
 

Open Peer Review

F1000 Faculty Reviews are written by members of
the prestigious  . They areF1000 Faculty
commissioned and are peer reviewed before
publication to ensure that the final, published version
is comprehensive and accessible. The reviewers
who approved the final version are listed with their
names and affiliations.

Any comments on the article can be found at the
end of the article.

REVIEW

 Peripheral nerve magnetic resonance imaging [version 1; peer
review: 2 approved]
Yongsheng Chen ,   E. Mark Haacke , Jun Li1,3-5

Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
Department of Radiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
John D. Dingell VA Medical Center, Detroit, MI, 48201, USA

Abstract
Magnetic resonance imaging (MRI) has been used extensively in revealing
pathological changes in the central nervous system. However, to date, MRI
is very much underutilized in evaluating the peripheral nervous system
(PNS). This underutilization is generally due to two perceived weaknesses
in MRI: first, the need for very high resolution to image the small structures
within the peripheral nerves to visualize morphological changes; second,
the lack of normative data in MRI of the PNS and this makes reliable
interpretation of the data difficult. This article reviews current state-of-the-art
capabilities in   MRI of human peripheral nerves. It aims to identifyin vivo
areas where progress has been made and those that still require further
improvement. In particular, with many new therapies on the horizon, this
review addresses how MRI can be used to provide non-invasive and
objective biomarkers in the evaluation of peripheral neuropathies. Although
a number of techniques are available in diagnosing and tracking
pathologies in the PNS, those techniques typically target the distal
peripheral nerves, and distal nerves may be completely degenerated during
the patient’s first clinic visit. These techniques may also not be able to
access the proximal nerves deeply embedded in the tissue. Peripheral
nerve MRI would be an alternative to circumvent these problems. In order to
address the pressing clinical needs, this review closes with a clinical
protocol at 3T that will allow high-resolution, high-contrast, quantitative MRI
of the proximal peripheral nerves.
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Introduction
The peripheral nervous system
In order to execute commands from the central nervous system 
(CNS) (consisting of the brain and spinal cord), humans need  
the peripheral nervous system (PNS) to provide a commu-
nication route from their “external devices” such as sensory  
organs or muscles to the brain. Thus, these peripheral nerves 
are designed to travel between the brain, through the spinal 
cord, and eventually to the organs outside of the cranial space or  
spinal canal1.

Peripheral nerves are well-organized tubular structures running 
from the spinal cord/brain to the cranial tissues and the  
extremities. For simplification, this review will omit the cranial 
nerves. The spinal cord extends the nerve fibers from its ventral 
column, called ventral roots (primarily motor nerve fibers), and 
from its dorsal column, called dorsal roots (primarily sensory  
nerve fibers). Ventral and dorsal roots meet together and are  
encased by epineurial tissues right before they exit the spinal  
canal at the neural foramen. These nerves from different levels 
of the neural foramen are intermingled to form either the  
brachial plexus in the neck or lumbosacral plexus in the lower  
back and branched into peripheral nerves in the extremities, such  
as the ulnar, median, radial, femoral, and sciatic nerves1.

The structure of the peripheral nerves can be well recognized 
on a transverse section, as shown in Figure 1. Here, the out-
ermost layer is the fibrous connective tissue referred to as the  
epineurium, and inside the epineurium, individual nerve fibers 
are organized into individual bundles, called fascicles, by another  
layer of fibrous connective tissue called perineurium. The number 
and size of human peripheral nerve fascicles vary considerably; 
the size typically ranges from 0.1 to 1 mm in diameter2. There  
are two types of nerve fibers: myelinated and unmyelinated. 
The former is made up of layers of Schwann cell membranes  
(myelin) in segments (called internodes) to wrap axons con-
centrically3. The segments are separated by punctuate gaps,  
called nodes of Ranvier, where the axon is denuded of  

myelin. Myelinated nerve fibers are separated from each other 
by another layer of connective tissue, called endoneurium,  
serving as part of the blood–nerve barrier which prevents  
molecules from crossing the blood into the endoneurial fluid. 
The non-myelinated nerve fibers, called C fibers, are numerous  
and run alongside the myelinated axons. These axons are  
circled by one layer of Schwann cell membrane without  
forming myelin. These unmyelinated axons are grouped into 
what is known as a Remak bundle. There are also abundant  
blood vessels within the nerve epineurium and perineurium. 
Between the nerve axon and the endoneurium, there is a low-  
protein liquid, called endoneurial fluid. The myelinated nerve 
axon propagates electrical signals, the action potential, between  
the CNS and distant organs. The myelin insulates axons and  
permits salutatory conduction of action potentials with greater 
velocity than that in non-myelinated axons1–5.

Peripheral neuropathy
Diseases damaging peripheral nerves are collectively called 
peripheral neuropathy, affecting either multiple nerves (called  
polyneuropathy) or only one nerve (called mononeuropathy). 
Polyneuropathy is a group of diseases affecting peripheral  
nerves in roughly symmetric areas in bilateral limbs. It is clinically 
characterized by muscle weakness, numbness, and burning pain 
in the hands and feet. The disease may progress to the proximal 
arms and legs (length-dependent process) and sometimes to  
other parts of the body, such as autonomic nerves. Collec-
tively, these diseases are highly prevalent and affect about 8% 
of people above 55 years of age6. Common types of polyneu-
ropathy include diabetic peripheral neuropathy (DPN),  
Guillain–Barré syndrome, chronic inflammatory demyelinating  
polyneuropathy (CIDP), human immunodeficiency virus (HIV)-
associated neuropathy, alcoholic neuropathy, and paraproteinemic 
neuropathy.

When the disease is caused by monogenic mutations, it is called 
Charcot–Marie–Tooth disease (CMT). Like other types of  
polyneuropathy, CMT is affected mainly by two key pathological 

Figure 1. Peripheral nerve cross-sectional anatomy. (A) Illustration of peripheral nerves’ cross-sectional anatomy with the presence of 
intraneural blood vessels: (1) epineurium, (2) lipid-equivalent connection tissues, (3) individual nerve fascicle, (4) perineurium, (5) artery, 
and (6) vein. (B) Representative myelinated nerve fibers under light microscopy from a control sciatic nerve8, stained with Toluidine blue: (7) 
myelin sheath, (8) axon, and (9) endoneurium. The picture in B was tailored from Figure 1A of Li et al.8.
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lesions: demyelination (or dysmyelination if abnormally formed 
myelin occurs during development) and axonal degeneration. 
A major group of CMT diseases are caused by abnormalities 
in the myelin sheath that are classified as type 1 (CMT1) with 
autosomal dominant inheritance. The most common subtype of  
CMT1 is CMT1A. It is caused by duplication of chromo-
some 17p12, a DNA segment containing the peripheral myelin  
protein-22 (PMP-22) gene7. CMT1B is caused by genetic  
mutations of the myelin protein zero (P0) gene8. The other 
major type of CMT, CMT2, is affected predominantly by axonal  
degeneration. CMT2A is the most common subtype of CMT2 
and is caused by missense mutations in the Mitofusin-2 gene,  
which encodes a protein regulating mitochondrial fusion9.  
All CMT patients with x-linked inheritance are classified as  
CMTX. All CMT patients with autosomal recessive inheritance  
are grouped as CMT4.

Peripheral nerve injury has a high prevalence, affecting 
about 3% in the trauma population, whose trauma often is 
caused by motor vehicle accidents10. There are three major 
types of peripheral nerve injuries described by Seddon11 and 
Sunderland12: neurapraxia, axonotmesis, and neurotmesis.  
Neurapraxia is primary demyelination with a reversible con-
duction block in myelinated nerve fibers. Axonotmesis results 
in axonal degeneration. Because the neuronal cell body is not  
damaged, the axon can regenerate at a very slow rate (about 1 mm 
per day). The distal end of the axon separated from the cell 
body undergoes Wallerian degeneration. The neurotmesis is a  
mixture of demyelination and axon loss with disruption of  
endoneurium, perineurium, or epineurium. When endoneurium 
is damaged, the axon may regrow; however, poor growth is  
expected in those nerves with perineurial damage. When the  
epineurium is damaged, usually there will be no regrowth5,13.

Current diagnostic tools
Irrespective of causes or types of polyneuropathies, nerves are 
afflicted mainly by two kinds of lesions: axonal degeneration 
and de-/dysmyelination. Ascertaining the pathology has been  
crucial in diagnosing and treating polyneuropathies. For  
instance, demyelinating polyneuropathies are often responsive 
to immunomodulatory therapies, but axonal polyneuropathies 
have no effective treatment to date. Moreover, quantification of  
axonal/myelin pathologies is required to accurately track 
the progression of polyneuropathies, which is often critical 
for clinical trials. Traditionally, these pathologies have to be  
evaluated by sural nerve biopsy, which is an invasive procedure 
involving surgery to remove the nerve in the leg. Nerve biopsy 
is not suitable for longitudinal studies since repetitive surger-
ies are practically prohibitive. Peripheral nerves can also be  
assessed by nerve conduction studies (NCSs). Demyelinating 
polyneuropathy is indicated if NCSs show a slowed conduc-
tion velocity, temporal dispersion, and conduction block14. In  
contrast, axonal polyneuropathy has normal or minimally 
slowed conduction velocity but reduced amplitude of compound  
nerve action potentials15. Although NCS has been a very helpful 
tool, nerves in many patients may become non-responsive in  
distal limbs because of severe degeneration. This “floor” effect can  
prevent NCSs from providing meaningful information.

Moreover, nerves residing in the deep tissues of proximal limbs 
are usually not accessible to NCSs; thus, pathologies in the  
proximal nerves may be missed. There are many peripheral 
nerve diseases primarily affecting proximal nerves, such as  
plexopathies, nerve injuries, or demyelination to the proximal 
locations. High-resolution ultrasound is an alternate approach to  
image the peripheral nerves. Ultrasound provides real-time 
imaging of the peripheral nerve for a long-axis view and the  
ability to do a contralateral comparison. However, the imaging 
quality relies largely on the technician’s experience, which 
affects intersubject reliability. As in NCS, proximal nerves that 
are deep in the tissue are usually not visible or accessible to  
ultrasound16,17.

More recently, magnetic resonance imaging (MRI) has been  
shown to provide rich image contrast, high resolution, and 
more quantitative features that could be viable biomarkers for  
peripheral nerve pathology in patients with neuropathies  
(Table 1). Although MRI has been extensively utilized to reveal 
pathological changes in the CNS, it has been underutilized  
in human PNS studies in vivo. This is often due to two key  
reasons: first, the small structures in the nerves require high- 
resolution imaging to visualize morphological changes; second, 
there is little normative data for MRI in the PNS and this  
makes a reliable interpretation of the data difficult. On the 
other hand, many MRI tissue properties, such as proton  
density (PD), longitudinal (T1) and transverse (T2) relaxations,  
susceptibilities, and magnetization transfer (MT), have been 
well established for human brain imaging in vivo. These  
quantitative measurements have improved MRI image con-
trast between healthy and pathologic tissues. In particular, 
these MRI properties offer better visualization of the processes 
during inflammation, infarction, demyelination, and axonal  
degeneration18 but these quantitative imaging modalities have  
not yet been well tested in the peripheral nerves.

This article reviews the current peripheral nerve MRI techniques 
and studies mainly in assessing various peripheral neuropa-
thies and closes with a clinical protocol at 3T that will allow  
high-resolution, high-contrast, quantitative MRI of the proximal 
peripheral nerves.

Peripheral nerve magnetic resonance imaging
Challenges in imaging the peripheral nerves
MRI offers a wide variety of contrasts coming from the tissue 
properties, water motion either microscopically via diffusion or  
macroscopically via blood flow and magnetic susceptibility, to 
name just a few that are of interest to imaging the PNS.

Tissue properties include water content or PD, T1, and T2 spin 
relaxation. Using these tissue characteristics, one can obtain  
proton density–weighted (PDW), T1-weighted (T1W), and 
T2-weighted (T2W) images by varying the timing parameters 
such as echo time (TE) and repetition time (TR), with either a  
gradient echo (GE)-based sequence or a spin echo (SE)-based 
sequence. By adding another radiofrequency (RF) pulse prior 
to the excitation, one can null the signal in certain tissues at  
the imaging readout period. These techniques are known as  
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fluid-attenuated inversion recovery (FLAIR) for nulling bulk water 
and short-tau inversion recovery (STIR) for nulling fatty tissues.  
Note that with a GE acquisition, the image contrast varies from 
PDW to T1W by changing the flip angle through which the 
spins are tipped, from small to large angles. These methods are  
qualitative in nature, but tissue properties can be quantified 
by varying the imaging parameters and then reconstructing  
quantitative maps from this set of images. However, to  
accomplish truly quantitative maps of T1, T2, T2*, and PD, 
the calibrations of main field (B

0
) inhomogeneity as well as RF  

transmit (B
1
+) and receiver (B

1
−) fields must be included.

Water motion exists everywhere in the human body in either a 
macroscopic or microcosmic form. Typical applications of the  
former type of water motion are imaging the vasculature of 
the human body, such as MR angiography and venography.  
These hemodynamic characteristics can also be quantified by  
using either the magnitude of the signal or the phase informa-
tion. These macro-water motions are largely to be avoided in  
the purpose of reducing image artifacts caused by motion. On 
the other hand, for molecular-level water motion, methods such  
as diffusion-weighted imaging (DWI), diffusion tensor imaging 
(DTI), and MT all play significant roles in today’s neurological  
and musculoskeletal imaging of the CNS and PNS.

The other major contrast mechanism, magnetic susceptibility, 
has attracted attention from the very beginning of MRI via the  
presence of susceptibility artifacts (which cause signal dephas-
ing near air/tissue interfaces and at the surfaces of metal 
implants). Outside of these bulk susceptibilities are the internal  
susceptibility differences between the tissues themselves. This 
has been used both to enhance contrast between tissues using  
susceptibility-weighted imaging (SWI) and to map the magnetic 
source characteristics using quantitative susceptibility mapping 
(QSM). Conventional SWI employs a fully flow-compensated 
GE acquisition to take advantage of both the intrinsic T2*  
decay from different biological sources and the phase from 
local changes in susceptibility to form an enhanced contrast 
image29. It is used mainly to image the cerebral venous system in  
neuroimaging. QSM makes it possible to quantify susceptibil-
ity differences between tissues that can be caused by the level  
of blood oxygen saturation, iron deposition, calcification,  
de-/dysmyelination, and other internal structural variations that 
change the intrinsic susceptibility.

Imaging the PNS is technically feasible because there is little 
leg motion during scanning, and blood flow artifacts can be  
reduced by using flow compensation. However, pulsatility  
artifacts can still be a problem30. For example, when imaging the  
cross section of the proximal sciatic nerve at the thigh level, 
one can use an anterior-posterior phase encoding to shift the  
arterial ghosting artifacts from left/right to up/down in an 
attempt to avoid corrupting the nerve. Compared with the brain, 
the peripheral nerve has much less complexity in its anatomy 
and function, which simplifies the optimization of image  
contrast. Particularly, the cellular and subcellular anatomy of 
the peripheral nerve makes DTI one of the best approaches to  
imaging the fascicles since the tube-like structure restricts  
molecular water motion to be mainly along the longitudinal  
nerve axons. However, there are also several limitations in  

imaging the peripheral nerve. First, anatomical imaging the  
fascicles and other structures requires high resolution, which  
takes longer and has a lower signal-to-noise ratio (SNR). Since 
the peripheral nerve runs parallel to the extremity, the axial  
orientation is typically used to investigate the cross-sectional  
morphometry. The nerve is only a few millimeters across and 
the fascicles are much smaller (on the order of 1 mm or less),  
except in some rare disorders like heredity neuropathy where 
the affected sciatic nerve fascicle at the distal-thigh level can  
be as large as 6 mm in diameter (unpublished observation).  
High-resolution imaging on the order of 0.25 mm or better 
will be needed to differentiate the signal from the neuron and  
from the intraneural lipid-equivalent tissues and minimize  
partial volume effects. Second, the peripheral nerve is always  
accompanied by fatty tissue which causes systemic error in  
quantitative measurements such as T1, PD, and T2 mapping; 
MT; fractional anisotropy (FA); and susceptibility. Therefore,  
peripheral nerve imaging typically employs fat saturation or 
water excitation pulses to minimize these problems. However,  
the use of fat saturation introduces its own problems and can  
affect quantification of the data and reduce the SNR. Third, 
there are limited sequences and software developed for imag-
ing the peripheral nerve, making reliable interpretation of PNS  
difficult. Nevertheless, peripheral nerve MRI has grown recently, 
and a few potential biomarkers have been reported in various  
studies in patients with peripheral neuropathies17,19,21,24,25,28,31–33.

Diagnosing peripheral nerve diseases with MRI has been 
mainly case-based using conventional MRI sequences such as  
PDW, T1W, T2W, STIR, and gadolinium-enhanced T1W. For 
instance, in a study by Wasa et al., conventional MRI was used 
to reveal mass lesions, peripheral enhanced lesions, edema, and 
intratumoral cystic lesion for differentiating malignant periph-
eral nerve sheath tumors from neurofibromas with a sensitivity 
of 61% and a specificity of 90%34. Assessing infiltration could be  
very difficult, but it may be possible when there is a discrete 
fat appearance between the tumor and the peripheral nerve35.  
T2W and diffusion MRI have depicted high signal intensity 
and plexus enlargement, suggesting inflammatory changes in  
patients with brachial plexopathies36. For diseases in the phrenic 
nerve, MRI could be the preferred imaging technique since the 
nerve is difficult to access with other imaging or diagnostic  
methods36. However, there is a lack of systematic investigation on 
specific diseases.

Magnetic resonance neurography
Magnetic resonance neurography (MRN) plays a significant 
role in today’s clinical and scientific imaging of the peripheral  
nerve. The earliest work in using MRN are those done by  
Howe, Filler and their colleagues in the 1990s37,38. MRN depicts 
a nerve-only image with the basis of suppressing signal from 
other static tissues and blood vessels32,37,39. The cross-sectional  
fascicular isolation of sciatic nerves was also described in early 
work by Filler et al.38, who used the fact that the nerve has a 
longer T2 relaxation time compared with muscle. By combining  
heavy T2 weighting, diffusion weighting, and strong fat  
suppression as well as a spatial saturation band to eliminate  
in-flow effects inside major blood vessels, nerve-only 
images were generated with high nerve-to-background  
contrast.
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Nerves in the lower and upper extremities as well as in the  
brachial and lumbosacral plexuses have been studied by using  
MRN, particularly in patients with either hereditary or acquired 
neuropathies. MRN demonstrated significant nerve enlarge-
ment in CMT1A compared with controls, but minimal nerve  
thickening in CMT2. There were T2 hyperintensities in both  
disease types20,22,24,40–43. Local or whole-body MRN also revealed  
significant nerve enlargement and T2-weighted signal increases 
in patients with CIDP and diabetic neuropathies20,23,25,26,44. By  
measuring the cross-sectional area (CSA) and the signal inten-
sity on T2W, Kronlage et al. reported diagnostic accuracies of 
area under the receiver operating characteristic curve (AUC)  
of 0.88 when using CSA in lumbosacral plexus and 0.88 
when using T2W in sciatic nerve at the middle-thigh level23. A  
study by Jende et al. quantified differences of microstructural  
nerve damage between type 1 and type 2 diabetes (T1D and T2D) 
using MRN26. T2-weighted hypointense and hyperintense territo-
ries of the tibial and peroneal nerves were segmented manually 
and characterized to be predominantly in T1D and T2D,  
respectively. Correlations of MRN with other clinical measure-
ments were weak to moderate but not strong. This study used 
adjacent muscle as a signal intensity reference to segment the 
two portions of nerve signals to be hyperintense or hypointense  
relative to muscle. This kind of quantification could be useful  
when conventional tissue property quantification is not available. 
Those hypointense voxels on the fat-saturated magnitude image 
suggest intraneural lipid aggregations or depositions, which  
do not directly affect nerve conduction since they are not related  
to demyelination or axonal degeneration26.

Although MRN offers superb nerve-to-background contrast,  
leading to an increasing use of it in various peripheral disorders, 
there is still the need to calibrate the images across scanners 
in multi-center studies. On the other hand, it is difficult to use  
these signal intensity-based measurements to differentiate the 
two major fundamental pathologies: demyelination versus axonal 
loss. The combination of DWI and DTI could permit enough  
sensitivity to reveal pathological changes.

Diffusion-weighted and diffusion tensor imaging
DWI and DTI have been two of the major techniques in  
neuroimaging used to explore the molecular water motion  
driven by thermal agitation and whose results are dependent on 
the tissue’s microstructure. In a typical DWI acquisition using 
an SE sequence, the pair of strong gradient lobes on either side  
of the 180° refocusing RF pulse make those diffusing protons 
not fully refocused. This leads to an exponential signal loss  
greater than what naturally occurs due to T2 decay for stationary 
protons. The apparent diffusion coefficient (ADC) for a particular 
direction, which describes the mobility of the molecules, can 
be measured by two signals acquired with and without using 
the diffusion gradient lobes45. When the diffusion gradients 
are used in multiple directions (at least seven acquisitions,  
including six diffusion-weighted acquisitions with different  
gradient directions and one baseline image without diffusion  
gradients), the 3×3 symmetric matrix of diffusivity can be  
computed to extract eigenvalues along each coordinate axis. The 
FA represents the diffusion asymmetry within a voxel46,47. Axial  
diffusivity (AD) and radial diffusivity (RD) are defined as the  
major eigenvector direction and the mean of the other two minor 

eigenvalues, respectively. AD indicates water movement along 
the major direction of the tissue, whereas RD measures the 
water diffusion restriction perpendicular to the major direction.  
Furthermore, the fibers can be tracked in three dimensions (3D) 
by using the DTI eigenvectors to display water motion along 
the nerves48. The FA values are high (close to unity) along the  
peripheral nerve because of the restricted water diffusion along 
the axonal direction as guided by the epineurium, perineurium,  
endoneurium, and myelin sheath in myelinated axons. Because 
of the predominantly unidirectional nature of the nerve fibers,  
fewer diffusional gradient directions are required in periph-
eral nerve DTI than in the brain for quantifying white matter 
fiber tracts49. In the 1990s, peripheral nerve anisotropy was  
overserved in works on human sciatic nerve50 and tibial nerve51. 
More recently, Zhou et al. have reported that three major  
peripheral nerves in the forearm (ulnar, superficial radial, 
and median nerves) can be unequivocally visualized by high- 
resolution DTI52,53. To date, DTI has been involved in most of 
the studies in peripheral nerve MRI in patients with peripheral 
neuropathies. Chhabra et al. suggested that FA values are more  
useful than mean ADC values measured on cervical nerve 
roots in patients with CMT diseases compared with controls22.  
Lichtenstein et al. also reported significantly decreased FA of  
sciatic nerves in patients with CIDP than controls25. But there  
were no significant changes of FA at 6-month follow-up  
compared with baseline in the CIDP cohort, suggesting the slow 
progression of this type of disease25. In a study by Vaeggemose  
et al., decreased FA and increased ADC were statistically  
significant for both distal and proximal nerves in patients with 
CMT1A than controls24. The use of ADC and FA can provide 
an understanding of the source of signal change in the pres-
ence of demyelination or axon loss. It has been reported that  
the non-myelinated nerves have anisotropy similar to that of  
myelinated nerves measured by diffusion MRI54. Most likely, 
the strong anisotropy of nerve fibers is caused by the large axon  
density and inherent axonal membranes but not the presence  
of the myelin sheath, leading to a restriction of water motion 
mainly along the long axis of the nerve54. Establishing the normal  
reference values of peripheral nerve anisotropy and diffusivity 
will be valuable in understanding the nerve development over 
time and in cohort-based multi-center studies. Kronlage et al.  
reported that FA values of all peripheral nerves in the extremi-
ties declined with increasing age and were inversely associated  
with body height, weight, and body mass index (BMI)55. This 
suggests that age and BMI should be considered in studies  
using DTI in peripheral nerves. DTI has also been used to detect 
restriction-induced microscopic anisotropy in a single voxel 
to predict the average axon diameters (typically in less than  
20 microns) using a mathematical model56. This model could 
be very useful in predicting average axon diameter–associated  
nerve conduction velocities when nerves in deep tissues are 
not accessible by electrophysiological tools56. However, further  
studies will be needed to prove the linear relationship between  
DTI-derived axon diameters and the nerve conduction velocities 
measured by NCSs.

High-resolution fascicular magnetic resonance imaging of 
peripheral nerve
High-resolution fascicular nerve imaging has been of great  
interest in the field for many years. The early work of Filler  
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et al. two decades ago represented clear individual nerve  
fascicles on the distal sciatic nerve38. Benefitting from the  
improved hardware and new imaging approaches, more  
studies have used high-resolution imaging in conjunction 
with better contrast methods to separate nerve fascicles from  
surrounding fatty tissues and the neural component from the  
perineurium33,57–61. In a recent study by Felisaz et al.59, a small  
field of view (6×6 cm2) was used to acquire 100-micron  
in-plane resolution of the distal tibial nerve at the ankle level 
using a surface coil. The number of fascicles, nerve fascicular  
area, and epineurium area were computed to correlate with 
clinical features in patients with CIDP. Measuring MR signals  
predominantly from nerve fascicles with reduced partial volume 
effects potentially gives more accuracy in nerve morphomet-
rics. Using 7T scanners can depict the fascicular structures better 
than 3T scanners because of the increased SNR33. However, 7T is 
not broadly available at this moment. Furthermore, the RF field  
inhomogeneity corrections in 7T are more difficult than those in 
3T. These corrections are essential for collecting quantitative 
data such as T1, PD, and T2 maps. A practical way to improve 
the image quality in ultra-high-resolution imaging is to use a  
better receiver coil with more coil elements (or receiver  
channels). That also gives the opportunity to increase the  

parallel imaging acceleration factor to reduce imaging time. 
Although the size of the coil elements decreases when there 
are many coils, new flex coils with 32- and 64-channel coils  
can be wrapped around limbs maintaining high SNR. Also, 
the use of 3D spoiled gradient-recalled echo (GRE) sequence 
leads to increased SNR relative to 2D imaging. By employing 
water excitation pulses or other fat suppression techniques, one 
may obtain high-resolution images depicting individual nerve  
fascicles with suppressed fat signal and providing a better 3D 
nerve fascicular reconstruction (Figure 2). The same 3D GRE  
sequence can be run with several flip angles to correct the B

1
+ 

field and produce homogeneous T1, PD, and T2* maps for nerve, 
fat, and muscle62,63. Intraneural blood vessels should also be  
considered in case of fascicular quantifications. With spatial  
saturation bands, the slow flow in intraneural blood vessels  
might not be suppressed as expected in 3D GRE images  
(Figure 3). These intraneural blood vessels may be distinguishable 
from the quantitative maps.

Magnetization transfer
Generally speaking, biological tissues consist of two popula-
tions of water protons: bound water protons in macromolecules 
and free water protons. The former has much shorter T2 than the  

Figure 2. In vivo ultra-high-resolution magnetic resonance imaging of sciatic nerve in a patient with Charcot–Marie–Tooth disease 
(CMT) and healthy control. Images of a patient with CMT type 4J (A–C, 35 years old, male) and those of a healthy control (D–F, 35 years old, 
male) were acquired at distal 30% of femur length by using a three-dimensional (3D) high-resolution gradient-recalled echo scan with a voxel 
size of 0.15 × 0.2 × 3 mm3; 3D fascicular nerve reconstructions (A and D) were rendered (VolView 3.4, Clifton Park, NY, USA) from the overlay 
of the manually segmented tibial and peroneal portions of the nerve fascicles onto the original magnitude images (B and E). The rightmost 
images (C and F) were enlarged from B and E, respectively. CMT4J is a rare subtype of the inherited neuropathy caused by recessive 
genetic mutations with the loss of FIG4 protein which results in demyelination in peripheral nerves64. Even though the significantly enlarged 
sciatic nerve cross-sectional area is a change in a number of peripheral neuropathies, it is not possible to differentiate demyelination versus 
axonal degeneration using the magnitude images (or other forms of conventional imaging such as proton density–weighted, T1-weighted, 
or T2-weighted imaging). However, susceptibility-based techniques such as T2* mapping, susceptibility-weighted imaging, and quantitative 
susceptibility mapping may be used to probe the integrity of the myelin. Imaging parameters were those listed in the fourth scan in Table 2.
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Figure 3. Differentiating intraneural blood vessels from nerve fascicles. High-resolution water-excited three-dimensional (3D) gradient-
recalled echo scans of a healthy volunteer (38 years old, male) without (A) and with (B) spatial saturation bands placed on the proximal side 
of the imaging slab, which suppresses the signal of major arteries flowing into the imaging slab. However, spatial saturation pulses on the 
3D acquisition slab work for fast flow (dotted circles on A and B) but not slow flow (arrows on B and C) that presents in the artery inside the 
epineurium. This interpretation of slow blood flow suppression is confirmed by using a thin slice acquisition (C) which was from a 2D proton 
density–weighted scan with fat suppression using a turbo spin echo sequence.

Table 2. A multi-contrast multi-parametric sciatic nerve imaging protocol at 3T.

Sequence Ori. TR, 
ms

TEs, ms Res., 
mm2

FA, 
deg

NS Nex TH, 
mm

BW, 
Hz/px

TA, 
m:s

Comments

2D GRE COR 7.5 3.3 1.8 × 3.6 50 13 3 6 320 0:30 First two scans are for femur length 
measurement using spine coil

2D GRE COR 7.5 3.3 1.8 × 3.6 50 13 3 6 320 0:30

2D GRE T/C/S 7.7 3.7 1.1 × 1.5 20 3/5/9 1 6 300 0:30 Knee coil localizer to locate sciatic nerve and 
central slice

3D GRE TRA 26 5.1 0.15 × 0.2 12 40 1 3 110 7:30 Ultra-high resolution with water excitation for 
nerve fascicular segmentation

2D TSE TRA 5000 15, 77 0.6 × 0.6 180 20 4 3 440 5:27 Dual-echo 2D scan for T2 mapping without 
slice gap

3D GRE TRA 20 7.6, 8.85 0.3 × 0.3 20 40 1 3 150 6:12 Interleaved dual-echo scans for water/fat 
imaging

3D GRE TRA 30 5.1, 20.1 0.3 × 0.3 5 40 1 3 210 5:57 These two GRE scans are for T1, proton density 
mapping with the extraction of B1

+ and B1
− field 

maps3D GRE TRA 30 5.1, 20.1 0.3 × 0.3 30 40 1 3 210 5:57

3D GRE TRA 35 10.1 0.8 × 0.8 15 40 1 3 110 2:46 These two scans with and without 
magnetization transfer pulse are for the 
magnetization transfer ratio calculation3D GRE TRA 35 10.1 0.8 × 0.8 15 40 1 3 110 2:46

ssEPI TRA 5400 93 1.2 × 1.2 180 20 3 3 1400 6:09 20 direction diffusion tensor imaging scan with 
b = 0/1000 s/mm2

All transverse scans have the same field of view (154 × 154 mm2). 2D, two-dimensional; 3D, three-dimensional; BW, bandwidth; COR, coronal; FA, flip angle; 
GRE, gradient-recalled echo; NEX, number of average; NS, number of slices; Ori., orientation; Res., acquisition resolution; SAG, sagittal; ssEPI, single short 
echo planner imaging; T/C/S, three-plane; TA, time of acquisition; TE, echo time; TH, slice thickness; TR, repetition time; TRA, transverse; TSE, turbo spin echo.

latter because of the restricted motion and has a broad range of 
resonance frequency offsets relative to the Larmor frequency of  
free water protons. When an off-resonance RF preparation pulse 
is used, the bound water can be selectively saturated. Thereby, 
this pre-saturation of bound water suppresses the free water  
protons’ magnetization vector because of the water exchange 
between them. This is referred to as magnetization transfer  
contrast (MTC)65,66. The signal decrease ratio is thereby 
referred to as the magnetization transfer ratio (MTR), which is  
calculated from the signal differences and normalized by the  
unsaturated signal (M

0
) as MTR = (M

0
−M

T
)/M

0
, where M

T
 is the 

off-resonance signal. MTR has been widely used in character-
izing subtypes of white matter lesions in patients with multiple  
sclerosis67 because the MTR changes of normal-appearing white 
matter (NAWM) are predominantly from the presence of myelin 
in the shape of macromolecules. In the case of demyelination, 
the MTC signal increases in lesion territory compared with the  
myelinated NAWM, leading to a decreased MTR value. MT 
has also been used in musculoskeletal MRI and in imaging  
peripheral nerves in patients with peripheral neuropathies  
because of its sensitivity to the myelin density changes caused  
by either demyelination or axonal loss19,21,68–70. Dortch et al.  
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reported promising results that MTR values on proximal sci-
atic nerve were significantly decreased in patients with CMT 
relative to those from controls, suggesting a viable biomarker 
of demyelination or axonal degeneration (or both) in these  
disorders19. The study employed a pair of 3D multi-shot echo- 
planar acquisitions at the middle-thigh level. Apparent MTR  
values were computed with the correction of B

1
+ field variations. 

These MTR measurements were also significantly correlated 
with disability scores for all patients. However, there was no  
statistically significant difference of MTR observed between 
CMT1A and CMT2. Nevertheless, MTR could be a viable tool 
to reveal changes resulting from the combination of demyeli-
nation and axonal loss. Longitudinal studies are expected to  
probe disease progression or treatment response using this  
technique. One of the potential pitfalls in multi-center studies  
could be the calibration of MTR values derived from different  
types of scanners. This semi-quantitative parameter varies  
largely from different MT pulse parameters as well as the B

1
+  

field variation correction efficiency68.

Thermal relaxation quantifications
As discussed in previous sections, the differences of T1 and 
T2 relaxation rates as well as the PD and T2* from different  
tissues determine the contrasts in conventional images but  
their quantitative values can be the key to find specific biomar-
kers in various neurodegenerative diseases. These quantita-
tive measurements are very much underutilized in imaging the  
peripheral nerves. Several studies used quantitative T2 and  
PD of the peripheral nerve derived from two or more echoes 
of the fast SE sequence21,24,59,61,71,72. With these multiple  
acquisitions using different TEs, one can quantify T2 and  
T2* relaxation rates as well as PD by fitting the signal  
dependence for that sequence. To quantify T1, one can use an 
SE sequence with multiple inversion recovery (IR) times to do 
the curve fitting of the longitudinal magnetization. However, 
this multi-IR method is time-consuming given the need of a 
long TR for reliably measuring long T1 and acquiring multiple 
slices. In their study involving patients with CMT1A and healthy  
controls, Vaeggemose et al. used 10 echoes to quantify T2 and 
PD of sciatic and tibial nerves in the lower limbs24. PD values 
of sciatic nerve were significantly higher in patients with 
CMT1A than controls, and there was no statistically significant  
difference between the two groups for the T2 measurements in  
both the sciatic and tibial nerves. T2 values reported in this 
study on distal nerves were different from but close to those in 
the recent study by Felisaz et al.59. Minimizing the disturbances  
caused by intraneural fatty tissues using high-resolution  
acquisitions would reduce quantitative variations significantly.  
Nevertheless, these studies using quantitative tissue properties 
demonstrated promise for providing new information in imaging 
the peripheral nerves.

Alternatively, 3D GE-based variable flip angle methods have 
been a major branch of T1 mapping but require knowledge of the  
B

1
 field variations, especially at 3T and higher magnetic field 

strengths. Various B
1
 mapping methods62,73,74 can be used in  

imaging the sciatic nerve in the mid-thigh level. With the  
knowledge of transmit and receiver B

1
 field variations, T1 and 

PD can be computed in a pixel-by-pixel manner. However, to 

the best of our knowledge, in vivo T1 mapping and accurate 
true PD mapping as well as QSM in patients with peripheral  
neuropathies have not been investigated at this point. 
These uncultivated quantifications may reveal more viable  
biomarkers in assessing disease progression in terms of moni-
toring water changes caused by either metabolic or pathologic  
changes. Susceptibility mapping may help in differentiating 
the two fundamental pathologies: demyelination from axonal  
degeneration.

Chemical shift imaging
The presence of fatty tissue surrounding most of the peripheral 
nerves as well as the intraneural lipid-equivalent connective 
tissues makes quantifying or eliminating fat from the image  
critical since intramuscular or intraneural fat accumulation is one 
of the most common pathological processes in neuromuscular  
disorders and peripheral neuropathies. Several fat suppression 
methods that take advantage of the frequency difference between 
water and fat (roughly 3.5 parts per million) have been used 
in peripheral nerve imaging. Moreover, fatty tissue has longer  
T2 and shorter T1 than either muscle or nerve tissue. In terms 
of suppressing the fatty tissue, one can use a preparation RF  
pulse tuned to the fat resonance frequency to saturate fatty  
tissues or tuned to the water signal to selectively excite water 
protons75. One can also use a STIR preparation pulse to null  
the signal from fatty tissues76. With the use of adiabatic RF  
pulses, STIR is much less sensitive to the B

0
 and B

1
 field  

inhomogeneities than those approaches using selective fre-
quency pulses. Alternatively, with a slight shifting of the TE to 
be water and fat in-phase or out-of-phase, two or three of these  
acquisitions can be used to acquire a water-only image along 
with a fat-only image, known as Dixon methods77, and many  
variants of this approach exist78–80. The various Dixon methods 
require knowledge of the B

0
 variations to properly separate 

water from fat signals81. The water faction and fat fraction (FF) 
can be derived from these water-only and fat-only images.  
Particularly, FF = F/(W+F) is used in musculoskeletal MRI, as 
shown in Figure 4. Increased muscular FF reflecting intramus-
cular fat accumulation which is a common downstream effect of  
denervation in peripheral neuropathies and has been shown 
to be a valuable biomarker for the progression in a number of  
neuromuscular disorders21,25–27,82,83.

Morrow et al. investigated a few quantitative MRI measure-
ments on cross-sectional images of muscles, including FF, 
T2 maps, and MTR, to determine the responsiveness of these 
MRI measures and their correlations to clinical measures in a  
prospective longitudinal cohort with genetically confirmed  
CMT1A and inclusion body myositis (IBM)21. Each subject 
had two visits: one at baseline and one at a 1-year follow-up to  
observe progression of disease. The study indicated that the  
cross-sectional whole muscle FF increased significantly during 
the 1-year follow-up at the calf level but not at the thigh level in  
patients with CMT1A and at both levels in patients with IBM. 
Their results correlated to clinical measures. T2 (increases) and 
MTR (decreases) changed consistently with FF increases in  
muscle. Compared with the control group, patients with CMT1A 
had increased FF and T2 and decreased MTR at the thigh and  
calf level, but only the first two were statistically significant.  
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Figure 4. Interleaved two-point Dixon water/fat separation. Images were from the same patient with Charcot–Marie–Tooth disease type 
4J (35 years old, male) using an adapted gradient-recalled echo sequence84. Two echoes with echo times of 7.6 ms (in-phase) and 8.5 ms 
(out-of-phase) were acquired in an interleaved manner so that both images are naturally co-registered to each other. Phase ambiguities were 
resolved by using a projected power method in the two-point Dixon water/fat separation to get water (W, A) and fat (F, B) images81. The fat 
fraction (FF) (C) was computed to be FF = F / (W + F) after shifting the fat image to its real position by n pixels in the readout direction, where 
n = imaging frequency × 3.5 / bandwidth. Muscle atrophy with increased FF can be observed on the right-most muscle in this case.

Considering these findings, the authors suggested that FF 
could be a responsive in vivo measure to monitor intramuscular  
fat accumulation in neuromuscular disorders. For inher-
ited and acquired peripheral nerve disease, intramuscular fat  
accumulation is the final pathological change that takes place 
secondary to axonal loss; thus, the FF, T2, and MTR in muscle  
provide an indirect measure of axonal loss. Therefore, finding a 
better biomarker directly assessing peripheral nerve pathologies  
is still a pressing issue.

Post-processing approach
Segmenting peripheral nerves as well as nerve fascicles  
provides one step toward quantifying the nerve morpho-
metries derived from MRI. Such measures might include nerve  
volume, fascicular volume, fascicle-to-nerve volume ratio, 
and nerve CSA. Nerve fascicular binary masks derived from  
ultra-high-resolution anatomical acquisitions could increase 
the accuracy of other quantifications, such as T1, T2, and PD  
mapping and MTR, when the data are acquired in the same MRI 
session and are properly co-registered. One potential pitfall  
is the imperfection of image co-registration, which increases 
the variation of quantitative data from multiple scans. The  
reason is that, unlike the brain restricted by the skull,  
peripheral nerve and surrounding soft tissues could be dis-
torted during the MRI session. These segmentations are usually 
performed manually or semi-automatically by experienced  
neuroradiologists26,57. With fat suppression and high-resolution 
data acquisition, T1W or T2W images depict individual nerve  
fascicles well. Therefore, one can manually tailor the nerve 
areas from the original magnitude images. When histogram-
based region grow algorithms are used with proper pixel  
erosion, nerve fascicular binary masks can be extracted easily  
(Figure 5). These semi-automated methods have tolerance to 
signal variations caused by B

0
 and B

1
 field inhomogeneities.  

Jende et al. also used the adjacent muscle area as a reference 
threshold to segment hypointense and hyperintense regions 
inside the epineurium on T2W fat-suppressed images26. This  
reference value eliminated the need for bias field correction,  

making the results more reliable. Recently, deep learning–based 
fully automatic approaches demonstrated promising results on 
segmenting peripheral nerve, nerve fascicles, and axons85,86.  
Moiseev et al. used a convolutional neural network (CNN)- 
based approach to segment nerve axons and myelin thickness 
on semithin section images of mouse sciatic nerve86. In contrast, 
the use of MRI images to segment human peripheral nerve and  
nerve fascicles obviously needs more in vivo data acquired  
from a standardized protocol to train the CNN-based approaches 
and more research effort as well.

Recommendation for peripheral nerve magnetic 
resonance imaging
Practical three-dimensional imaging of the sciatic nerve
High-resolution tissue quantification at the fascicular level 
has great potential to probe pathophysiological biomarkers in  
peripheral nerves. Establishing the quantitative properties for  
T1, PD, T2, T2*, MTR, diffusional parameters, and suscep-
tibility will likely help elucidate normal development and  
pathophysiological changes in peripheral neuropathies. Reveal-
ing proximal pathology is key to study disease progression 
and responsiveness to therapeutic interventions because dis-
tal leg nerves are often degenerated in patients with chronic  
peripheral neuropathies, thereby resulting in a “floor effect”. For 
instance, imaging and quantifying the proximal sciatic nerve at 
the thigh level could be an excellent approach in patients with  
CMT.

The protocol recommended in Table 2 can be acquired in  
roughly 45 minutes by using a knee coil at 3T. Using this  
imaging protocol, one can exactly localize the cross-sectional  
level of the nerve for each axial slice with respect to the  
femur length. The ultra-high-resolution GRE scan provides 3D  
images to visualize and segment sciatic nerve fascicles. The  
two-point Dixon water/fat separation gives the ground truth of  
water and fat tissues with the in- and out-of-phase images  
acquired in a naturally co-registered manner84. With this water/fat 
segmentation data, the variable flip angle T1 and PD mappings can 
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Figure 5. Semi-automated sciatic nerve fascicle segmentation and three-dimensional (3D) reconstruction. This representative data was 
acquired using a high-resolution 3D gradient-recalled echo with water excitation on a healthy volunteer (35 years old, male). The sciatic nerve 
areas (B) were manually drawn by an experienced neuroradiologist on the original magnitude image (A). Then the nerve fascicles (C) were 
extracted by using a histogram-based region growing approach (SPIN software, MR Innovation, Bingham Farms, MI, USA). The binary masks 
(D) of nerve fascicles were generated with pixel erosion. The nerve fascicular 3D reconstruction (E) (Pn, peroneal nerve; Tn, tibial nerve) was 
then generated by using 3D rendering (VolView 3.4, Clifton Park, NY, USA).

be corrected for RF field variation62,63. These B
1
+ and B

1
− field maps 

also serve as the calibration of MTR. The multiple echoes from  
the GRE scans can be used to compute the T2* decay and suscepti-
bility of neuronal changes with respect to surrounding tissues.

Conclusions
Various MRI methods have been investigated in peripheral  
neuropathies (Table 1). Even though muscle atrophy is  
commonly seen in peripheral neuropathy, the direct assessment 
of peripheral nerves is still required to access nerve patholo-
gies. Nerve enlargement is a frequent change in a number of  
peripheral neuropathies. Increases of T2W and ADC and  
decreases of MTR and FA of peripheral nerves have been  
reported in patients with CMT, CIDP, and DPN. High-resolu-
tion fascicular quantifications are promising but need more  
systematic studies to translate into clinical tools. Methods 

for probing the proximal nerve are important to study disease  
progression and treatment responses. There is also a need for 
reliable imaging biomarkers to distinguish the two fundamental  
types of nerve pathology: de-/dysmyelination versus axonal  
degeneration. QSM may be able to reveal susceptibility changes 
between myelinated and un-myelinated tissue87. The QSM of 
the peripheral nerves needs further development to address a  
couple of issues introduced by the complicated phase behavior 
in the nerve territory when using a long TE and the interference  
from the intraneural lipid-equivalent connective tissues.

Ethics
Written informed consent forms were obtained from the patients 
in Figure 2, Figure 3, Figure 4 and Figure 5 for the use and  
publication of these images. The authors also obtained approval by 
the local institutional review board.
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