
respectively. Moreover, halogen-substituted (e.g., –F, –Cl, –Br) substrates were well tolerated and
gave the desired products 3t–3v in 63–72% yields (entries 6–8). The substrate bearing a naphthyl
group, when treated with phenylboronic acid, delivered product 3w in slightly lower yield (entry 9).
2-((Thiophen-2-yl-methylene)amino)benzonitriles bearing a thienyl group were also well tolerated,
affording the corresponding products 3x and 3y in 59% and 48% yields, respectively (entries 10–11),
which were hard to achieve cyclization products by our previous method [42]. Finally, we turned
our attention to the effect of the various substituents on the aminobenzonitrile ring. The reaction of
methyl-, methoxy-, NO2- and halogen-substituted (e.g., –F, –Cl, –Br) substrates with arylboronic acid
also proceeded smoothly and the desired products 3z–4i were isolated in moderate yields (entries
12–21). The low yield of these reactions mainly caused by the competing hydrolysis of imines to
2-aminobenzonitriles. It is worth noting that the presence of the halogen in the products (e.g., 3i, 3v,
4h) is very useful for further synthetic elaborations thereby broadening the diversity of the products.

To gain insight into the oxidative tandem carbopalladation cyclization reaction mechanism,
further experiments were performed, as shown in Scheme 4. First, the reaction was carried under N2

atmosphere and the yield of the desired product 3a decreased to 22%, accompany with unoxidized
2,4-diphenyl-1,2-dihydroquinazoline (5a) in 51% yield (Scheme 4a), indicating that this reaction is
aerobic and the air would be the oxidizing agent. The desired product 3a could also be obtained in
85% yield when the reaction of 5a was performed under standard conditions without phenylboronic
acid (Scheme 4b). These results implicate 5a as possible intermediate for this transformation.
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On the basis of the above experimental results and relevant reports in the literature, a possible
reaction mechanism for the formation of 2,4-diarylquinazolines is illustrated in Scheme 5. The first
step may involve transmetalation between the palladium catalyst and arylboronic acid to form the
palladium-aryl species, which is followed by the coordination of cyano group affording intermediate
A. Intramolecular carbopalladation of nitrile gives the corresponding imine palladium intermediate
B. Next, transformation of the intermediate B could proceed by two possible pathways. In path
a, the intermediate B undergoes an intramolecular cyclization to palladium complex C. β-Hydride
elimination of the intermediate C would yield 2,4-diarylquinazolines and Pd(0) species which could
be further oxidized to Pd(II). In path b, protonation of the intermediate B by TsOH·H2O delivers the
imine intermediate D and regenerates the palladium catalyst. Finally, intramolecular cyclization of
intermediate D generates dihydroquinazolines E, which after oxidative dehydrogenation delivers
2,4-diarylquinazolines as the desired products.
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3. Materials and Methods

3.1. General Information

Chemicals were received from commercial sources without further purification, or prepared by
methods from the literature. 1H-NMR (500 MHz) and 13C-NMR (125 MHz) spectra were measured
on a Bruker spectrometer (Billerica, MA, USA), using CDCl3 as the solvent with tetramethylsilane
(TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS;
the coupling constants J are given in Hz. High-resolution mass spectra were recorded on ESI-Q-TOF
mass spectrometer (Billerica, MA, USA). Melting points were uncorrected and recorded on a WRS-1B
Digital Melting Point Apparatus (Jiapeng, Shanghai, China). All reactions were conducted under
air atmosphere. Column chromatography was performed using EM Silica gel 60 (300–400 mesh).
The structures of all the title compounds were characterized by 1H-NMR and 13C-NMR spectra
(Supplementary Materials).

3.2. General Procedure for the Synthesis of 2,4-Diarylquinazolines

Under air atmosphere, a Teflon-valve-sealed Schlenk tube was charged with arylboronic acid,
2-(benzylideneamino)benzonitriles, Pd(acac)2, 5,5′-dimethyl-2,2′-bipyridine (L2), TsOH·H2O and DMF
at room temperature. The reaction mixture was stirred for 10 min at room temperature for proper
mixing of the reactants, and then heated at 80 ◦C with vigorous stirring for 48 h. Afterwards, the
mixture was poured into ethyl acetate, which was washed with saturated NaHCO3 (2 × 10 mL) and
then brine (10 mL). The aqueous layer was extracted with ethyl acetate, the combined organic layers
were dried over anhydrous Na2SO4 and evaporated under vacuum. The residue was purified by flash
column chromatography (hexane/ethyl acetate) to afford 2,4-diarylquinazolines.

2,4-Diphenylquinazoline (3a). Yellow solid; mp 116–117 ◦C. 1H-NMR: δ 8.71 (d, J = 8.0 Hz, 2H), 8.20
(d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.92–7.88 (m, 3H), 7.64–7.59 (m, 3H), 7.58–7.48 (m, 4H);
13C-NMR: δ 168.4, 160.2, 151.9, 138.2, 137.7, 133.6, 130.5, 130.2, 129.9, 129.1, 128.7, 128.5, 127.0, 121.7.

2-Phenyl-4-(p-tolyl)quinazolines (3b). Yellow solid; mp 125–127 ◦C. 1H-NMR: δ 8.71 (d, J = 7.0 Hz, 2H),
8.17 (t, J = 9.0 Hz, 2H), 7.88 (m, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.58–7.48 (m, 4H), 7.41 (d, J = 7.5 Hz, 2H),
2.51 (s, 3H); 13C-NMR: δ 168.4, 160.2, 151.9, 140.2, 138.2, 134.9, 133.5, 130.5, 130.2, 129.3, 129.1, 128.7,
128.5, 127.1, 126.9, 121.7, 21.5.

2-Phenyl-4-(m-tolyl)quinazolines (3c). Yellow solid; mp 81-83 ◦C. 1H-NMR: δ 8.71 (d, J = 7.0 Hz, 2H), 8.18
(d, J = 7.5 Hz, 1H), 8.13 (d, J = 7.5 Hz, 1H), 7.89 (t, J = 7.5 Hz, 1H), 7.71 (s, 1H), 7.66 (d, J = 7.5 Hz, 1H),
7.58–7.46 (m, 5H), 7.41 (d, J = 7.5 Hz, 1H), 2.52 (s, 3H); 13C-NMR: δ 168.7, 160.3, 151.9, 138.4, 138.3,
137.7, 133.5, 130.7, 130.7, 130.5, 129.1, 128.8, 128.5, 128.4, 127.4, 127.1, 126.9, 121.8, 21.5. HRMS (ESI)
calcd for C21H17N2 [M + H]+: 297.1386, found 297.1392.

2-Phenyl-4-(o-tolyl)quinazolines (3d). Yellow solid, mp 140–141 ◦C. 1H-NMR: δ 8.68 (d, J = 7.0 Hz, 2H),
8.21 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.55–7.49 (m, 4H), 7.46 (t, J = 7.5
Hz, 1H), 7.41 (d, J = 7.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 1H), 2.24 (s, 3H); 13C-NMR: δ 170.0, 160.3, 151.3,
138.1, 136.9, 136.5, 133.8, 130.8, 130.6, 129.7, 129.3, 128.9, 128.8, 128.6, 127.1, 127.1, 125.6, 122.7, 20.0.
HRMS (ESI) calcd for C21H17N2 [M + H]+: 297.1386, found 297.1392.

4-(4-(tert-Butyl)phenyl)-2-phenylquinazoline (3e). Yellow oil. 1H-NMR: δ 8.74 (d, J = 7.0 Hz, 2H), 8.18
(m, 2H), 7.90–7.85 (m, 3H), 7.64 (d, J = 8.0 Hz, 2H), 7.58–7.50 (m, 4H), 1.45 (s, 9H); 13C-NMR: δ 168.3,
160.3, 153.3, 125.0, 138.3, 134.9, 133.4, 130.5, 130.1, 129.1, 128.7, 128.5, 127.2, 126.9, 125.6, 121.8, 34.9, 31.4.
HRMS (ESI) calcd for C24H23N2 [M + H]+: 339.1856, found 339.1857.

4-(4-Methoxyphenyl)-2-phenylquinazoline (3f). Yellow solid; mp 120–121 ◦C. 1H-NMR: δ 8.71 (d, J = 7.0
Hz, 2H), 8.16 (t, J = 9.5 Hz, 2H), 7.90 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.55–7.50 (m, 4H), 7.12
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(d, J = 8.5 Hz, 2H), 3.93 (s, 3H); 13C-NMR: δ 167.8, 161.3, 160.1, 152.0, 138.3, 133.4, 131.9, 130.5, 130.2,
129.1, 128.7, 128.5, 127.1, 126.9, 121.7, 114.1, 55.5.

4-(2-Phenylquinazolin-4-yl)phenol (3g). Yellow solid; mp 190–192 ◦C. 1H-NMR: δ 8.69-8.67 (m, 2H),
8.22-8.16 (m, 2H), 7.89 (t, J = 7.2 Hz, 1H), 7.83 (d, J = 8.5 Hz, 2H), 7.58–7.51 (m, 4H), 7.04 (d, J = 8.5 Hz,
2H); 13C-NMR: δ 167.9, 160.2, 157.6, 138.1, 133.6, 132.1, 130.6, 130.2, 128.9, 128.7, 128.6, 127.1, 127.0,
121.6, 115.6. HRMS (ESI) calcd for C20H15N2O [M+H]+: 299.1179, found 299.1181.

4-(4-Fluorophenyl)-2-phenylquinazoline (3h). Yellow solid; mp 132-134 ◦C. 1H-NMR: δ 8.69 (d, J = 7.5 Hz,
2H), 8.19 (d, J = 8.5 Hz, 2H), 8.11 (d, J = 8.5 Hz, 1H), 7.95–7.88 (m, 3H), 7.60–7.49 (m, 4H), 7.30 (t, J = 8.5
Hz, 2H); 13C-NMR: δ 167.2, 165.0, 163.0, 160.2, 152.0, 138.1, 133.8, 133.8, 133.7, 133.2, 133.2, 130.6, 129.3,
128.7, 128.6, 127.2, 126.7, 121.6, 115.8, 115.6.

4-(4-Chlorophenyl)-2-phenylquinazoline (3i). Yellow solid; mp 136-137 ◦C. 1H-NMR: δ 8.70 (d, J = 7.0
Hz, 2H), 8.24 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.92 (t, J = 7.5 Hz, 1H), 7.85 (d, J = 8.0 Hz,
2H), 7.58 (t, J = 7.5 Hz, 3H), 7.56–7.50 (m, 3H); 13C-NMR: δ 167.2, 160.2, 152.0, 137.9, 136.4, 136.1, 133.8,
131.5, 130.7, 129.3, 128.9, 128.7, 128.6, 127.3, 126.6, 121.5. HRMS (ESI) calcd for C20H14ClN2 [M + H]+:
317.0840, found 317.0844.

4-(4-Bromophenyl)-2-phenylquinazoline (3j). Yellow solid; mp 146–148 ◦C. 1H-NMR: δ 8.68 (d, J = 7.0 Hz,
2H), 8.17 (d, J = 9.0 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.54
(d, J = 8.0 Hz, 2H), 7.59–7.50 (m, 4H); 13C-NMR: δ 166.2, 159.2, 150.9, 136.9, 135.5, 132.8, 130.8, 130.7,
129.7, 128.2, 127.7, 127.6, 126.2, 125.5, 123.7, 120.4.

4-([1,1′-Biphenyl]-4-yl)-2-phenylquinazoline (3l). Yellow solid; mp 217–218 ◦C. 1H-NMR: δ 8.73 (d, J = 7.5
Hz, 2H), 8.22 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 7.5 Hz, 2H), 7.91 (t, J = 7.5 Hz, 1H), 7.84 (d, J = 7.5 Hz, 2H),
7.72 (d, J = 7.5 Hz, 2H), 7.60–7.50 (m, 6H), 7.43 (t, J = 7.5 Hz, 1H); 13C-NMR: δ 168.0, 160.3, 152.0, 142.9,
140.4, 138.1, 136.6, 133.6, 130.7, 130.6, 129.2, 129.0, 128.8, 128.6, 127.9, 127.4, 127.3, 127.1, 127.0, 121.7.
HRMS (ESI) calcd for C26H19N2 [M + H]+: 359.1543, found 359.1541.

4-(Naphthalen-1-yl)-2-phenylquinazoline (3m). Yellow solid; mp 178–180 ◦C. 1H-NMR: δ 8.72-8.70 (m,
2H), 8.23 (d, J = 8.5 Hz, 1H), 8.08–8.06 (m, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.91–7.88 (m, 1H), 7.69–7.64
(m, 4H), 7.54–7.51 (m, 4H), 7.44–7.40 (m, 2H); 13C-NMR: δ 169.0, 160.5, 151.7, 138.3, 135.0, 133.9, 133.8,
131.8, 130.6, 129.8, 129.1, 128.9, 128.6, 128.4, 128.0, 127.3, 127.0, 126.7, 126.3, 125.8, 125.1, 123.4.

4-(Naphthalen-2-yl)-2-phenylquinazoline (3n). Yellow solid; mp 161–162 ◦C. 1H-NMR: δ 8.75 (d, J = 7.0
Hz, 2H), 8.37 (s, 1H), 8.20 (t, J = 11.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 1H), 8.05–7.95 (m, 3H), 7.91 (t, J = 7.0
Hz, 1H), 7.65–7.60 (m, 2H), 7.59–7.49 (m, 4H); 13C-NMR: δ 168.3, 160.3, 152.0, 138.2, 135.1, 134.0, 133.6,
133.0, 130.6, 130.3, 129.2, 128.7, 128.6, 128.4, 127.8, 127.3, 127.3, 127.1, 127.1, 126.7, 121.9. HRMS (ESI)
calcd for C24H17N2 [M + H]+: 333.1386, found 333.1387.

4-Phenyl-2-(p-tolyl)quinazoline (3o). Yellow solid; mp 162–165 ◦C. 1H-NMR: δ 8.60 (d, J = 8.0 Hz, 2H),
8.20 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.90–7.87 (m, 3H), 7.61–7.59 (m, 3H), 7.54 (t, J = 8.0 Hz, 1H),7.34 (t,
J = 7.5 Hz, 2H), 2.44 (s, 3H); 13C-NMR (125 MHz, CDCl3): δ 168.4, 160.3, 151.8, 140.8, 137.8, 135.4, 133.5,
130.2, 129.5, 129.3, 129.0, 128.7, 128.5, 127.0, 126.8, 121.6, 21.5.

4-Phenyl-2-(m-tolyl)quinazoline (3p). Yellow solid; mp 112–114 ◦C. 1H-NMR: δ 8.50 (d, J = 8.5 Hz, 2H),
8.17 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 7.90–7.87 (m, 3H), 7.63–7.58 (m, 3H), 7.55 (t, J = 8.5 Hz,
1H), 7.43 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 2.50 (s, 3H); 13C-NMR: δ 168.3, 160.4, 152.0, 138.1,
137.7, 133.5, 131.4, 130.2, 129.9, 129.2, 129.1, 128.6, 128.5, 127.0, 126.9, 126.0, 121.7, 22.6.

4-Phenyl-2-(o-tolyl)quinazoline (3q). Yellow solid; mp 73–75 ◦C. 1H-NMR: δ 8.18 (t, J = 8.0 Hz, 2H), 7.98
(d, J = 7.5 Hz, 1H), 7.92 (t, J = 8.0 Hz, 1H), 7.87 (d, J = 7.5 Hz, 2H), 7.63–7.55 (m, 4H), 7.39–7.31 (m, 3H),
2.67 (s, 3H); 13C-NMR: δ 168.1, 163.4, 151.6, 138.7, 137.5, 137.5, 133.6, 131.3, 130.8, 130.2, 129.9, 129.3,
129.0, 128.6, 127.3, 127.0, 126.0, 121.0, 21.3.
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2-(4-Methoxyphenyl)-4-phenylquinazoline (3r). Yellow solid; mp 159–160 ◦C. 1H-NMR: δ 8.67 (d, J = 8.5
Hz, 2H), 8.14 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.89–7.85 (m, 3H), 7.60 (t, J = 9.0 Hz, 3H), 7.51
(t, J = 8.0 Hz, 1H), 7.04 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H); 13C-NMR: δ 168.3, 161.9, 160.0, 151.9, 147.2,
137.8, 133.6, 130.4, 130.2, 129.9, 128.8, 128.5, 127.0, 126.6, 121.4, 113.96, 55.4.

2-(4-Nitrophenyl)-4-phenylquinazoline (3s). Yellow solid; mp 207–209 ◦C. 1H-NMR: δ 8.89 (d, J = 9.0 Hz,
2H), 8.36 (d, J = 8.5 Hz, 2H), 8.22 (d, J = 8.5 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.96 (t, J = 7.5 Hz, 1H),
7.92–7.86 (m, 2H), 7.67–7.60 (m, 4H); 13C-NMR: δ 168.9, 158.0, 151.7, 149.3, 144.0, 137.2, 134.1, 130.3,
130.2, 129.6, 129.3, 128.7, 128.1, 127.2, 123.7, 122.0.

2-(4-Fluorophenyl)-4-phenylquinazoline (3t). Yellow solid; mp 144–145 ◦C. 1H-NMR: δ 8.71 (t, J = 8.0 Hz,
2H), 8.17–8.10 (m, 2H), 7.92–7.85 (m, 3H), 7.60 (s, 3H), 7.55 (t, J = 7.5 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H);
13C-NMR: δ 168.5, 165.7, 163.7, 159.3, 151.9, 137.6, 134.3, 133.7, 130.9, 130.8, 130.2, 130.0, 129.0, 128.6,
127.1, 121.6, 115.5, 115.4.

2-(4-Chlorophenyl)-4-phenylquinazoline (3u). Yellow solid; mp 180–181 ◦C. 1H-NMR: δ 8.66 (d, J = 8.0 Hz,
2H), 8.15 (t, J = 8.5 Hz, 2H), 7.92–7.87 (m, 3H), 7.62–7.56 (m, 4H), 7.49 (d, J = 8.5 Hz, 2H); 13C-NMR: δ
168.8, 159.1, 151.5, 137.5, 137.0, 136.3, 133.9, 130.3, 130.2, 128.8, 128.6, 127.4, 127.1, 121.7.

2-(4-Bromophenyl)-4-phenylquinazoline (3v). Yellow solid; mp 185–186 ◦C. 1H-NMR: δ 8.59 (d, J = 8.5 Hz,
2H), 8.16 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.93–7.85 (m, 3H), 7.65 (d, J = 8.5 Hz, 2H), 7.60 (t, J
= 8.0 Hz, 3H), 7.57 (t, J = 8.0 Hz, 1H); 13C-NMR: δ 168.5, 159.3, 151.8, 137.5, 137.1, 133.8, 131.7, 130.3,
130.2, 130.1, 129.1, 128.6, 127.3, 127.1, 125.4, 121.8.

2-(Naphthalen-1-yl)-4-phenylquinazoline (3w). Yellow solid; mp 169–170 ◦C. 1H-NMR: δ 8.22 (d, J = 8.5
Hz, 1H), 8.27–8.21 (m, 3H), 8.00–8.79 (m, 5H), 7.66–7.52 (m, 7H); 13C-NMR: δ 168.5, 162.8, 151.7, 137.5,
136.5, 134.3, 133.8, 131.4, 130.3, 130.2, 130.0, 129.7, 129.1, 128.6, 128.5, 127.5, 127.1, 126.7, 126.1, 125.8,
125.3, 121.3.

4-Phenyl-2-(thiophen-2-yl)quinazoline (3x). Yellow solid; mp 136–137 ◦C. 1H-NMR: δ 8.22 (d, J = 3.0
Hz, 1H), 8.10–8.07 (m, 2H), 7.88–7.83 (m, 3H), 7.60–7.59 (m, 3H), 7.52–7.48 (m, 2H), 7.20–7.18 (m, 1H);
13C-NMR: δ 168.5, 157.2, 151.8, 144.1, 137.3, 133.8, 130.2, 130.1, 130.0, 129.9, 129.4, 128.6, 128.3, 127.2,
126.8, 121.5.

4-(4-Methoxyphenyl)-2-(thiophen-2-yl)quinazoline (3y). Yellow solid; mp 143–144 ◦C. 1H-NMR: δ 8.22 (s,
1H), 8.14-8.08 (m, 2H), 7.88–7.83 (m, 3H), 7.52–7.49 (m, 2H), 7.19–7.18 (m, 1H), 7.11 (d, J = 8.5 Hz, 2H),
3.93 (s, 3H); 13C-NMR: δ 167.9, 164.1, 157.1, 151.8, 144.2, 133.6, 131.9, 129.9, 129.8, 129.4, 128.6, 128.2,
127.2, 126.6, 121.5, 114.1, 55.5. HRMS (ESI) calcd for C19H15N2OS [M + H]+: 319.0900, found 319.0905.

7-Methyl-2,4-diphenylquinazoline (3z). Yellow solid; mp 150–152 ◦C. 1H-NMR: δ 8.69 (d, J = 6.5 Hz, 2H),
8.13 (d, J = 6.5 Hz, 1H), 7.90–7.88 (m, 3H), 7.74 (d, J = 7.5 Hz, 1H), 7.63–7.60 (m, 3H), 7.55–7.50 (m, 3H),
2.52 (s, 3H); 13C-NMR: δ 168.0, 159.4, 150.0, 137.8, 137.4, 136.0, 130.6, 130.2, 129.9, 128.8, 128.7, 128.5,
128.4, 125.7, 121.7, 21.9.

8-Chloro-2,4-diphenylquinazoline (4a). White solid; mp 144–146 ◦C. 1H-NMR: δ 8.79–8.77 (m, 2H),
8.06-8.04 (m, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.89–7.86 (m, 2H), 7.62–7.60 (m, 3H), 7.55–7.53 (m, 2H), 7.46
(t, J = 8.2 Hz, 1H), 7.37–7.35 (m, 1H); 13C-NMR: δ 168.9, 148.6, 137.9, 137.4, 133.8, 133.4, 130.9, 130.2,
130.1, 129.0, 128.6, 127.2, 126.5, 126.0, 123.0. HRMS (ESI) calcd for C20H14ClN2 [M + H]+: 317.0840,
found 317.0844.

6,7-Dimethoxy-2,4-diphenylquinazoline (4b). Yellow solid; mp 176–178 ◦C. 1H-NMR: δ 8.64 (d, J = 7.0 Hz,
2H), 7.88 (d, J = 7.0 Hz, 2H), 7.60–7.55 (m, 3H), 7.53–7.47 (m, 3H), 7.44 (s, 1H), 7.33 (s, 1H), 4.07 (s, 3H),
3.88 (s, 3H); 13C-NMR: δ 165.1, 159.3, 155.7, 150.0, 149.9, 138.5, 138.3, 130.0, 129.8, 129.6, 128.6, 128.5,
128.3, 117.1, 107.4, 104.2, 56.4, 56.1.
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6,7-Dimethoxy-2-phenyl-4-(4-(trifluoromethyl)phenyl)quinazoline (4c). Yellow solid; mp 179–180 ◦C.
1H-NMR: δ 8.60 (d, J = 7.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H), 7.53–7.47
(m, 4H), 7.24 (s, 1H), 4.12 (s, 3H), 3.92 (s, 3H); 13C-NMR: δ 163.6, 159.4, 156.0, 150.5, 150.1, 141.8,
138.2, 130.2, 130.1, 128.5, 128.3, 125.7, 125.6, 117.0, 107.6, 103.4, 56.5, 56.2. HRMS (ESI) calcd for
C23H17F3N2O2Na [M + Na]+: 433.1140, found 433.1144.

4-(4-Isopropylphenyl)-6,7-dimethoxy-2-phenylquinazoline (4d): Yellow solid; mp 169-170 ◦C. 1H-NMR: δ
8.63 (d, J = 7.0 Hz, 2H), 7.85 (d, J = 8.5 Hz, 2H), 7.52–7.43 (m, 7H), 4.11 (s, 3H), 3.94 (s, 3H), 3.06–3.02 (m,
1H), 1.35 (d, J = 6.5 Hz, 6H); 13C-NMR: δ 165.2, 159.3, 155.7, 150.7, 150.0, 149.8, 138.5, 135.8, 130.0, 129.9,
128.4, 128.3, 126.8, 117.1, 107.4, 104.5, 56.4, 56.2, 34.1, 23.9. HRMS (ESI) calcd for C25H25N2O2 [M + H]+:
385.1911, found 385.1917.

4-(3,5-Dimethylphenyl)-6,7-dimethoxy-2-phenylquinazoline (4e). Yellow solid; mp 176–177 ◦C. 1H-NMR:
8.63 (d, J = 7.0 Hz, 2H), 7.53–7.45 (m, 6H), 7.31 (s, 1H), 7.20 (s, 1H), 4.10 (s, 3H), 3.91 (s, 3H) 2.46 (s, 6H);
13C-NMR: δ 165.7, 159.4, 155.7, 150.0, 149.9, 138.7, 138.3, 138.2, 131.3, 130.0, 128.4, 128.3, 127.6, 117.3,
107.4, 104.6, 56.4, 56.1, 21.4. HRMS (ESI) calcd for C24H23N2O2 [M+H]+: 371.1754, found 371.1755.

5-Fluoro-2,4-diphenylquinazoline (4f). Yellow solid; mp 177–178 ◦C. 1H-NMR: δ 8.69–8.68 (m, 2H),
8.13–8.01 (m, 2H), 7.88–7.82 (m, 3H), 7.63–7.62 (m, 3H), 7.54–7.52 (m, 3H); 13C-NMR: δ 167.6, 160.5,
150.5, 137.8, 137.2, 134.5, 132.7, 130.9, 130.8, 130.3, 130.1, 128.9, 128.8, 128.6, 125.8, 122.2.

6-Chloro-2,4-diphenylquinazoline (4g). Yellow solid; mp 194-195 ◦C. 1H-NMR: δ 8.69 (d, J = 6.5 Hz, 2H),
8.10 (d, J = 10.0 Hz, 2H), 7.87-7.86 (m, 2H), 7.81 (d, J = 8.5 Hz, 1H), 7.62 (s, 3H), 7.53 (d, J = 6.0 Hz, 3H);
13C-NMR: δ 167.6, 160.5, 150.5, 137.8, 137.2, 134.5, 132.6, 130.9, 130.8, 130.2, 130.1, 128.7, 128.6, 125.8,
122.2.

6-Bromo-2,4-diphenylquinazoline (4h). Yellow solid; mp 204–205 ◦C. 1H-NMR: δ 8.68 (d, J = 7.5 Hz, 2H),
8.27 (d, J = 2.0 Hz, 1H), 8.07 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.88–7.86 (m, 2H), 7.63–7.62 (m,
3H), 7.53 (d, J = 6.0 Hz, 3H); 13C-NMR: δ 167.6, 160.5, 150.6, 137.7, 137.1, 137.0, 130.9, 130.8, 130.3, 130.1,
129.1, 128.8, 128.7, 128.6, 122.7, 120.7.

6-Nitro-2,4-diphenylquinazoline (4i). Yellow solid; mp 211–213 ◦C. 1H-NMR: δ 9.07 (d, J = 2.3 Hz, 1H),
8.75–8.73 (m, 2H), 8.67–8.64 (m, 1H), 8.27 (d, J = 9.3 Hz, 1H), 7.93–7.91 (m, 2H), 7.69–7.68 (m, 3H),
7.57–7.56 (m, 3H); 13C-NMR: δ 170.5, 162.9, 154.5, 145.5, 137.1, 136.4, 131.7, 131.0, 130.9, 130.3, 129.2,
129.1, 128.7, 127.0, 124.3, 120.5.

2,4-Diphenyl-1,2-dihydroquinazoline (5a). Yellow solid; mp 57-59 ◦C. 1H-NMR: δ7.66-7.62 (m, 4H),
7.49–7.37 (m, 6H), 7.32 (d, J = 8.3 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 6.78 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0
Hz, 1H), 5.99 (s, 1H), 4.38 (s, 1H); 13C-NMR: δ 165.7, 146.9, 142.6, 138.1, 132.8, 129.4, 129.2, 128.9, 128.7,
128.4, 128.1, 127.3, 118.2, 117.9, 114.3, 72.6.

4. Conclusions

In summary, we have developed a new strategy for the synthesis of 2,4-diarylquinazolines
in moderate to good yields via the palladium-catalyzed tandem addition/cyclization of
2-(benzylidene-amino)bnenzonitriles with arylboronic acids. This catalytic system tolerates a broad
range of substrates and functional groups. Further efforts to extend this chemistry to the preparation
of other useful heterocyclic compounds are currently underway in our laboratories.
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