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Introduction
In recent years, resting-state functional MRI has been widely 
used in depression research. The study method is summa-
rized into two types: analysis of region of interest (ROI)[1] 
and independent component analysis[2]. In the ROI-based 
analysis, some ROIs are selected as seed points according to 
prior knowledge, and then the functional connectivity mod-
el between the seed points and other brain regions is estab-
lished. In contrast, independent component analysis can be 
adopted for data analysis of the whole brain, with no need 
for pre-set seed points, and is then divided into several inde-
pendent components, with the connection model between 
independent components established.

Anand et al.[3] found, using ROI analysis, that functional 
connectivity in anterior cingulate cortex, limbic system and 

thalamic area was significantly reduced in patients with 
depression, suggesting a regulation effect on subcortical 
emotional circuits. Cullen et al.[4] also found the anterior 
cingulate to be an important area in depression pathological 
circuits and used ROI analysis to observe a significant reduc-
tion in functional connectivity in bilateral prefrontal-lim-
bic-thalamic regions. Bluhm et al.[5] revealed that the bilater-
al precuneus and posterior cingulate cortex had significantly 
reduced functional connectivity with the caudate nucleus, 
suggesting the presence of dysfunction in the corpus stria-
tum of depression patients. Sheline et al.[6] demonstrated a 
significant enhancement of functional connectivity in de-
pression patients between the dorsal medial prefrontal lobe 
and the precuneus, and between the dorsal lateral prefrontal 
lobe and the anterior cingulate. Results from independent 
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component analysis also supported the ROI analysis results; 
for example, Greicius et al.[2] found significantly enhanced 
functional connectivity in the anterior cingulate, thalamus, 
orbital frontal lobe and precuneus in depression patients, 
and that functional connectivity in the cingulate gyrus was 
positively correlated with the duration of depression. In ad-
dition, regional homogeneity has attracted increasing atten-
tion in the field of depression. Depression patients presented 
significantly abnormal regional homogeneity in the anterior 
cingulate gyrus, insula, thalamus, hippocampus, caudate nu-
cleus, precuneus and fusiform gyrus[7-10].

The analysis of brain networks is an important method 
for neuroimaging research focusing on schizophrenia[11-15], 
Alzheimer’s disease[16-18], epilepsy[19-21], attention deficit hy-
peractivity disorder[22], and stroke[23-24], as well as depression. 
Jin et al.[25] found some network abnormalities in some 
brain regions of unmedicated young patients with first-on-
set depression, including the anterior cingulate, dorsolateral 
prefrontal lobe, insula, amygdala and partial temporal lobe; 
the degree value of the amygdala showed significant positive 
correlation with the duration of disease. Tao et al.[26] con-
structed a resting-state functional brain network and found 
that, compared with healthy controls, both first-onset or 
long-term depression was accompanied by apparent abnor-
malities in the hate circuit, including the superior frontal 
gyrus, insula and lenticular nucleus; significant differences 
were also found in brain regions closely related to reward, 
emotion, attention and memory processing. These findings 
reveal that depression patients are different from healthy 
people in terms of their cognitive control and negative emo-
tional expression.

The aforementioned resting-state functional MRI data 
showed that the frontal lobe, limbic system and thalamus 
are closely linked with depression. This evidence provides a 
radiological sign for depression diagnosis. These potential 
indicators can be applied to machine learning research, al-
lowing the construction of diagnostic models and assist clin-
ical diagnosis.

To explore thinking patterns and cognitive status, machine 
learning and pattern recognition have been widely used in 
functional MRI data analysis, including forecasting con-
scious visual perception, lie detection, word reading and face 
recognition[27]. In addition, machine learning methods have 
also been applied to the study of brain diseases. Costafreda et 
al.[28] and Fu et al.[29] classified structural and functional MRI 
data in healthy controls and patients with depression using 
a support vector machine classifier, and the classification 
accuracy was 67% and 86% respectively. Gong et al.[30] used 

a support vector machine classifier to classify refractory and 
non-refractory depression using inter-group differences of 
gray matter and white matter, and the accuracy rate reached 
65.22% and 76.09% respectively.

It still remains elusive whether resting-state functional 
brain network metrics can be used effectively in machine 
learning methods for the classification of brain diseases. 
Moreover, the feature selection, number and evaluation are 
poorly understood. In this study, we analyzed the whole 
brains of depression patients using brain network metrics 
and hypothesized that the brain network topology struc-
ture of patients with depression is disordered. To test this 
hypothesis, resting-state functional MRI data were collected 
from 38 first-onset unmedicated depression patients and 
28 healthy controls, to construct a resting-state functional 
brain network. The changes in the brain network under the 
depression state were analyzed using global and local attri-
butes, in an effort to explore the radiological signs of the 
early diagnosis of depression and verify the potential value 
of brain network metrics in clinical diagnosis. 

Results
Quantitative analysis of subjects
Thirty-eight unmedicated patients with first-onset severe 
depression (the depression group) and 28 healthy volunteers 
who were age- and sex-matched (the control group) were 
included in this study. Two cases in the depression group 
and one case in the control group were excluded due to head 
movement greater than 3 mm or 3° rotation. Demographic 
information for the involved participants is shown in Table 1.

Resting-state functional brain network global attributes of 
unmedicated patients with first-onset depression
Both depression patients and healthy controls showed appar-
ent small-world attributes in resting-state functional brain 
networks compared with random networks and regular net-
works within the predetermined threshold. The clustering 
coefficient γ > 1 and the characteristic path length λ ≈ 1 (Fig-
ure 1). The small-world attribute was also found in both the 
depression group and the control group when we calculated 
network efficiency. Our findings are consistent with previous 
studies of brain networks[31-32].
     However, there were significant differences in small-world 
parameters and network efficiency between the depression 
group and the control group (Figure 2). Characteristic path 
length was significantly shorter and global efficiency was sig-
nificantly greater in the depression group compared with the 
control group (P < 0.05, no check). The clustering coefficient 

Table 1  Demographic information of participants

Item Control group (n = 27) Depression group (n = 36) Statistic 

Age (mean±SD, year) 26.8±9.6 (17–51) 28.4±9.66 (17–54) P = 0.50 (t = 0.66)a

Gender (male/female, n) 12/15 14/22 P = 0.65 (X2 = 0.19)b

Handedness (right/left, n) 27/0 36/0

HAMD (mean±SD) N/A 23.1±13.4 (15–34)

Superscript "a": Two-sample two-tailed t-test results of age; superscript "b": two-tailed Pearson chi-square test results of gender. HAMD: Hamilton 
Rating Scale for Depression score.
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and local efficiency showed no significant differences (P > 0.05).

Resting-state functional brain network node attributes of 
unmedicated patients with first-onset depression 
Compared with the control group, resting-state functional 
brain network node degree was significantly increased in the 
limbic system (including the right hippocampus, right pos-
terior cingulate gyrus, bilateral medial cingulate gyri, right 
thalamus), basal ganglia (right putamen and right thalamus) 
and inferior parietal lobule (right angular gyrus) of depres-
sion patients (P < 0.05, no check), which were the default 
network key areas. In depression patients, node degree was 
significantly reduced in the following brain regions: medial 
occipital lobe (including right cuneus lobe and left calcarine 
fissure and surrounding cortex), medial temporal lobe (left 
fusiform gyrus) and prefrontal lobe (including left inferi-

or frontal gyrus, orbital part, right medial superior frontal 
gyrus, right orbital middle frontal gyrus, bilateral opercular 
inferior frontal gyrus and right orbital superior frontal gy-
rus) (P < 0.05, no check), which were the key regions in the 
limbic-cortical-striatal-globus pallidus-thalamic circuit (cor-
responding to the hippocampus, cingulate gyrus, lentiform 
nucleus, and thalamus) (Figure 3, Table 2).
 
Correlation between resting-state functional brain 
network node metrics and Hamilton Rating Scale for 
Depression score (HAMD) in unmedicated patients with 
first-onset depression
We detected the correlation between node metrics, area 
under the curve (AUC) and HAMD scores. The results 
showed that the degree and nodal efficiency at the right 
hippocampus were significantly negatively correlated with 

Figure 1   Clustering coefficient γ (A) and characteristic path length λ (B) of resting-state functional brain network in healthy controls and de-
pression patients at different sparsities.
Clustering coefficient γ was > 1 (A) and characteristic path length λ was close to 1 (B) in two groups. Red column represents depression group 
(MDD) and blue column represents control group (NC). Dots represent outliers. Both ends of the box are upper quadrant lines and lower quad-
rant lines respectively. Both ends of upper and lower hatched lines are upper edge line and lower edge line respectively.

Figure 2   Global attributes of depression group and control group at different sparsities, including characteristic path length (A),  clustering 
coefficient (B), global efficiency and local efficiency.
Red represents depression group (MDD) and blue represents control group (NC). Dots represent outliers. Both ends of the box are upper quad-
rant lines and lower quadrant lines respectively. Both ends of upper and lower hatched lines are upper edge line and lower edge line respectively.
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HAMD scores, while those at the right thalamus showed a 
positive correlation. The betweenness centrality at the right 
hippocampus and thalamus was not correlated with HAMD 
scores. This evidence implies that the connectivity at the 
right hippocampus was decreased while that at the right 
thalamus was increased with the severity of the disease. No 
effect on information transmission at other nodes was found 
(Figure 4).

Resting-state functional brain network classification 
model in unmedicated patients with first-onset depression
The classification model was constructed with a neural 
network classification algorithm method using the statisti-
cal significance of the features of 270 local node attributes               
(90 nodes and three attributes at each node). The 270 indices 
were ranked according to their statistical significance thresh-
old P values and the interval for feature selection was set as 10. 
When the number of features was 30, the classification results 
were the best and the accuracy rate was 90.5% (Figure 5).

Importance and significance of resting-state functional 
brain network features in unmedicated patients with 
first-onset depression
The variations of each feature in target classification were 
calculated using a sensitivity analysis method to determine 
the importance of this feature in the classification process. 
The results from the node attributes showed statistical sig-
nificance in betweenness centrality and nodal efficiency at 
the right hippocampus; degree and nodal efficiency at the 
right middle frontal gyrus (orbital part), left angular gyrus, 
right posterior cingulate gyrus, right median cingulate and 
paracingulate gyri; degree at the left fusiform gyrus, right 
medial superior frontal gyrus, left inferior frontal gyrus 
(orbit part); and nodal efficiency at the right precuneus. 
Meanwhile, some features showed nonsignificant differences 
such as the betweenness centrality at the left middle frontal 
gyrus and left middle temporal gyrus; these attributes at 
significantly different nodes also exhibited great importance 
(supplementary Figure 1 online). Furthermore, the correla-

Figure 3   Brain regions with node abnormalities of resting-state functional brain network in unmedicated patients with first-onset 
depression.
Spectrum analysis adopted ICBM 152 and images were plotted using BrainNet (http://www.nitrc.org/projects/bnv/). Red represents brain regions 
with increasing node degree of resting-state functional network in depression patients, and blue represents brain regions with decreasing node de-
gree of resting-state functional network in depression patients. L: Left; R: right; FFG: fusiform gyrus; ORBinf: inferior frontal gyrus (orbital part); 
CUN: cuneus; SFGmed: superior frontal gyrus (medial); ORBmid: middle frontal gyrus (orbital part); IFGoperc: inferior frontal gyrus (opercular 
part); CAL: calcarine fissure and surrounding cortex; ORBsupmed: superior frontal gyrus (medial orbital); HIP: hippocampus; ANG: angular 
gyrus; PCG: posterior cingulate gyrus; THA: thalamus; MOG: middle occipital gyrus; DCG: median cingulate and paracingulate gyri; NC: control 
group; MDD: depression group.
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tion analysis between the importance of the features and the 
significance of intergroup difference showed that the impor-
tance of the degree, betweenness centrality and nodal effi-
ciency was significantly positively correlated with intergroup 
difference. That is, the more significant the node feature 
difference, the more important its contribution to classifica-
tion results (Figure 6). The intergroup difference results are 
a potential indicator of feature selection.

Discussion
Brain networks have been widely studied with respect to 
different spatial and temporal dimensions, including genes, 
proteins, synapses, neurons in each brain region and the 
whole brain. The structural complexity of the human brain 
reflects its composition in different dimensions and its pat-
terns of cognition, feelings, behavior and disease states[33]. 
Even in the same dimension, different definitions of network 

Figure 4   Scatterplot of right hippocampus and right thalamus with Hamilton Rating Scale for Depression (HAMD) score (24-item).
The connectivity of the right hippocampus was decreased while that of the right thalamus was  increased, and no effect on the information trans-
mission at other nodes was  found. Data were analyzed using regression analysis and red lines represent the regression line.

Data are represented as P value of the comparison results between control group and depression group.

Table 2  Brain regions with node abnormalities of resting-state functional brain network in unmedicated patients with first-onset depression

P value

Brain regions Degree                              Betweenness centrality              Nodal efficiency

Control group was larger than depression group

  Left fusiform gyrus 0.016 0.151 0.047

  Left inferior frontal gyrus, orbital part 0.017 0.179 0.034

  Right cuneus 0.025 0.001 0.093

  Right superior frontal gyrus, medial 0.035 0.495 0.151

  Right middle frontal gyrus, orbital part 0.049 0.557 0.025

  Left inferior frontal gyrus, opercular part 0.050 0.295 0.141

  Left calcarine fissure and surrounding cortex 0.058 0.547 0.146

  Right inferior frontal gyrus, opercular part 0.063 0.058 0.178

  Right superior frontal gyrus, medial orbital 0.082 0.848 0.114

Control group was smaller than depression group

  Right hippocampus 0.001 0.005 0.003

  Left angular gyrus 0.008 0.284 0.011

  Right posterior cingulate gyrus 0.008 0.167 0.007

  Right thalamus  0.008 0.004 0.008

  Right lenticular nucleus, putamen 0.014 0.213 0.023

  Right middle occipital gyrus 0.021 0.443 0.027

  Right median cingulate and paracingulate gyri 0.070 0.482 0.014

  Left median cingulate and paracingulate gyri 0.073 0.632 0.048
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Figure 5   The average accuracy rate of the artificial neural network classification model.
The arrow indicates the highest accuracy rate of classification results. When the number of features is 30, the accuracy rate reaches 90.50% (arrow).

Figure 6   Correlation analysis of statistical significance and importance of features in brain regions.
(A) Brain regions showing an importance of feature greater than 0.004. The size of dots represents the value of the feature’s importance. The bigger 
the dot is, the greater the value is.
(B) Correlation analysis of statistical significance and the importance of features. Data are analyzed using regression analysis. Red lines represent 
the regression lines. Spectrum adopts ICBM 152 and images are plotted using BrainNet (http://www.nitrc.org/projects/bnv/). Si indicates the im-
portance of features (supplementary Text 1 online).
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size induce different topological features[34].
    This study aims to observe variations in the brain network 
features of depression patients, construct a functional brain 
network using resting-state functional MRI data, calculate 
brain network metrics and compare intergroup differences. 
The results showed that both depression group and control 
group exhibited typical small-world features. Due to a high 
clustering coefficient and short path length, small-world 
networks allow specific modularized information process-
ing in the adjacent region and integrated or differentiated 
information processing among different components of the 
whole network. Therefore, small-world networks reflect the 
basic principles of a brain network: functional integration 
and functional differentiation.
    However, the brains of depression patients show significant 
differences in these small-world parameters. Depression has a 
shorter characteristic path length and stronger global efficien-
cy, but no difference was found in local attributes between the 
groups. This evidence suggests that long-distance connections 
were increased in the brain networks of depression patients 
compared with the healthy control group. The brain network 
in the depression group trended toward randomization. Ran-
domized brain networks are also found in other brain dis-
eases, such as Alzheimer’s disease[32, 35] and schizophrenia[13]. 
Changes toward randomized brain networks in depressed 
patients obscure the role of key nodes and reduce the degree 
of modularity of the network, which provides new evidence 
that depression is a kind of divisive mental illness.

The results of node metrics analysis showed that depres-
sion patients showed a significant increase in the degree of 
nodes at the following brain regions: some limbic system 
regions (right hippocampus, right posterior cingulate gyrus, 
bilateral medial cingulate gyrus and paracingulate gyrus), 
some basal ganglia regions (right lenticular nucleus and 
right thalamus) and a region of the inferior parietal lobe 
(right angular gyrus) in comparison with the control group. 
Current research addressing the neuropathological mech-
anisms of depression is mainly focused on the widely rec-
ognized limbic-cortical-striatal-pallidal-thalamic circuit[36]. 
Accumulating evidence suggests that depression is closely 
linked with the morphology and function of this circuit. 
For instance, the prefrontal cortex, anterior cingulate cortex, 
basal ganglia, thalamus, hippocampus and amygdala volume 
is reduced in depressed patients[37-39], and the left insular 
cortex and cingulate activation are significantly enhanced in 
depressed patients during a negative emotional facial stimuli 
task[40]. Some studies of functional connectivity have also 
revealed abnormal connections in areas related to the lim-
bic-cortical-striatal-pallidal-thalamic circuit. For instance, 
functional connectivity between the anterior cingulate gyrus 
and hippocampus, and between the amygdala and insula 
are reduced[41], while that between the subgenual cingulate 
and the thalamus are enhanced[2]. The present study demon-
strated that the hippocampus, cingulate gyrus, putamen and 
thalamus are the key areas in the limbic-cortical-striatal-pal-
lidal-thalamic circuit, and that the enhanced connectivity 
was an indicator of strengthened cooperation at these areas, 
which is presumably caused by depression. Our findings 
demonstrate novel evidence for the role of the limbic-cor-

tical-striatal-pallidal-thalamic circuit in the pathological 
mechanism of depression from the perspective of brain net-
works.
    The connectivity of the right hippocampus was negatively 
correlated with the severity of depression (HAMD 24-item 
score); the more severe the patient’s illness, the fewer con-
nections the right hippocampus had. Our finding is con-
sistent with previous studies, which showed a negative cor-
relation between hippocampus connectivity and the severity 
of clinical symptoms in untreated patients with first-onset 
depression[42-43]. We speculate that the severity of depression 
is mediated by hippocampal morphology or functional con-
nectivity. In addition, the connectivity of the right thalamus 
was positively correlated with the severity of the depression; 
the more severe the disease, the more connections the right 
thalamus had. A previous anatomical study found that the 
number of thalamic neurons in depression patients was sig-
nificantly higher than in healthy people[44]. The functional 
connectivity presented varying degrees of abnormality in the 
thalamus, and the default network crucial areas such as the 
anterior cingulate gyrus and subgenual cingulate gyrus. The 
present study provided novel support for explaining that the 
hippocampus and hypothalamus are the key brain regions 
involved in depression.
    The degree of nodes was significantly reduced in the me-
dian occipital lobe (including the right cuneus, left calcarine 
fissure and surrounding cortex), medial temporal lobe (left 
fusiform gyrus) and prefrontal lobe (including the left orbit-
al inferior frontal gyrus, right median superior frontal gyrus, 
right orbital middle frontal gyrus, bilateral opercular infe-
rior frontal gyrus and right orbital superior frontal gyrus). 
Concerns about abnormal changes in the prefrontal lobe 
of depressed patients have gained momentum[45], especially 
in the morphology[46-47] and functionality[48]. The orbital 
part mentioned in this study has been previously reported. 
For example, gray matter volume in the orbital region was 
significantly reduced in elderly patients with depression[49]. 
Furthermore, gray matter volume in the left orbital region 
was negatively correlated with the patient’s age[50]. Reduc-
tion in the functional connectivity in the prefrontal area is 
an indicator of weakening information conduction, which 
is presumably caused by depression. We also found reduced 
connectivity in the occipital part, including the cuneus, 
calcarine fissure and surrounding cortex. It is known that 
gray matter volume is reduced at the cuneus[51]. In addition, 
reduced white matter integrity contributed to the occipital 
part in untreated patients with first-onset depression[52]. Our 
findings are consistent with the aforementioned studies.

The importance of 270 local node attributes in the neural 
network model was determined using sensitivity methods 
to detect the contribution of each feature in the model. The 
results showed that related features in the majority of brain 
regions with statistically significant differences provided a 
strong contribution to the classification, including the be-
tweenness centrality in the right hippocampus, right orbital 
middle frontal gyrus and right cuneus; and the degree and 
nodal efficiency in the left angular gyrus, right posterior 
cingulate gyrus, right medial and paracingulate gyri. De-
pression is the contributing factor in the morphological and 



160

Guo H, et al. / Neural Regeneration Research. 2014;9(2):153-163.

functional abnormalities in these brain regions[53-56].
The present study also demonstrated this finding from the 

perspective of machine learning experiments. The results 
of importance analysis also highlighted the contribution of 
nonsignificant features, such as the betweenness centrality 
at the left middle frontal gyrus and left middle temporal 
gyrus. The changes of brain region in depression have been 
previously studied[57-58]. The presence of these features illus-
trates that, from a statistical point of view, the limited sample 
set did not show significant differences between groups, but 
could cause significant changes in the control variables. It is 
noted that significant differences between the groups are an 
indicator of feature selection (but the reliability of the sample 
size should be considered). Our results showed that brain 
network metrics can be characterized as an effective feature in 
machine learning and assist to achieve the automatic identi-
fication of disease data, thus providing a novel means for the 
diagnosis of disease and clinical applications. The study also 
gives a reasonable direction for brain network metrics.
    In addition, we performed a correlation analysis on the 
feature importance and intergroup differences of node 
degree, betweenness centrality and nodal efficiency. The 
results showed a strong positive correlation, indicating that 
the more significant the differences of the node features, the 
stronger the contribution to the classification. We tentatively 
put forward that the differences in the features are potential 
indicators of feature selection. The results of statistical sig-
nificance can be used to measure the contribution of select-
ed features in the classification process; that is, an effective 
quantitative evaluation indicator of feature selection of the 
brain network.
    There are still some limitations. First, there are two key 
issues in any area of network research: definition of nodes 
and definition of connections. In brain networks, these two 
definitions remain poorly understood. The spatial dimen-
sion defined in the brain network nodes exhibit different 
topological system features[34, 59-60]. In this study, the defini-
tion of brain network nodes follows the traditional brain 
regional level. If the spatial dimension in the node definition 
is changed, is the previous conclusion still valid? Have any 
new conclusions emerged? Which spatial dimension of node 
definition is the most suitable for outlining the network 
topology structure in depression? These problems require 
further research. Second, brain network construction and 
analysis were carried out in the target population, and the 
homogeneity of data was ensured with the HAMD score, 
which ignored the differences between individuals. Explora-
tion of the specific brain network topology structure for dif-
ferent clinical symptoms has a clinical application prospect. 
Third, the sample size here was small due to limitations in 
costs, equipment and participants. From a statistical point of 
view, the experimental results were not completely convinc-
ing; thus, large-sample studies are urgently needed. Fourth, 
we found that statistical significance could be used as an in-
dicator of feature selection for a classification model; when 
the number of features was 30, the accuracy rate was highest. 
However, the optimal number of features is involved in a 
variety of factors, including sample size, type of classifiers, 
and distribution of samples, as well as the effectiveness and 

sorting of selected features. How to determine the optimal 
number of features plays a crucial role in constructing an 
effective classification model. Meanwhile, different brain 
diseases may require different brain network construction 
methods and different statistical methods, which deserve 
further research.

The present study showed that both the depression group 
and the control group exhibited typical small-world attri-
butes. The node attribute was significantly abnormal in the 
cortex-striatum-globus pallidus-thalamic neural circuits of 
depressed patients. We used the attributes with significant 
differences between groups as classification features in ma-
chine learning methods, and achieved an accuracy rate of up 
to 90.5%. We tentatively put forward that the differential in-
dex of resting-state functional brain networks can be used as 
effective features in classification studies. Our finding gives 
a reasonable application method of brain network metrics. 
In addition, the correlation analysis between the importance 
and statistical significance of node attributes was detected 
using a sensitivity analysis method, and the results showed 
that the features with statistical significance played a stronger 
contributory role in the classification process. This evidence 
suggests that statistical significance is a potential method of 
feature selection for brain networks. The present study pro-
vided objective imaging data, explored the potential brain 
network index to assist clinical diagnosis, and brought about 
a novel means for depression diagnosis. 
 

Subjects and Methods
Design
A comparative analysis on imaging data.

Time and setting
Data were collected from the Department of Psychiatry, the 
First Affiliated Hospital, Shanxi Medical University, China 
between September 2010 and June 2011.

Subjects
Thirty-eight unmedicated patients with first-onset severe 
depression (the depression group) and 28 healthy volunteers 
who were age- and sex-matched (the control group) were 
included in this study.

Depression group: Depression patients, Han population, 
were recruited from Department of Psychiatry, the First 
Affiliated Hospital, Shanxi Medical University, China. They 
were diagnosed according to the diagnostic criteria of the Di-
agnostic and Statistical Manual of Mental Disorders, Fourth 
Edition[61]. The severity of depression was determined with 
the 24-item HAMD[62] and the Clinical Global Impression of 
Severity[63]. Patients were excluded if they met the following 
criteria: secondary depression or bipolar disorder caused by 
other organs or drugs; received any medical treatments prior 
to recruitment; suffering from alcohol dependence, schizo-
phrenia and schizoaffective disorder according to the Sched-
ule of Clinical Interview for Diagnosis Alcoholic Dependence; 
suffering from serious physical illness or neurological disor-
ders; biochemical markers or EEG, ECG were abnormal by 
physical examination and laboratory examination; pregnant 
or lactating women; in serious suicidal or injury attempt; ex-
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cited, impulsive and uncooperative patients; participated in 
other medical treatment within the last month.

Control group: Healthy volunteers were enlisted by ran-
dom advertising and matched the depressed patients in age 
and gender. All controls had no history of mental or neuro-
logical disorders, and personality assessment was detected 
as normal according to the Structured Clinical Interview for 
DSM-IV Dissociative Disorders[64].

All participants and their families gave informed consent.

Methods
Image acquisition
All the subjects underwent resting-state functional MRI 
scan using 3T MR equipment (Siemens Trio 3-Tesla scanner, 
Siemens, Erlangen, Germany). During the scan, subjects 
were instructed to relax with their eyes closed but not to fall 
asleep. Scanning parameters are shown in supplementary 
Text 2 online.

Data preprocessing
Data preprocessing was performed using SPM8 software 
(http://www.fil.ion.ucl.ac.uk/spm). First, the data set was 
subject to slice timing correction and head movement cor-
rection. The corrected images were optimized by 12-dimen-
sional affine transformation and then conformed to 3 mm 
voxel MNI space. Finally, the images were filtered using low-
pass filtering (0.06–0.11 Hz) to reduce low-pass drift and 
high-pass noise.

Construction of brain network 
Using the Automated Anatomical Labeling template[65], the 
whole brain was divided into 90 brain regions (45 in each 
hemisphere), and each brain region was defined as a node 
in the network (supplementary Table 1 online). The av-
erage time sequence of all voxels in the same brain region 
was calculated as the time series of this region. The number 
of connection lines in the network was defined using the 
partial correlation coefficient. The time sequence of each 
brain region was obtained and subject to multivariate linear 
regression to remove the influence of head movement. Then 
the partial correlation coefficients between any two regions 
were calculated and a 90 × 90 incidence matrix was obtained 
(supplementary Figure 2A online). Finally, according to the 
set threshold τ, the incidence matrix was transformed into a 
binary adjacency matrix (supplementary Figure 2B online). 
Thus, if the partial correlation coefficient between node i 
and node j was greater than a certain threshold S, the matrix 
element aij was 1, indicating a connection between node i 
and node j. Otherwise, the value of aij was 0.

Network analysis
The image dimensions and connectivity intensity contribute 
to the quantization of metrics in complex network compar-
ative studies. Therefore, quantitative topological features 
should be controlled before comparison among complex 
networks. Bollobás et al.[66] proposed two gold standards 
for the comparison of complex networks: the same num-
ber of nodes and the same number of connection lines. In 
this study, we adopted sparseness S to define the threshold. 

Sparseness (S) is the ratio of the actual number of connection 
lines in a network to the maximum number (N) of possible 
connection lines. Previous studies showed that brain networks 
are typical low-consumption networks and show typical small-
world attributes. Meanwhile, the consumption/efficiency ratio 
of the small-world attributes showed an apparent positive 
correlation and reached a peak when S = 0.3[33]. Therefore, 
determining the threshold with small-world attributes can 
remove pseudo connections. (1) The average degree of all 
the nodes (degree is the number of connection lines to this 
node) is greater than 2 × Lg (N), N = 90. N is the number of 
nodes in the network. (2) The small-world attribute index σ 
> 1.1. The threshold space was calculated as S ∈ (8%, 32%). 
The network analysis was also performed in this space at an 
interval of 0.01.

Network statistics
After the brain network was constructed, the global and lo-
cal network attributes at each threshold were calculated (the 
index of attributes is shown in the following table and the 
calculation is shown in supplementary Text 3 online). Mean-
while, AUC (supplementary Figure 3 online) for each index 
was calculated to represent the global attribute of each index 
at the selected threshold.

Data analysis
To determine whether global attributes have significant 
differences between the groups, the AUC for each index (in-
cluding global attributes and node attributes) was subject to 
non-parametric permutation tests. Multiple linear regression 
analysis was used to remove the effects of gender and age on 
the results. 

Brain network analysis index:

Name Description 

Node attributes 

Degree (ki) The number of lines connected to node i
Nodal efficiency           
(ei)

The average sum of the shortest path reciprocal 
between node i and other nodes in the network, 
and reflects the degree of difficulty in transferring 
information from node i to other nodes

Betweenness 
centrality(bi)

The number of the shortest path lengths among 
other node pairs in the network that cross through 
node i, and reflects the importance of node i on 
other nodes in the network

Global attributes

Clustering 
coefficient (Cp)

The ratio of the actual number of lines of other 
nodes (except node p) that connect with node p in 
the network to the number of maximum possible 
lines for those nodes. Cp is used to measure the 
local information transmission efficiency in a 
network

Characteristic 
path length 
(Lp)

The average of the shortest path lengths from node p 
to other nodes in the network. Lp is used to 
measure the global information transmission 
efficiency in the network

Global 
efficiency (Eglob)

Reflects the efficiency of information transmission 
in the whole network

Local efficiency 
(Eloc)

Reflects the efficiency of information transmission 
from each node to the adjacent node
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The observed significantly different index was further ana-
lyzed with the HAMD scale for correlation analysis.

Classification model
To construct the disease data model and achieve automatic 
identification, we constructed a classification model with a 
neural network algorithm using machine learning methods, 
taking the statistical significance of 270 local node attributes 
(90 nodes and three attributes of each node) as the features. 
The neural network algorithm and parameter settings are 
shown in supplementary Text 4 online. To compare the 
effects of different features on the classification model, all 
indices were ranked based on the P value, at an interval of 
10 step lengths. The model was generated and verified us-
ing a cross-validation method[67]. 70% of the samples were 
randomly selected as the training set while the remaining 
30% were the testing set. Each threshold value was tested 100 
times, and the average accuracy rate was calculated.
 
Feature importance
The quantitative index measurement of the selected features 
allows us to determine its contribution in the classification, 
which plays an important role in the feature optimization 
and self-learning of the classification model. The obtained 
270 local node features were analyzed using sensitivity anal-
ysis to calculate the variance of each feature in the target 
category and accordingly determine the importance of this 
feature in the classification. Features are then ranked accord-
ing to the sensitivity measure. This method is applied in a 
variety of models of neural networks, decision trees, SVM, 
and Bayesian networks, and also compares the quantization 
of each feature in different models[68] (supplementary Text 
1 online). In this study, we analyzed the correlation between 
the statistical significance of 270 node features and the im-
portance of the calculated features in the neural network 
model, in an effort to determine the feasibility of applying 
statistical significance as an indicator of feature selection.
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