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Hepatocellular carcinoma (HCC) is a primary malignancy with increasing

incidence and poor prognosis. Heterogeneity originating from genomic

instability is one of the critical reasons of poor outcomes. However, the

studies of underlying mechanisms and pathways affected by mutations are

still not intelligible. Currently, integrative molecular-level studies using

multiomics approaches enable comprehensive analysis for cancers, which is

pivotal for personalized therapy and mortality reduction. In this study, genomic

and transcriptomic data of HCC are obtained from The Cancer Genome Atlas

(TCGA) to investigate the affected coding and non-coding RNAs, as well as their

regulatory network due to certainmutational signatures of HCC. Different types

of RNAs have their specific enriched biological functions in mutational

signature-specific HCCs, upregulated coding RNAs are predominantly

associated with lipid metabolism-related pathways, and downregulated

coding RNAs are enriched in axonogenesis for tumor microenvironment

generation. Additionally, differentially expressed miRNAs are inclined to

concentrate in cancer-related signaling pathways. Some of these RNAs also

serve as prognostic factors that help predict the survival outcome of HCCs with

certain mutational signatures. Furthermore, deregulation of competing

endogenous RNA (ceRNA) regulatory network is identified, which suggests a

potential therapy via interference of miRNA activity for mutational signature-

specific HCC. This study proposes a projection approach to reduce therapeutic

complexity from genomicmutations to transcriptomic alterations. Through this

method, we identify genes and pathways critical for mutational signature-

specific HCC and further discover a series of prognostic markers indicating

patient survival outcome.
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Introduction

As one of themost aggressive malignancies, HCC has the second

highest cancer mortality rate due to the limited therapeutic options

available (Cancer Genome Atlas Research Network, 2017). Despite it

is more commonly found in Asia and Africa, its incident rate has

arisen in the United States and Europe with unique HCC etiologies

recently (Hashem and Andrew, 1999; Hashem, 2004; Jessica et al.,

2004). A series of etiologic agents have been identified for HCC, such

as hepatitis virus infection and non-alcoholic fatty liver disease

(NAFLD), however, the molecular pathogenesis remains unclear

(Snorri and Joe, 2002; Ju and Snorri, 2004).

Mutations are ubiquitous in cancer and accumulated numerous

genetic alterations could lead to a growth advantage to tumor cells

(Francisco et al., 2020). From the decade studies, mutations initiate

HCC in the formation of combinative alterations of specific

mutagenesis processes (Miryam et al., 2020). Based on this

postulation, the concept of mutational signatures as well as

predictive genomic biomarkers of response to immunotherapy

are introduced to HCC studies (Mark et al., 2017). In theory, the

recognition of tumor cells by T cell is largely dependent on the level

of mutational complexity. A higher degree of complexity could

potentially lead to more beneficial effect when immunotherapy is

given to an HCC patient (Chan et al., 2019). However, more in-

depth studies are necessary to elucidate the effect of mutations in

facilitating HCC development.

With the advent of multiomics technology development,

increasing number of integrative studies has drawn more

attention on the impact of mutations during cancer development

(Abel et al., 2013). It is now commonly accepted that genetic

aberrations directly or indirectly trigger the changes in

transcriptome, protein activities, and functional pathways, which

eventually promote cell proliferation and growth in cancers,

including glioblastoma, ovarian, and lung squamous (Sam et al.,

2012; Evan et al., 2013; Jack and Jian, 2014; Peilin and Zhao, 2017).

Furthermore, among transcriptomic products, non-coding

RNAs (ncRNAs), such as microRNA (miRNA) and long non-

coding RNA (lncRNA), that contain little or no observable

protein coding capacity (Eleni et al., 2018), play crucial roles

in regulating numerous biological functions such as post-

transcriptional modification, chromatin remodeling, and signal

transduction (Eleni et al., 2018).

In the past decade, increasing evidence have supported the

hypothesis of competitive endogenous RNA (Margaret et al., 2007;

Daniel et al., 2010; Jiayi et al., 2010; Laura et al., 2010; Zina et al., 2011),

which describes the competitive relationships between some RNAs

through their shared miRNAs by the common binding site at 3′ end.
Target genes of the shared miRNA are able to regulate each other

indirectly and alter the miRNA function through competitive

communications (Yvonne et al., 2014). To date, varies of miRNAs

and lncRNAs have been identified in HCC (Maryam et al., 2018; Xin

et al., 2018). For example, the expression ofmir-1269 has been revealed

positively correlated with HCC tumor nodes, metastasis, portal vein

tumor embolus and tumor capsular infiltration. In addition, the

overexpression of lncRNA HULC reported in HCC corresponds to

promote HCC growth, metastasis and drug resistance. However, the

relationship between mutational changes and transcriptomic

alterations of both coding and non-coding genes requires further

investigation, such as the effects of the mutational signatures on RNA

expression and the regulatory network among ceRNAs.

In this study, we aim to identify the regulatory mechanisms

of HCC among multiple omics, including mutational signatures,

mRNA, miRNA, lncRNA, and their ceRNA network. In addition,

this study provides a projection from complicated genomic

alterations to transcriptomic changes to enhance the

possibility of clinical practice. Furthermore, our approach is

also applicable to other diseases with heterogenous mutational

landscapes in obtaining the pathogenic targets and mechanisms.

Materials and methods

DNA mutational data preparation and
signature detection

Mutation information derived from whole exon sequencing

(WES) and corresponding clinical data of HCC samples from

374 hepatocellular tumors and 50 tumor adjacent non-tumor

samples were obtained from TCGA database (Cancer Genome

Atlas Research Network, 2017) (Supplementary Materials).

Detection of HCC mutational signatures were performed among

374 HCC tumor samples. R package maftools (v3.14) (Anand et al.,

2018) was used to explore and visualize the somatic variant profile in

HCC, including theHCC specific COSMICmutational signatures of

single base substitutions (SBSs). For the concrete procedure,

“estimateSignatures” was utilized to identify the variant signature

of HCC, and “somaticInteractions” was conducted to detect the co-

occurred mutations in HCC samples. Finally, “mafSurvival” of

maftools (v3.14) was performed to detect the survival outcome of

significant mutations in HCC.

Transcriptomic data processing and
analysis

HCC RNA-seq data for protein-coding genes, miRNAs and

lncRNAs also were downloaded from TCGA with corresponding

clinical information of the same samples (Cancer Genome Atlas

Research Network, 2017). For expression profiles, the pipeline

limma-voom of R package limma (v3.14) (Matthew et al., 2015)

was used to identify the differentially expressed genes (DEGs),

including protein-coding genes, miRNA and lncRNAs. Then, we

specified false discovery rate (FDR) adjusted p-value < 0.05 and |

log2 (fold change) | > 1 as the threshold to identify significant

DEGs for downstream analysis. R packages of ggthemes (v4.2.4)

(https://github.com/jrnold/ggthemes) and ggpubr (v0.4.0)
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(https://rpkgs.datanovia.com/ggpubr/) were recruited for the

visualization of DEGs in volcano plot.

Database mirDIP (v5.0.2.2) was used to detect the information

of miRNAs and their target genes of both mRNAs and lncRNAs

(Tomas et al., 2018). We used the strictest Score Class “Very High”

and confirmed evidence from at least ten of source databases

(bitargeting_May_2021, Cupid, MBStar, MirAncesTar,

miranda_May_2021, miRbase, mirCoX, miRDB_v6,

mirmap_May_2021, MiRNATIP, MirTar2, miRTar2GO, mirzag,

MultiMiTar, PACCMIT, PITA_May_2021, RNA22,

rnahybrid_May_2021, and TargetScan_v7_2) as the criteria to

filter miRNA-target gene pairs. Finally, the paired relationships

were visualized in Venn plot using R package eulerr (v 6.1.1)

(https://github.com/jolars/eulerr, https://jolars.github.io/eulerr/)

and network-based format by miRNet (v2.0) (Le et al., 2020).

Biological function analysis

Those co-mutated genes with p-values less than 0.1 were chosen as

the candidate genes for downstream protein-protein interaction (PPI)

network construction. Based on PPI network information provided by

STRING database, we analyzed the relationships among these genes

using R package STRINGdb (v3.13). DEGs of protein-coding genes

and target genes of differentially expressed miRNAs was used R

package “org.Hs.eg.db” (v 3.14.0) (Carlson et al., 2019) to convert

gene IDs to Entrez IDs, followed by R packages of gprofiler2 (v 0.2.1)

(Liis et al., 2020), enrichplot (v1.14.1) (Yu, 2021), ReactomePA

(v1.38.0) (Yu and He, 2016), clusterProfiler (v4.2.0) (Yu et al.,

2012) and website of Enrichr to conduct functional enrichment

analysis via databases of GO, KEGG and GSEA. Finally, we used R

package ggplot2 (v 3.3.5) (Hadley, 2016) to visualize the analysis results.

Survival analysis

For the potential biomarkers of HCC with significant

mutational signatures, such as protein-coding genes and

miRNA target genes, we investigated whether they could act

as prognosis indicators. We used the Kaplan-Meier curve and

log-rank tests to evaluate the difference in overall survival time by

R package survival (v 3.2–13) (https://github.com/therneau/

survival) and survminer (v 0.4.9) (https://rpkgs.datanovia.com/

survminer/index.html).

Results

Mutational signatures identification
in HCC

In total, 374 TCGA HCC samples with clinical information

were used for mutational landscape identification. There were

more than 15,000 SNPs in HCC, taking into account the major

variant type, including both transition and transversion. Among

them, the substitution of thymine to cytosine, thymine to

adenine, and cytosine to adenine showed relatively higher

occurrence rates (Figures 1A,B). In addition, we found that

the most dominant variant class, missense mutation, however,

has a fluctuated proportion among different genes (Figures

1C,D). Overall, HCC patients presented a large fluctuation of

variants with a median of 38 (Figure 1E). Besides, a highly

heterogeneous distribution of variant types was observed in

number of mutated genes among samples (Figure 1F). For

example, 14% of HCC patients were with CTNNB1 mutations

and most were missense mutations, however, the composition of

TP53 mutations among the 14% mutated HCC patients were

more diverse, in frame and frame shift mutations also

contributed heavily in addition to missense mutation (Figure 1F).

These mutated genes exhibited diverse functions in HCC

progression, by involving in multiple cancer related pathways,

such as RTK-RAS, WNT, and NOTCH. However, the involved

sample sizes for these biological processes were varied

(Supplementary Figure S1). Even for the top mutated

genes, only gene MUC16 presented a significant difference

of survival outcome between mutant and wild type groups

(Supplementary Figure S2). The diverse single mutation types

diluted the effect of the single mutated gene across different

samples in HCC.

Functional detection of co-mutated genes

According to the co-occurrence analysis, we observed many

cancer-related genes are co-mutated in HCC. Among them, the

top 1 mutated gene CTNNB1 significantly co-mutated with two

other top mutated genes APOB and OBSCN (Figure 2A).

However, similar to mutations of single genes, combinations

of topmutated genes were also less predictive in survival outcome

due to the heterogenicity of HCC. For instance, the co-

occurrence of APOB1 and CTNNB1 mutations and the co-

mutation of TP53 and MUC4 were observed in sample sets

containing only 6 and 5 HCC patients, respectively

(Supplementary Figures S3A,B). Therefore, in this study, we

introduced the concept of four specialized mutational

signatures to help understand the complexity of HCC

(Supplementary Figure S4).

In addition, instead of focusing on the nature of mutated

genes, we investigated the PPI network between co-mutated

genes. We found that those genes closely interplayed with

each other in their PPI network (Figure 2B). Two major

functional clusters were enriched in the functional analysis,

one was related to lipid metabolic pathways, including

lipoprotein metabolism, vitamin B12 metabolism, folate

metabolism and HDL-mediated lipid transport, the other

category was relevant to signaling processes, such as ATM-
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FIGURE 1
Mutation profiles in HCC. (A) Major variant types found in HCC representing in y-axis and the corresponding count representing in x-axis. (B)
The percentage of themajor SNV classes identified in HCC samples. SNV classes are presented in y-axis. The percentage of each SNV type is in x-axis
and the count is shown beside each bar. (C) The variant classification and their counts in HCC. (D) The top 10 mutated genes with their variant
classifications. The color of classification is referred to (C). The percentage of patients with each mutated gene is beside each bar. (E) The
median of variants per sample is 38 amongHCC samples withmaximumof variants 569. (F)Detailed information of the top 15mutated genes among
363 HCC patients. The upper panel illustrates the number of mutations of these top 15 genes of each sample shown in bar chart and the percentage
of each mutated gene is shown on the right side.
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dependent DNA damage response, beta-catenin phosphorylation

cascade, and wnt signaling pathway and pluripotency

(Figure 2C). This observation suggested that interaction

among mutated genes may have led to the transcriptomic

perturbation.

Transcriptomic perturbation of coding
genes

In this study, we utilized mutational signatures defined by

COSMIC to help understand the complexity of HCC. By the

COSMIC concept of mutational signature, four of them were

detected specialized in HCC samples (Supplementary Figure S4).

Among them, etiologies of SBS22 and SBS6 have been reported.

SBS22 is found in cancer samples with known exposures to

aristolochic acid (AA) and AA exposure has been reported to

induce human liver cancers (Zhao L. et al., 2020). SBS6 is

associated with defective DNA mismatch repair and is found in

microsatellite unstable tumors (Alexandrov et al., 2020). Meanwhile,

SBS12 and SBS40 are also closely related to cancers, although their

etiologies are still not clearly identified, SBS12 contributes to a small

proportion (<20%) of the mutations of liver cancer and SBS40 is

correlated with patients’ ages of some cancers. Notably, liver cancer

usually occurs among older people, its median diagnosis age is

67 years in males and 72 in females (Li et al., 2022).

FIGURE 2
Analysis of co-mutated genes. (A) mutational co-occurrence in HCC. The color scale in grids represents the significance degree of the
interaction of two genes. The darker the more significant. The dark blue square with asterisk represents the p-value of co-mutated gene pair is less
than 0.05 and the light blue square with dot represents the p-value of co-mutated gene pair is less than 0.1. (B) Bar plot of enriched biological
processes with −log10p >1 by databases of Reactome between variant and non-variant HCCs. (C) Functionally enriched biological processes of
the co-mutated genes.
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Patients exhibiting at least one mutational signature were

categorized into variant group, whereas the rest patients were

grouped as the non-variant HCC sample set. Indeed, we found

112 significantly DEGs between two groups, including

103 upregulated genes and 9 downregulated genes in the

variant group (Figure 3A). These DEGs were found

involving in versatile functional processes during tumor

development (Figure 3B). Based on cell marker information

collected from database CellMarker (Zhang et al., 2019), we

observed marker genes of diverse infiltrated immune cells also

significantly differentially expressed between variant and

non-variant HCCs during tumor development Among

these immune marker genes, exhausted CD4+ and CD8+

T cells accounted for critical proportions (Supplementary

Materials). T cell exhaustion results in impaired effector

function whereby cytotoxic CD8+T cells fail to control

tumor progression, especially in the late stage (Weiqin

et al., 2021).

In addition, the upregulated DEGs mostly concentrated in

lipid metabolism related functions (Figure 3C) and the

downregulated DEGs participated in the processes toward the

tumor microenvironment (Figure 3D). The upregulated DEGs

FIGURE 3
Analysis of coding gene expression between variant and non-variant HCCs. (A) Volcano plot of DEGs. logFC <0 represents upregulated genes in
variant HCCs compared with non-variant HCCs. Red color represents the dots pass the filtering criteria i.e., |logFC| <0.5 and -log10p >1. (B) Bar plot
enriched biological processes with -log10p >1 by databases of Reactome between variant and non-variant HCCs. (C,D) Bar plot of enriched
pathways of upregulated genes (C) and downregulated genes (D) in variant HCCs compared with non-variant HCCs. (E) The pathway network
of top 5 enriched pathways enriched by upregulated genes in variant HCCs compared with non-variant HCCs.
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enriched pathways were highly connected by their shared genes,

which are focused on bile acid and bile salt metabolism

(Figure 3E), however, not like upregulation, the

downregulated DEGs enriched pathways were not

concentrated, due to the insufficient DEG numbers.

Moreover, several genes were capable of serving as indicators

of prognostic risk and some of them were also DEGs between

variant and non-variant HCCs. For example, the overexpression

of genes CPSF6, LOC151174, CYP26B1, and GPR83 were more

likely associated with poor survival outcomes in variant HCC

patients, among them, CPSF6 and GPR83 were also DEGs

between variant and non-variant HCCs (Supplementary

Figure S5).

Transcriptomic perturbation of miRNAs

In addition to the coding genes, non-coding RNAs also

contributed to the transcriptomic changes. As a crucial

epigenetic regulator, miRNA plays a key role to regulate

FIGURE 4
Analysis of miRNA between variant and non-variant HCCs. (A) Bar plot of enriched pathways of differentially expressed miRNA target genes. (B)
Venn plot of differentially expressed mRNAs and miRNAs. (C) Functionally enriched biological processes of the miRNA target genes. (D,E)
Kaplan–Meier survival curves of APPBP2 (D) and ALS2 (E) for overall survival of HCC patients.

Frontiers in Genetics frontiersin.org07

Wu et al. 10.3389/fgene.2022.970907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.970907


the expression of target genes during tumor development

(Yong and Carlo, 2016). In the variant HCC group, the target

genes of differentially expressed miRNAs (DEmiRNAs) were

enriched in cancer related signaling pathways. Among them,

the essential intracellular components Smad family members

that involved in TGF-β relevant signaling processes were of

special interest (Figure 4A). From previous studies,

disorganization of TGF-β signaling is associated with a

growing incidence of HCC, however, overexpression of

signaling transducer Smad3 can reduce the susceptibility of

HCC (Yang et al., 2006). Our study provided evidence that

the miRNAs in variant HCCs probably participated in this

regulation process.

Among the miRNA-target gene pairs, 19 differentially

expressed pairs were identified in the variant HCC group

(Figure 4B), and one of the miRNA-targets, APPBP2 was

found involving in androgen regulatory processes (Figure 4C).

In HCC, the incidence of males is three to four times higher than

in females (Chacko and Samanta, 2016), thus APPBP2 probably

can be used as potential therapeutic target for HCC treatment.

Moreover, significantly different survival outcomes were

associated with the differential expression of two target genes,

APPBP2 and ALS2, suggesting their potential to serve as

prognostic indicators in HCC treatment. Interestingly, the

sample with the longest follow-up time was with a high

expression level of ALS2, while more samples were with low

expression levels, which leads to a survival curve cross between its

high and low levels (Figures 4D,E). In addition, by searching The

Human Protein Atlas database (Mathias et al., 2005),

immunohistochemical staining for APPBP2 was positive in

HCC based on the immunohistochemistry (IHC) results

(Supplementary Figure S6), as well it particularly expressed in

endothelial and hepatic stellate cells referring to the cell type

specific analysis (Supplementary Figure S7 and Supplementary

Material).

Deregulation of ceRNA regulatory
network through lncRNA in variant HCC

As another critical regulator of non-coding RNA, lncRNAs

play suppressive and oncogenic roles during HCC tumorigenesis

(Zhao H. et al., 2020). They indirectly regulate the expressions of

coding genes through competitively shared miRNAs. In the

variant HCC group, 90 differentially expressed lncRNAs

(DElncRNAs) were identified when comparing the variant

HCC with non-variant HCC group. However, no statistically

significant function was enriched according to Supplementary

Table S1.

According to a previous HCC study which utilized TCGA

RNA data, a lncRNA-miRNA-mRNA network has been

identified in tumor samples in the comparison with non-

tumor samples (Wang et al., 2021). However, the lack of

significant DEmiRNA-lncRNA connection in variant HCCs

in this study weakened the ceRNA regulatory network, which

only composes of DEmiRNAs and their corresponding target

coding genes (Figure 5). The indirect regulations of miRNAs

target genes through lncRNAs were eliminated from the

ceRNA regulatory network of variant HCCs, indicating that

the targeted inhibition of miRNAs probably is an attempt

therapy for variant HCCs.

Discussion

HCC has become the second leading death malignancy in

the world, and moreover, its incidence stably increases every

year (Li et al., 2019). Currently, although surgical resection

and liver transplantation have been utilized for HCC early

stage, the five-year overall survival rate is far from satisfaction

due to its complicated and heterogenous molecular etiologies

(Jordi and Josep, 2009). Consequently, it is urgent to identify

potential therapeutic and prognostic indicative genes

associated with complex pathogenesis for HCC treatment.

Numerous studies have identified mutational effects on HCC

through many critical functional progresses (Lee, 2015), as

well as aberrant expression of mRNA (Delia et al., 2018),

miRNA (Xin et al., 2018), and lncRNA (Chacko and Samanta,

2016). Nonetheless, few studies have linked them together to

explore their crosstalk relationships and projections between

multilayers of molecular landscapes in HCC, thus a

systematic study for them is urgently required.

In this study, mutational signatures of HCC were discovered,

furthermore, more specifically, some potential cancer markers

with significantly aberrant expressions were found co-mutated in

HCC. For example, MUC4 has been recognized as a prognostic

factor of Cholangiocarcinoma (CC) by several studies (Hiroaki

et al., 2004; Li et al., 2016). TTN, a potential skin cutaneous

melanoma related marker (Ying et al., 2020), was co-mutated

with MUC4 in HCC based on our analysis. Another example of

co-mutation identified in this study was APOB and CTNNB1,

which are two potential markers of HCC (Lee et al., 2018; Davod

et al., 2020). These observations indicated mutational changes

co-occurred in multiple critical genes probably induce expression

alterations of themselves, and the genes directly and indirectly

regulated by them.

Expression profiles of mRNA, miRNA, and lncRNA for

HCCs with mutational signatures were identified in the

comparison with HCCs without mutational signatures

using TCGA data. The DEGs for different types of RNA

were associated with specific biological functions during

HCC development. For example, upregulated coding RNAs

in the variant HCC group were predominantly enriched in

lipid metabolism related functions, whereas the

downregulated coding RNAs were enriched in axonogenesis

for tumor microenvironment generation. Additionally, the
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DEmiRNAs were inclined to enrich in cancer related signaling

pathways.

A portion of these DEGs also possessed the potential to serve

as prognostic indicators to predict the survival outcome of HCCs

with mutational signatures, such as the high levels of expression

of CPSF6, LOC151174, CYP26B1, and GPR83 were associated

with poor patient outcomes of HCC patients. The overexpression

of CPSF6 is clinically identified in human breast cancer,

moreover, its expression correlates with poor outcomes of

patient (Najat et al., 2017). Similarly, increased expression of

CYP26B1 is observed in 25.2% of tumors and is significantly

diseased expressed in normal colonic epithelium (p < 0.001),

furthermore, its enhanced expression is also significantly

associated with poor prognosis (Gordon et al., 2014). In

cancers, many processes also involve in immune response. For

example, the high expression of GPR83 regulated by CD4+CD25+

regulatory T cells (Tregs) participants in the induction of

CD4+Foxp3+ Tregs in the course of an ongoing immune

response (Hansen et al., 2010).

Hepatitis viruses are critical risk factors of HCC and some

of them could integrate their genes into the human genome.

However, in this study, we didn’t observe enough evidence to

support the integrated genes altered between variant and non-

variant HCCs (Supplementary Materials). Although

100 previously reported integrated genes (Hayer et al., 2013)

were involved in our DEGs, but none of them had significant

integration p value, which indicates its integration probably is

an occasional event and its effect on differential expression

between variant and non-variant HCCs requires further

investigation.

FIGURE 5
ceRNA regulatory network in variant HCCs. Blue squares are significantly differentially expressed miRNAs and the red dots are their targets.
Those miRNAs condensed connected with target genes are labeled beside corresponding blue squares.
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We assembled RNA regulatory network integrating miRNAs

and their target RNAs to pinpoint the RNAs with regulatory

relationships with others. Rapidly emerging evidence proved that

ceRNAs play critical roles in tumorigenesis. The expression of RNA

transcripts is regulated by other ceRNAs through the common

miRNA shared by them (Qi et al., 2015). For instance, lncRNA

LINC00668 competingly regulates gene VEGF-A through their

shared miRNA miR-297 to strengthen cell proliferation ability in

the oral squamous cell (Zhang, 2017). As well as increased

expression of H19 lncRNA enhances the expression of

VASH2 through the common miRNA miR-29a (Zheng et al.,

2018). In this study, the mutational signatures led to significant

miRNA-mRNA alterations in variant HCCs, and few significant

miRNA-lncRNA changes were identified. Thus, the inhibitive

regulation via lncRNAs were lost. The recovery of inhibition by

target miRNAs provided another possible therapeutic way forHCCs

with mutational signatures. Furthermore, this potential miRNA

targeting treatment could reduce the complexity due to the

extremely diverse mutation profiles and signatures. Therefore,

our multiomics analysis not only identified the altered

relationships between omics, but also provided a projection from

mutational signatures to transcriptomic changes, which affords

potentially easier therapeutic approaches.
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