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Abstract

A network of myenteric interstitial cells of Cajal in the corpus of the stomach serves as its

“pacemaker”, continuously generating a ca 0.05 Hz electrical slow wave, which is transmit-

ted to the brain chiefly by vagal afferents. A recent study combining resting-state functional

MRI (rsfMRI) with concurrent surface electrogastrography (EGG), with cutaneous elec-

trodes placed on the epigastrium, found 12 brain regions with activity that was significantly

phase-locked with this gastric basal electrical rhythm. Therefore, we asked whether fluctua-

tions in brain resting state networks (RSNs), estimated using a spatial independent compo-

nent analysis (ICA) approach, might be synchronized with the stomach. In the present

study, in order to determine whether any RSNs are phase-locked with the gastric rhythm, an

individual participant underwent 22 scanning sessions; in each, two 15-minute runs of con-

current EGG and rsfMRI data were acquired. EGG data from three sessions had weak gas-

tric signals and were excluded; the other 19 sessions yielded a total of 9.5 hours of data.

The rsfMRI data were analyzed using group ICA; RSN time courses were estimated; for

each run, the phase-locking value (PLV) was computed between each RSN and the gastric

signal. To assess statistical significance, PLVs from all pairs of “mismatched” data (EGG

and rsfMRI data acquired on different days) were used as surrogate data to generate a null

distribution for each RSN. Of a total of 18 RSNs, three were found to be significantly phase-

locked with the basal gastric rhythm, namely, a cerebellar network, a dorsal somatosensory-

motor network, and a default mode network. Disruptions to the gut-brain axis, which sus-

tains interoceptive feedback between the central nervous system and the viscera, are

thought to be involved in various disorders; manifestation of the infra-slow rhythm of the

stomach in brain rsfMRI data could be useful for studies in clinical populations.
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Introduction

A network of myenteric interstitial cells of Cajal in the corpus of the stomach serve as its “pace-

maker”, constantly and intrinsically generating a ca 0.05 Hz electrical slow wave, which gov-

erns gastric peristalsis when there is food or chyme in the stomach, and which is transmitted

to the brain chiefly by vagal afferents [1–4]. A recent study [5] combining resting-state func-

tional MRI (rsfMRI) with concurrent surface electrogastrography (EGG), in which signals are

recorded from cutaneous electrodes on the epigastrium (abdominal skin over the stomach),

reported that brain activity in 12 regions including somato-motor cortices, dorsal precuneus,

and the extrastriate body area was significantly phase-locked to the basal gastric rhythm. This

collection of 12 gastric-synchronized regions, or nodes, was dubbed the gastric network, and

it was suggested that time lags of several seconds between nodes were responsible for this

“delayed connectivity network” not having been previously detected. This finding suggests

that activity in brain resting-state networks (RSNs), estimated using network source separation

techniques, such as the well-established spatial independent component analysis (ICA)

approach, could be partially synchronized with the stomach. To ascertain whether any brain

RSNs are synchronized with the gastric rhythm, we conducted a highly-sampled study in a

participant who underwent 22 sessions of concurrent EGG and rsfMRI data collection, with

two 15-minute runs per session, over a period of seven weeks. The resulting rsfMRI data were

analyzed using spatial ICA to yield 18 RSNs, whose time courses were then tested for phase-

locking with the basal gastric rhythm as determined from the concurrent EGG data. Three

RSNs were found to be significantly phase-locked to the basal gastric rhythm, namely, a cere-

bellar network (FDR-adjusted p-value = 0.0022), a dorsal somatosensory-motor network

(adjusted p-value = 0.0227), and a default mode network (adjusted p-value = 0.0227).

Resting-state functional MRI

Resting-state fMRI is a noninvasive neuroimaging method that uses MRI acquisitions origi-

nally developed to monitor hemodynamic sequelae of task-evoked changes in neuronal activity

to observe neuronal activity in the brain “at rest” [6–9]. The resulting fMRI data manifest what

are generally regarded as spontaneous fluctuations in intrinsic brain networks, allowing study

of brain functional connectivity [10]. This methodology is popular not only because such data

are easy to acquire, but also because they yield insights into a variety of conditions [7–9, 11–

13]. For example, we have used rsfMRI to study patients with spinal cord injury, where paraly-

sis could interfere with performance of motor tasks [14]. However, an important limitation of

rsfMRI is that inter-regional synchrony of MRI time courses can result not just from synchro-

nous neural events, but also from a variety of physiological sources [15] including cardiac pul-

sations [16, 17], respiration [18–20], and head motion [21, 22].

Resting-state brain networks

Resting-state fMRI originated from the observation that when the motor cortex peak voxel—

the location with the highest fMRI activity during a motor task—was used as a seed to compute

a map of temporal correlations from data acquired during rest, that the resulting resting-state

network strongly resembled the motor task-activation map [6].

Independent component analysis is an exploratory data analysis approach that attempts to

recover statistically independent sources from signals (data) that are modeled as mixtures of

those sources [23]. The application of spatial ICA to fMRI data is broadly justified by the

neurobiological principle of modularity, or the idea that different parts of the brain do differ-

ent things. ICA was first applied to task fMRI data [24, 25], and then to rsfMRI [26–28], where

it has become well-established [9, 13].
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Visceral rhythms

The gut-brain axis, including neural, endocrine, and immune communication, is involved in

the bidirectional interoceptive feedback between the central nervous system and the viscera.

The brain monitors, and influences, the infra-slow rhythms generated in the viscera that

control peristalsis. Even when the stomach is empty of food, electrical waves are constantly

generated by myenteric interstitial cells of Cajal in the corpus of the stomach [1–4], with a nor-

mogastric period of about 20 seconds, or a frequency of approximately 0.05 Hz. Intestinal peri-

stalsis is governed by ganglia of the enteric nervous system. These rhythms are communicated

to the brain chiefly by the vagus nerve, and also the pelvic nerves of the parasympathetic ner-

vous system, and the splanchnic nerves of the sympathetic nervous system.

Electrogastrography

Electrogastrography (EGG) uses cutaneous electrodes, placed on the epigastrium (abdominal

skin lying above the stomach), in order to detect the gastric electrical slow wave. [29–31].

Thus, EGG is similar to electrocardiography (ECG) and electroencephalography (EEG) in

using surface electrodes to detect underlying bioelectrical signals. A chief difference is that

EGG signals are much lower frequency than the corresponding signals from heart and brain,

as the normogastric frequency in adults is approximately 0.05 Hz, or a period of 20 seconds. In

the clinic, EGG is chiefly applied to patients with suspected motility disorders, such as indi-

cated by recurrent episodes of nausea and vomiting. Recently there appears to be interest in

applying EGG to psychophysiological research [32].

Concurrent rsfMRI and electrogastrography

A recent study [5] combined rsfMRI with concurrent EGG. Rebollo, et al. [5] reported signifi-

cant synchronization between the gastric rhythm and activity in a novel brain “gastric net-

work” comprised of 12 nodes including somato-motor cortices, dorsal precuneus, and the

extrastriate body area, with consistent inter-regional phase shifts or time lags. Because of these

time lags, of several seconds between nodes, the novel gastric network was dubbed a delayed

connectivity network, and the authors suggested that these delays were the reason that it had

not been detected earlier using analytical approaches that look for inter-regional synchroniza-

tion without such delays (but see [33]). An earlier report from the same group, using concur-

rent magnetoencephalography (MEG) and EGG, used a causal analysis to infer that the gastric

rhythm was modulating regional cortical alpha-wave activity, presumably primarily via vagal

afferent transmission [34].

Are any resting-state networks synchronized with the stomach?

Are any brain networks significantly phase-locked with the basal gastric rhythm? That is the

question the present study addresses, in the context of brain resting state networks (RSNs) esti-

mated using spatial ICA. To answer this question, we calculated the phase synchrony between

each RSN time-course and concurrent EGG data using the phase-locking value (PLV). To

assess statistical significance of these PLV values, we calculated PLVs for all pairs of “mis-

matched” data (EGG and rsfMRI data acquired on different days) to use as surrogate data in

order to estimate the null distribution of PLV for each RSN. Comparing the matched and mis-

matched PLV distributions, we found that three brain networks were significantly phase-

locked to the basal gastric rhythm: a cerebellar network (FDR-adjusted p-value = 0.0022), a

dorsal somatosensory-motor network (adjusted p-value = 0.0227), and a default mode network

(adjusted p-value = 0.0227).
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Materials and methods

Experimental procedure

A healthy male volunteer, age 58, provided written informed consent to participate in a study

approved by the Johns Hopkins Medicine Institutional Review Board. The participant was free

of digestive, psychiatric, or neurological disorders, and had a body mass index (BMI) of 26.

Twenty-two sessions were performed over a span of seven weeks. Data from three sessions

were excluded due to weak gastric signals; data from the remaining 19 sessions were used for

the analyses reported here. Scanning was typically performed on Mondays, Wednesdays, and

Fridays. Sessions began at 9:00 AM; at 5:30 AM prior to each session, the subject breakfasted

on multigrain cereal and yogurt, with coffee. The 3.5 hour period between breakfast and the

session was intended to provide for gastric emptying [35]. The initial image acquisition was

performed on 1 July 2019, and the last image acquisition was performed on 15 August 2019.

Session dates are reported in Table 1.

Magnetic resonance imaging. MRI was performed using a 3 Tesla Philips dStream Inge-

nia Elition scanner, operating at 45 mT/m with a slew rate of 200 mT/m/s. A multi-slice SEN-

SE-EPI pulse sequence [36, 37] was used to acquire two resting state fMRI (rsfMRI) runs

during each scanning session; the participant remained in the scanner between runs. Each

run was acquired using the following acquisition parameters: acquisition time = 15 min, TR/

TE = 2000/30 ms, number of dynamics = 450, field of view = 240 × 240 mm2, 3-mm isotropic

spatial resolution, 36 axial slices collected sequentially in increasing slice order with a 1-mm
gap, SENSE acceleration factor = 2, and flip angle = 71˚. Respiratory rate was simultaneously

measured using a pulse oximeter. The participant was instructed to rest comfortably while

remaining still, and no other instruction was provided. The subject’s eyes were closed for the

rsfMRI acquisitions. A T1-weighted (T1w) Magnetization-Prepared Rapid Acquisition Gradi-

ent Echo (MPRAGE) structural run was acquired during the third session (on July 12) using

the following acquisition parameters: acquisition time = 5 min, TR/TE/TI = 10/6/842 ms, field

of view = 212 × 212 mm2, resolution = 1.1 × 1.1 × 1.2 mm3, 120 axial slices collected, SENSE

acceleration factor = 2, and flip angle = 8˚). The T1w images were subsequently used to align

and normalize the fMRI images.

Electrogastrography. The gastric rhythm of the participant was monitored using MRI

compatible electrogastrography (EGG) equipment (BIOPAC MP160 system; BIOPAC Systems

Inc, USA). Acquisition parameters and placement of cutaneous electrodes, similar to those

described by Rebollo et al [5], are summarized here.

For preparation, intended electrode locations were marked on the participant’s epigastrium

(see Fig 1(a)), then the marked regions were rubbed and cleaned with alcohol to remove dead

Table 1. Session dates.

Mon Tue Wed Thu Fri

Week 1 7/1/2019 7/3

Week 2 7/8 7/12

Week 3 7/17 7/19

Week 4 7/22 7/24 7/25 7/26

Week 5 7/29 7/30 7/31 8/2

Week 6 8/5 8/7 8/8 8/9

Week 7 8/12 8/13 8/14 8/15

Excluded sessions are crossed out using strikethrough.

https://doi.org/10.1371/journal.pone.0244756.t001
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skin, and electrolyte gel was applied. Three sets of bipolar electrodes were then placed in two

rows over the abdomen. EGG was then acquired at a sampling rate of 200 Hz with a low-pass

filter of 1 Hz and no high-pass filter.

Prior to the acquisition of any MRI data, five minutes of EGG data were acquired with the

participant lying outside the tunnel of the scanner. This was to acquire a reference EGG signal

with a frequency content free of the effect of the static magnetic field and gradient pulses.

Once the participant was placed inside the scanner, EGG data were recorded concurrently

with rsfMRI data.

Data analysis

RsfMRI preprocessing. Preprocessing of the rsfMRI data set was performed using the

Analysis of Functional NeuroImages (AFNI) software (version AFNI_20.1.06) [38]. The pre-

processing pipeline included: 1) despiking, 2) slice timing correction, 3) motion correction, 4)

co-registration, 5) normalization, 6) segmentation, and 7) spatial smoothing using a 6 mm

(i.e., twice the nominal acquisition voxel size) full-width at half-maximum Gaussian kernel.

RsfMRI independent component analysis. The Group ICA of fMRI Toolbox (GIFT)

software (http://trendscenter.org/software/gift/; version v4.0b) [39] was used to perform group

independent component analysis (GICA) [40]. Two steps of principal component analysis

(PCA) data reduction were performed for group level analysis, where individual session data

were first reduced to 84 principal components. The reduced data were then concatenated in

the temporal direction and further reduced to 42 principal components. Estimation of the

number of independent components (i.e., 42) was guided by order selection using the mini-

mum description length (MDL) criterion [41]. The dimensionality of the individual session

PCA data reduction (i.e., 84) was set by doubling the estimated component number, to ensure

robust backreconstruction [42, 43].

Fig 1. Electrogastrography electrode placement and representative data. (a) Electrode placement. (b) Representative EGG signal time course. (c)

Representative signal spectrum (Fourier transform of the detrended EGG signal shown in part (b)). (d) Gastric signal after detrending and bandpass filtering.

https://doi.org/10.1371/journal.pone.0244756.g001
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The spatial distribution (i.e., grey matter vs. white matter and cerebral spinal fluid) and

temporal frequency power distribution of 42 ICs were manually assessed using the aggregate

spatial maps and time courses, and 22 ICs were eliminated as representing non-neuronal

sources such as head motion, respiration, and cardiac pulsations. Two additional ICs were

rejected due to low similarity measures calculated using the ICASSO toolbox [44]. This process

identified the remaining 18 ICs as functional RSNs, which are shown in Fig 2 and have been

made available via upload to NeuroVault [45].

Fig 2. Aggregate spatial maps of the resting state networks (RSNs) of the highly sampled participant. Group independent component analysis (GICA) was used to

estimate the RSNs and obtain the aggregate spatial maps. The spatial maps of each RSN are shown as subfigures, with representative sagittal, coronal, and axial views

(left-to-right) overlaid on structural images within the Montreal Neurological Institute (MNI) template space; three RSNs with statistically significant gastric phase-

locking are highlighted using yellow boxes. Coordinates (in mm) for each view are indicated below each subfigure. (AUD: auditory, SMOT: somatosensory-motor,

VIS: visual, DMN: default mode network, ATTN: attention, EXEC: executive, SAL: salience, CB: cerebellar, ven: ventral, dor: dorsal, r: right, l: left).

https://doi.org/10.1371/journal.pone.0244756.g002
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Single-session maps and time courses for each session were obtained using “GICA1” back-

reconstruction [42, 46].

EGG preprocessing. EGG preprocessing was performed following the pipeline developed

by Rebollo, et al., [5], using the FieldTrip toolbox (http://www.fieldtriptoolbox.org/) [47],

Matlab (Natick, MA; version R2018a), and custom code provided by Rebollo, et al. [5] (https://

github.com/irebollo/stomach_brain_Scripts). Data were low-pass filtered below 5 Hz to avoid

aliasing of higher-frequency signals, e.g., cardiac, and downsampled to 10 Hz. To identify the

EGG peak frequency (0.033–0.066 Hz) for each run, we computed the spectral density estimate

for each EGG channel over the 900 s of EGG signal acquired during each fMRI scan using

Welch’s method on 200 s time windows with 150 s overlap. For each run, the spectral peak was

identified by looking for a sharp peak within the normogastric frequency range of 0.033–0.066

Hz. Data from the EGG channel with the highest spectral peak were then bandpass filtered to

isolate the signal related to gastric basal rhythm (linear phase finite impulse response filter,

FIR, designed with Matlab function FIR2, centered at EGG peaking frequency, filter width

±0.015 Hz, filter order of 5). Data were filtered in the forward and backward directions to

avoid phase distortions and then further downsampled to match the sampling rate of the

BOLD acquisition (0.5 Hz).

Quantification of RSN–EGG synchronization. The RSN time courses were bandpass-fil-

tered using the same filter parameters that had been applied to the EGG data from the corre-

sponding run. To avoid edge effects, the first and last 15 volumes (30 s) were discarded from

both the RSN and EGG time courses. The updated duration of the fMRI and EGG signals for

which the rest of the analysis was performed was thus 840 s. The Hilbert transform was applied

to the filtered RSN and EGG time courses to derive their instantaneous phases. The phase-

locking value (PLV) [48] was computed as the absolute value of the time average difference in

the angle between the phases of the EGG and the fMRI time course (Eq 1).

PLVxy ¼
1

T

XT

t¼1

eið�xðtÞ � �yðtÞÞ
�
�
�
�
�

�
�
�
�
�

ð1Þ

where x and y are the two time series, and T is the number of samples in each time series. The

PLV ranges between the values of 0 and 1, where 0 represents no synchrony, and 1 represents

perfect synchrony. Notably, the PLV measures are independent of temporal delays and ampli-

tude fluctuations of the input signals. The PLV was averaged over the whole duration of the

recording.

Statistical analysis of RSN–EGG synchronization. We implemented a two-step statisti-

cal procedure, based on methodology used by Rebollo et al. [5]. We first estimated chance-

level phase-locking between brain networks and the stomach, i.e., PLV expected in the absence

of true stomach-RSN synchronization. Then we applied a multiple testing procedure to iden-

tify those RSNs in which measured gastric-brain phase-locking was significantly greater than

chance. Here, chance phase-locking was defined via negative control comparisons based on

the observed data.

Specifically, surrogate data were used to estimate null distributions representing chance-

level PLV. We used mismatched data, i.e., all pairs of EGG and rsfMRI data acquired on differ-

ent days. For each RSN, surrogate data were created by calculating the PLV between that RSN

time course and all gastric time courses that were acquired on different days. As we used data

from two runs each on 19 days, this mismatching approach yields 1,368 surrogate data entries

representing a null distribution for PLV for each RSN.

Comparisons of the observed PLVs to this null distribution yield information on how likely

results were compared to chance-level PLVs. Therefore, in the second step, we formally tested
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whether, for each RSN, the empirical PLV differed from chance-level PLV. For each RSN, we

applied a Wilcoxon rank test (since PLVs are clearly non-Gaussian) to test whether there was a

significant mean difference between empirical PLVs from 38 runs against the surrogate data.

To correct for multiple comparisons, the p-values for the 18 RSNs were adjusted using the

Benjamini-Hochburg procedure [49] with a false discovery rate (FDR) of 0.05, in order to

judge which RSNs were significantly phase-locked with the gastric rhythm. The code used for

this is available at https://github.com/bhtang127/Brain-Stomach-Synchronization.

Phase-locking of gastric signals between different runs. To shed light on the variabil-

ity of the subject’s gastric rhythm, we computed the PLV of the gastric rhythm from differ-

ent runs. Specifically, we compared the distribution of PLVs computed from runs from the

same day, to the distribution of PLVs computed from runs from different days. We then

used the Wilcoxon rank test to compare the same-day and different-day gastric-gastric PLV

distributions.

Quantification of gastric contributions to rsfMRI signals. To estimate the magnitude of

the manifestation of the infra-slow gastric rhythm in RSN time courses, we calculated the pro-

portion of the rsfMRI signal variance, or perecent variance accounted for (P.V.A.F), that could

be explained by the EGG signal. P.V.A.F here is represented by the R-squared R2 of the corre-

sponding linear regression after adjusting for any phase delays between the two signals.

First, we assumed that the instantaneous phase difference Δψ = ψ(EGG) − ψ(rsfMRI) i.i.d.

follows a von Mises distribution p(Δψ|μ, κ)/ exp(κ cos(Δψ − μ)), which is a typical circular

distribution used to model phase differences [50]. Then we performed maximum likelihood

estimation for the positional parameter μ as the over-all phase difference between two signals.

Second, we adjusted such phase difference by multiplying the Hilbert transformation of the

rsfMRI signal by exp ðim̂Þ for m̂ the MLE of μ above. Then we calculated as the P.V.A.F. the R2

between EGG signal regressing on the real part of this new signal. This definition of P.V.A.F

takes phase-locking into consideration and makes any necessary adjustment to align signals

before regression.

Results

We found 18 RSNs, as shown in Fig 2, and uploaded to NeuroVault at (https://identifiers.org/

neurovault.collection:9273/) [51].

Electrode pair 2 (as illustrated in Fig 1(a)) consistently gave the best gastric signals. The sub-

ject’s gastric rhythm was within the normogastric range, at 0.048 +/- 0.001 Hz.

For each RSN, we calculated its PLV with respect to gastric phase for each scan, and also the

similar PLV, but for mismatched data pairs acquired on different days. For each RSN, we com-

pared the distribution of measured PLVs with the distribution of mismatched PLVs using the

Wilcoxon rank test. These results are shown in Fig 3 and tabulated in Table 2. The table gives

the uncorrected p-values as well as p-values adjusted for multiple comparisons using the Ben-

jamini-Hochberg method [49] for a FDR of 0.05.

Three networks were significantly phase-locked with the basal gastric rhythm: A cerebellar

network (CB; adjusted p-value = 0.0022), a dorsal somatosensory-motor network (SMOT_

dor1; adjusted p-value = 0.0227), and a default mode network (DMN_b; adjusted p-value =

0.0227). The fraction of (gastric band-passed) RSN signal variance that could be accounted for

by the gastric rhythm, using linear models, was about 1.5 percent and three percent for the two

cortical RSNs that were significantly phase-locked with the gastric basal electrical rhythm, and

about 11 percent for the cerebellar network.

Distributions of phase-locking values between pairs of gastric signals from different runs

are presented in Fig 4.
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Discussion

In this study, eleven hours of concurrent resting state fMRI / surface electrogastrography

(EGG) data were acquired in 22 sessions over seven weeks. Three sessions resulted in EGG

Fig 3. Gaussian kernel density estimates of PLV between resting-state networks and gastric signals. Gaussian

kernel density estimates (i.e., smoothed histograms) of PLV between resting-state networks and gastric signals

recorded concurrently (cyan) and on different days (coral). P-values from Wilcoxon rank tests have been adjusted for

multiple comparisons using a FDR of 0.05.

https://doi.org/10.1371/journal.pone.0244756.g003
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Table 2. Phase locking value (PLV) between resting state networks (RSNs) and electrogastrography (EGG) signals.

RSN PLV mean PLV std.

dev.

Mismatched PLV

mean

Mismatched PLV std.

dev.

Uncorrected p-

value

FDR-adjusted p-

value

Fractional gastric

variance

AUD1 0.1882 0.1056 0.1709 0.0935 0.1852 0.2578 0.0111

AUD2 0.1995 0.1040 0.1725 0.0860 0.0439 0.0987 0.0266

AUD3 0.1791 0.0806 0.1567 0.0808 0.0330 0.0944 0.0064

SMOT_ven 0.1854 0.0941 0.1729 0.0891 0.1862 0.2578 0.0038

SMOT_dor1 0.2061 0.0758 0.1697 0.0845 0.0029 0.0227 0.0150

SMOT_dor2 0.1947 0.0855 0.1705 0.0855 0.0367 0.0944 0.0057

VIS_a 0.1939 0.1078 0.1711 0.0815 0.1619 0.2578 0.0338

VIS_b 0.1978 0.1288 0.1775 0.0911 0.3636 0.4090 0.0420

DMN_a 0.1746 0.0882 0.1719 0.0892 0.4351 0.4607 0.0242

DMN_b 0.1990 0.0857 0.1612 0.0856 0.0038 0.0227 0.0291

DMN_c 0.1987 0.1085 0.1639 0.0849 0.0346 0.0944 0.0185

ATTN_ven1 0.1860 0.1078 0.1705 0.0920 0.1504 0.2578 0.0071

ATTN_ven2 0.1920 0.0812 0.1651 0.0845 0.0178 0.0802 0.0139

ATTN_dor 0.1620 0.0804 0.1634 0.0834 0.4773 0.4773 0.0201

EXEC_r 0.1797 0.0996 0.1645 0.0822 0.2523 0.3159 0.0071

EXEC_l 0.1689 0.0885 0.1603 0.0854 0.2633 0.3159 0.0079

SAL 0.1952 0.0831 0.1785 0.0902 0.0923 0.1846 0.0095

CB 0.2093 0.1002 0.1539 0.0791 0.0001 0.0022 0.1124

AUD: auditory, SMOT: somatosensory-motor, VIS: visual, DMN: default mode network, ATTN: attention, EXEC: executive, SAL: salience, CB: cerebellar

ven: ventral, dor: dorsal, r: right, l:left

std. dev.: standard deviation, FDR: false discovery rate

https://doi.org/10.1371/journal.pone.0244756.t002

Fig 4. Gaussian kernel density estimates of PLV for pairs of gastric signals. Gaussian kernel density estimates of

PLV for pairs of gastric signals from the same day (cyan) and different days (coral). The Wilcoxon rank test p-value

was 0.00665.

https://doi.org/10.1371/journal.pone.0244756.g004
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data with weak gastric signals and were excluded; the 9.5 hours of data from the remaining 19

sessions were analyzed using spatial ICA, yielding 18 resting state brain networks (RSNs).

Three of the RSNs were then found to be significantly phase-locked with the basal gastric

rhythm as estimated from the EGG data, namely, a cerebellar network (FDR-adjusted p-

value = 0.0022), a dorsal somatosensory-motor network (adjusted p-value = 0.0227), and a

default mode network (adjusted p-value = 0.0227).

What is your stomach saying to your brain?

Evidence that rsfMRI signals are widely regarded as spontaneous is provided by a Google

scholar search for “’spontaneous fluctuations’ and rsfMRI”, which returns over 5,000 citations

(as of June 2020). In light of the findings of Rebollo, et al. [5], and of the present study, it may

be useful to examine the concept of spontaneity in the context of resting-state functional neu-

roimaging. The sense of “spontaneous” that applies here appears to be the third definition

given by the Oxford English Dictionary [52]: “Of natural processes: Occurring without appar-

ent external cause; having a self-contained cause or origin.” These fluctuations are indeed

spontaneous; the context in which they are self-contained must include the stomach, and pre-

sumably other organs of the body, as well. This is consistent with the principle of interoceptive

cognition, the view that the brain’s home in the body is fundamental to its function [53–55], or

that, to quote the title of a recent review: “Visceral signals shape brain dynamics and cogni-

tion” [56]. In other words, by enlarging our scope beyond the central nervous system and con-

sidering the entire (organismic) nervous system—including the enteric nervous system—

brain fluctuations and the gastric rhythm are similarly seen as spontaneous manifestations of

intrinsic networks.

In the present study, an effort was made to establish a similar gastric state at each experi-

mental session, using a fixed schedule and fixed breakfast. Researchers have probed the effect

of gastric state, including overnight fasting, on rsfMRI outcomes [57, 58]. Concurrent EGG

would allow future studies in this area to benefit from measures of how gastric state affects

stomach-brain synchronization.

In the present study, we acquired fMRI data only in the “resting” state. Researchers have

used fMRI to measure brain responses to hedonic/gustatory stimuli such as photographs of

food [59] and the the ingestion of small samples (“sips”) of fluid delivered during scanning

[60, 61]. Concurrent EGG would allow future studies in this area to benefit from measures of

how such stimuli affect the stomach’s rhythm, and stomach-brain synchronization.

How much data per person would be needed for concurrent fMRI/EGG studies in clinical

populations? The RSN-stomach PLV values in Table 2 and Fig 3 can be interpreted as provid-

ing an estimate of the precision of such measures, in terms of mean and standard deviation

PLV. It appears that the relative precision of our significant phase-locking estimates that

would be derived from a single 15-minute scan, would be on the order of plus-or-minus 30

percent, which is relatively modest. However, we do not know how the inter-session variability

of other participants would compare to that of ours; similarly, we cannot speculate about the

inter-individual variability of these measures in various populations of interest.

Measuring synchronization using the phase-locking value

How should synchrony be quantified? A recent review lists no fewer than fifteen measures of

“brain functional connectivity through phase coupling of neuronal oscillations” [62]. In the

present study, we followed Rebollo, et al. [5], in using the phase-locking value (PLV) to assess

infra-slow stomach-brain synchrony. Here, the PLV has two major advantages: The PLV is

insensitive to variations in amplitude, which is attractive because we are interested only in the
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synchrony of stomach and brain fluctuations, regardless of their amplitude. The PLV seeks

only consistent phase offsets (it does not require zero phase offset), which is attractive because

we do not know what lags may be present between stomach electrical activity and synchro-

nized but hemodynamically-delayed brain BOLD signals.

Testing for significance of the phase-locking value

To test for the statistical significance of phase-locking, surrogate data were used in order to

generate an estimate of the chance distribution of PLV, which would be obtained in the

absence of true stomach-brain synchronization. To generate such surrogate data, we used all

pairs of mismatched data, that is, rsfMRI and EGG data acquired on different days. This

appears reasonable because one would not expect today’s brain to be synchronized with yester-

day’s stomach. However, if the gastric basal electrical rhythm were like a tuning fork, always

ringing at a never-changing frequency, then today’s gastric rhythm would be phase-locked to

yesterday’s gastric rhythm. Hence, to the extent that the gastric rhythm may be unexpectedly

stable, then our use of mismatched data as surrogate data would therefore be overly conserva-

tive. In fact, as shown in Fig 4, the subject’s gastric rhythm was sufficiently stable that his aver-

age within-day PLV between the two 15-minute gastric scans was larger than his average

between-day PLV between gastric scans acquired on different days.

Rebollo et al. [5] used mismatched data as surrogate data, but theirs was a group study of 34

people, each scanned once. So for their study, mismatched data were data from other people,

not from the same person on other days.

To correct for multiple comparisons, we used the Benjamini-Hochberg approach to adjust

p-values using a False Discovery Rate of 0.05 [49]. Using instead the conservative Bonferroni

approach to correcting p-values, then only the cerebellar network would be judged signifi-

cantly phase-locked with the stomach; the dorsal somatosensory-motor network would have a

Bonferroni corrected p-value of 0.053, just above the 0.05 threshold. However, that the Bonfer-

roni correction is overly conservative when it comes to testing time courses derived using spa-

tial ICA can be seen from the fact that such time courses are generally not independent;

indeed, measures of inter-network temporal correlations are a subject of study [63, 64].

On gastric phase-locking of cerebellar, dorsal somatosensory-motor, and

default mode networks

We estimated a total of 18 RSNs, which were broadly similar to those reported in earlier stud-

ies that applied ICA to rsfMRI data [9, 13, 26–28, 65]. We found that three of the 18 RSNs

were phase-locked with the stomach. While the role played by gastric synchronization of brain

networks is unknown, the gastric phase-locking of these three networks appears to be consis-

tent with literature on their involvement in feeding behavior. In the case of the cerebellum,

early evidence was provided by small-animal experiments, in which electrical stimulation of

the cerebellum induced feeding behavior [66]; a range of evidence now provides support for

the role of the cerebellum in eating [67]. The dorsal somatosensory-motor network includes

the primary somatosensory cortex and the medial wall motor regions, two of the nodes

reported by Rebollo et al. [5]; both of these regions contain body maps, presumably including

representations of the stomach. The default mode network significantly phase-locked with the

gastric basal electrical rhythm is centered on the precuneus, which was a node of the gastric

network reported by Rebollo et al. [5], and has been reported to be involved in appetite control

in healthy individuals [68], and its disruption in persons with obesity [68] as well as anorexia

and bulemia [69]. While correspondences between results of the current study with results of

Rebollo, et al. [5], are noted above, it should be recognized that divergences between that study
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and the present work are not unexpected, as the two studies report on different populations

(specifically, 30 men and women of mean age 24, vs. one 58 year-old man).

On highly-sampled individual brains

This manuscript reports on a highly-sampled individual brain. The eleven hours of data we

collected is perhaps 40 times as much data per brain as was often seen in the general task fMRI

literature. The approach of acquiring much more data from many fewer brains appears to

have been originally suggested by Savoy [70], and popularized by Poldrack [71] and a group at

Washington University St. Louis [72]. We previously reported on data from an individual who

underwent weekly scans over a multi-year period [65]. Highly-sampled data have also led to

further analyses and publications, e.g., [73, 74].

Limitations

A major limitation of the present report is that the eleven hours of data were acquired from a

single person, as part of a highly-sampled individual study design. Hence, it is not clear how

well these results will generalize to the broader population, and it is of course necessary to scan

more people in order to find out.

A limitation of the present report is that experimental procedures, including cutaneous

electrodes on the epigastrium and mild fasting, may have focused the participant’s attention

on his gastric state. However the participant reported typical wandering thoughts, without a

sustained or noticeable focus on hunger.

A limitation of the present report is that by adhering to the same schedule and same break-

fast, our data may be unusually stable with regards to variance over sessions. Data acquired “in

the wild” will presumably manifest more variation.

A limitation of the present report is that we did not acquire any physiological measures

(e.g., blood glucose) on a daily basis, in order to help explain inter-session variance. It might

be advisable to collect such measures in future population-based studies.

A limitation of the present report is that, during scanning, we did not acquire other real-

time physiological measures, such as the electrocardiogram. (Although cardiac events are seen

in the raw electrogastrography data, they are in a distinct frequency range from the infra-slow

basal gastric rhythm, and so do not alias into or contaminate the estimated gastric rhythm.)

Future studies might monitor a comprehensive suite of physiological measures during “rest”,

to shed light on activity fluctuations of the sympathetic and parasympathetic nervous systems.

A group from Arhus University recently announced that they are acquiring rsfMRI data with

concurrent “arterial CO2, respiratory, cardiac, eye tracking, and electrogastrography mea-

sures” [75].

A limitation of the present report is that we used only one analytic approach, spatial ICA, to

estimate resting state brain networks. In keeping with the “plurality and resemblance” frame-

work [76], it would be beneficial to re-analyze the data using alternative approaches (e.g., atlas-

based parcellations or graph-theoretic methods) in order to understand how the results pre-

sented here resemble those obtained using other analytic approaches to estimating brain net-

works from rsfMRI data.

A limitation of this study is that reported measures (of PLV and explained variance) are

averages over time and space. Temporally, measures are averaged over each 15 minute run; if

shorter epochs of greater phase-locking exist during these runs, then they would be averaged

out. Spatially, measures are reported for each ICA-derived RSN; smaller clusters with greater

phase-locking may exist, since it is not the case that each voxel of a RSN must have the same

gastric phase-locking. As noted in the Introduction, this study addresses the question: “Are
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any brain networks significantly phase-locked with the basal gastric rhythm?” Measures

reported herein do address that question, but should not be taken to rule out the possible exis-

tence of shorter epochs or smaller clusters manifesting greater phase synchronization with the

gastric rhythm.

A limitation of the present report is that these data cannot be used to infer directionality or

causality. Simply from the EGG and rsfMRI data alone, we cannot tell whether the stomach is

driving the brain, or whether the brain is driving the stomach. The role of myenteric interstitial

cells of Cajal as the generators or “pacemakers” of visceral rhythms, which are transmitted to

the brain, appears firmly established [1–4]. In the context of resting-state functional neuroim-

aging, an earlier study from the same group at the École normale supérieure (Paris) that con-

tributed the Rebollo, et al. [5] paper, supports ascending directionality: Richter, et al. [34],

used concurrent EGG and magnetoencephalography (MEG); the high time resolution of MEG

allowed causal inference, which indicated that the gastric rhythm was modulating regional

alpha-band brain activity. Rebollo et al. [5] concluded that their results supported “. . .the

hypothesis that activity in the gastric network is driven by neural activity in areas directly

receiving ascending inputs. . .” However, the brain is not simply a passive recipient of visceral

rhythms. Rather, “[w]ithin the brain, adaptive control is achieved through forward models,

efference copies and prediction errors wherein viscerosensory data is continuously compared

against expected bodily state to evoke physiological and mental reactions.” [53] That is, it

appears reasonable to surmise that the brain contains one or more interoceptive representa-

tions of the stomach, which model its rhythm, and that these dynamic models are entrained to

the actual stomach rhythm, using prediction errors. Thus, when several brain regions are

found with activity that is synchronized with the stomach, it may not be clear whether a partic-

ular region’s gastric-synchronized brain signal results from ascending afferent signals, or from

an ongoing brain dynamic model of the stomach. At a very different time scale (and presum-

ably subserved by very different mechanisms), an analogy with the (ca 4000-fold slower) chro-

nobiology of circadian rhythms [77] may be helpful here, as these diurnal rhythms are not

simply driven by external stimuli, but rather are generated internally by “biological clocks”,

which are entrained to the local astronomical day/night cycle. Finally, the success of electrogas-

trographic biofeedback [78], in which individuals provided with real-time visual feedback on

their gastric rhythm are able to improve its consistency, demonstrates that the brain can influ-

ence the gastric rhythm, and there has been recent progress in understanding how cortical

regions communicate with the stomach [79]. Clearly, further studies are needed to explore the

bidrectional communication between the viscera and the brain.

A complementary view: Gastric synchronization as a confound

As mentioned, a fundamental limitation of the general rsfMRI approach is that a variety of

“nuisances” or physiological confounds [15] including cardiac pulsations [16, 17], respiration

[18–20], and head motion [21, 22], can lead to inter-regional correlations that can mask, or be

mistaken for, functional connectivity. The manifestation of the infra-slow gastric rhythm in

brain fMRI data could be seen as a similar confound, consistent with recent guidance that any

“neural activity related fluctuations that are not of interest” shall be regarded as “physiological

noise” [80]. Thus, if stomach-brain synchronization is not celebrated as a window onto the

embodied brain in the organismic nervous system, but instead regretted as a nuisance—if the

gastric rhythm is the new head motion—then the question arises as to its magnitude. The

modest contributions tabulated in Table 2—less than three percent for the two gastric phase-

locked cortical networks, and about eleven percent for the cerebellar network—suggest that if

the gastric rhythm is seen is a confound, it may not be a serious one.
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Conclusions

Of 18 resting-state brain networks estimated from rsfMRI data using the well-established spa-

tial ICA approach, three were found to be significantly phase-locked with the basal gastric

rhythm, namely, a cerebellar network, a dorsal somatosensory-motor network, and a default

mode network. Disruptions to the gut-brain axis, which sustains interoceptive feedback

between the central nervous system and the viscera, are thought to be involved in various dis-

orders; manifestation of the infra-slow rhythm of the stomach in brain rsfMRI data could be

useful for studies in clinical populations.

Acknowledgments

We are grateful to Peter A. Barker, Terri Brawner, Jiande Chen, Joseph S. Gillen, Kathleen

Kahl, Ivana Kusevic, and Peter C.M. van Zijl for assistance and encouragement.

Author Contributions

Conceptualization: James J. Pekar.

Data curation: Ann S. Choe.

Formal analysis: Ann S. Choe, Bohao Tang.

Investigation: Ann S. Choe, Bohao Tang, Kimberly R. Smith, James J. Pekar.

Methodology: Ann S. Choe, Bohao Tang.

Project administration: Ann S. Choe, James J. Pekar.

Resources: James J. Pekar.

Software: Ann S. Choe, Bohao Tang.

Supervision: Ann S. Choe, Martin A. Lindquist, Brian S. Caffo, James J. Pekar.

Validation: Ann S. Choe, Bohao Tang.

Visualization: Ann S. Choe, Bohao Tang.

Writing – original draft: Ann S. Choe, Bohao Tang, James J. Pekar.

Writing – review & editing: Ann S. Choe, Bohao Tang, Kimberly R. Smith, Hamed Honari,

Martin A. Lindquist, Brian S. Caffo, James J. Pekar.

References

1. Bozler E. The action potentials of the stomach. American Journal of Physiology—Legacy Content.

1945; 144(5):693–700. https://doi.org/10.1152/ajplegacy.1945.144.5.693

2. Suzuki N, Prosser CL, Dahms V. Boundary cells between longitudinal and circular layers: essential for

electrical slow waves in cat intestine. Am J Physiol. 1986; 250(3 Pt 1):G287–94. https://doi.org/10.

1152/ajpgi.1986.250.3.G287 PMID: 3953815

3. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract.

Annu Rev Physiol. 2006; 68:307–43. https://doi.org/10.1146/annurev.physiol.68.040504.094718

PMID: 16460275

4. Huizinga JD. The Physiology and Pathophysiology of Interstitial Cells of Cajal: Pacemaking, Innerva-

tion, and Stretch Sensation. In: Physiology of the Gastrointestinal Tract ( Sixth Edition). Academic

Press; 2018. p. 305–335.

5. Rebollo I, Devauchelle AD, Béranger B, Tallon-Baudry C. Stomach-brain synchrony reveals a novel,

delayed-connectivity resting-state network in humans. Elife. 2018; 7:e33321. https://doi.org/10.7554/

eLife.33321 PMID: 29561263

PLOS ONE Phase-locking of brain networks with the stomach

PLOS ONE | https://doi.org/10.1371/journal.pone.0244756 January 5, 2021 15 / 19

https://doi.org/10.1152/ajplegacy.1945.144.5.693
https://doi.org/10.1152/ajpgi.1986.250.3.G287
https://doi.org/10.1152/ajpgi.1986.250.3.G287
http://www.ncbi.nlm.nih.gov/pubmed/3953815
https://doi.org/10.1146/annurev.physiol.68.040504.094718
http://www.ncbi.nlm.nih.gov/pubmed/16460275
https://doi.org/10.7554/eLife.33321
https://doi.org/10.7554/eLife.33321
http://www.ncbi.nlm.nih.gov/pubmed/29561263
https://doi.org/10.1371/journal.pone.0244756


6. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting

human brain using echo-planar MRI. Magn Reson Med. 1995; 34(4):537–41. https://doi.org/10.1002/

mrm.1910340409 PMID: 8524021

7. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications.

AJNR Am J Neuroradiol. 2013; 34(10):1866–72. https://doi.org/10.3174/ajnr.A3263 PMID:

22936095

8. Lowe MJ. A historical perspective on the evolution of resting-state functional connectivity with MRI.

MAGMA. 2010; 23(5-6):279–88. https://doi.org/10.1007/s10334-010-0230-y PMID: 21076991

9. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human

brain function. Proc Natl Acad Sci U S A. 2010; 107(10):4734–9. https://doi.org/10.1073/pnas.

0911855107 PMID: 20176931

10. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analy-

sis of large (PET) data sets. J Cereb Blood Flow Metab. 1993; 13(1):5–14. https://doi.org/10.1038/

jcbfm.1993.4 PMID: 8417010

11. Castellanos FX, Di Martino A, Craddock RC, Mehta AD, Milham MP. Clinical applications of the func-

tional connectome. Neuroimage. 2013; 80:527–40. https://doi.org/10.1016/j.neuroimage.2013.04.083

PMID: 23631991

12. Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The Autism Brain Imaging Data

Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism. Molecular psy-

chiatry. 2014; 19(6):659–667. https://doi.org/10.1038/mp.2013.78 PMID: 23774715

13. Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, et al. Resting-state

fMRI in the Human Connectome Project. Neuroimage. 2013; 80:144–68. https://doi.org/10.1016/j.

neuroimage.2013.05.039 PMID: 23702415

14. Choe AS, Belegu V, Yoshida S, Joel S, Sadowsky CL, Smith SA, et al. Extensive neurological recovery

from a complete spinal cord injury: a case report and hypothesis on the role of cortical plasticity. Front

Hum Neurosci. 2013; 7:290. https://doi.org/10.3389/fnhum.2013.00290 PMID: 23805087

15. Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH. Reduction of motion-related arti-

facts in resting state fMRI using aCompCor. Neuroimage. 2014; 96:22–35. https://doi.org/10.1016/j.

neuroimage.2014.03.028 PMID: 24657780

16. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion

effects in fMRI: RETROICOR. Magn Reson Med. 2000; 44(1):162–7. https://doi.org/10.1002/1522-

2594(200007)44:1%3C162::AID-MRM23%3E3.0.CO;2-E PMID: 10893535

17. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for

BOLD and perfusion based fMRI. Neuroimage. 2007; 37(1):90–101. https://doi.org/10.1016/j.

neuroimage.2007.04.042 PMID: 17560126

18. Birn RM, Smith MA, Jones TB, Bandettini PA. The respiration response function: the temporal dynamics

of fMRI signal fluctuations related to changes in respiration. Neuroimage. 2008; 40(2):644–654. https://

doi.org/10.1016/j.neuroimage.2007.11.059 PMID: 18234517

19. Chang C, Glover GH. Relationship between respiration, end-tidal CO2, and BOLD signals in resting-

state fMRI. Neuroimage. 2009; 47(4):1381–93. https://doi.org/10.1016/j.neuroimage.2009.04.048

PMID: 19393322

20. Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations

from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006; 31(4):1536–48. https://doi.org/

10.1016/j.neuroimage.2006.02.048 PMID: 16632379

21. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, charac-

terize, and remove motion artifact in resting state fMRI. Neuroimage. 2014; 84:320–41. https://doi.org/

10.1016/j.neuroimage.2013.08.048 PMID: 23994314

22. Power JD, Schlaggar BL, Petersen SE. Recent progress and outstanding issues in motion correction in

resting state fMRI. Neuroimage. 2015; 105:536–51. https://doi.org/10.1016/j.neuroimage.2014.10.044

PMID: 25462692

23. Comon P. Independent component analysis, A new concept? Signal Processing. 1994; 36(3):287–314.

https://doi.org/10.1016/0165-1684(94)90029-9

24. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, et al. Analysis of fMRI data by

blind separation into independent spatial components. Hum Brain Mapp. 1998; 6(3):160–88. https://doi.

org/10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 PMID: 9673671

25. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional

MRI data using independent component analysis. Hum Brain Mapp. 2001; 14(3):140–51. https://doi.

org/10.1002/hbm.1048 PMID: 11559959

PLOS ONE Phase-locking of brain networks with the stomach

PLOS ONE | https://doi.org/10.1371/journal.pone.0244756 January 5, 2021 16 / 19

https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1002/mrm.1910340409
http://www.ncbi.nlm.nih.gov/pubmed/8524021
https://doi.org/10.3174/ajnr.A3263
http://www.ncbi.nlm.nih.gov/pubmed/22936095
https://doi.org/10.1007/s10334-010-0230-y
http://www.ncbi.nlm.nih.gov/pubmed/21076991
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1073/pnas.0911855107
http://www.ncbi.nlm.nih.gov/pubmed/20176931
https://doi.org/10.1038/jcbfm.1993.4
https://doi.org/10.1038/jcbfm.1993.4
http://www.ncbi.nlm.nih.gov/pubmed/8417010
https://doi.org/10.1016/j.neuroimage.2013.04.083
http://www.ncbi.nlm.nih.gov/pubmed/23631991
https://doi.org/10.1038/mp.2013.78
http://www.ncbi.nlm.nih.gov/pubmed/23774715
https://doi.org/10.1016/j.neuroimage.2013.05.039
https://doi.org/10.1016/j.neuroimage.2013.05.039
http://www.ncbi.nlm.nih.gov/pubmed/23702415
https://doi.org/10.3389/fnhum.2013.00290
http://www.ncbi.nlm.nih.gov/pubmed/23805087
https://doi.org/10.1016/j.neuroimage.2014.03.028
https://doi.org/10.1016/j.neuroimage.2014.03.028
http://www.ncbi.nlm.nih.gov/pubmed/24657780
https://doi.org/10.1002/1522-2594(200007)44:1%3C162::AID-MRM23%3E3.0.CO;2-E
https://doi.org/10.1002/1522-2594(200007)44:1%3C162::AID-MRM23%3E3.0.CO;2-E
http://www.ncbi.nlm.nih.gov/pubmed/10893535
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
http://www.ncbi.nlm.nih.gov/pubmed/17560126
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1016/j.neuroimage.2007.11.059
http://www.ncbi.nlm.nih.gov/pubmed/18234517
https://doi.org/10.1016/j.neuroimage.2009.04.048
http://www.ncbi.nlm.nih.gov/pubmed/19393322
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1016/j.neuroimage.2006.02.048
http://www.ncbi.nlm.nih.gov/pubmed/16632379
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
http://www.ncbi.nlm.nih.gov/pubmed/23994314
https://doi.org/10.1016/j.neuroimage.2014.10.044
http://www.ncbi.nlm.nih.gov/pubmed/25462692
https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
http://www.ncbi.nlm.nih.gov/pubmed/9673671
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/hbm.1048
http://www.ncbi.nlm.nih.gov/pubmed/11559959
https://doi.org/10.1371/journal.pone.0244756


26. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using

independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005; 360(1457):1001–13.

https://doi.org/10.1098/rstb.2005.1634 PMID: 16087444

27. Chen S, Ross TJ, Zhan W, Myers CS, Chuang KS, Heishman SJ, et al. Group independent component

analysis reveals consistent resting-state networks across multiple sessions. Brain Res. 2008;

1239:141–51. https://doi.org/10.1016/j.brainres.2008.08.028 PMID: 18789314

28. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity net-

works: test-retest evaluation using ICA and dual regression approach. Neuroimage. 2010; 49(3):2163–

77. https://doi.org/10.1016/j.neuroimage.2009.10.080 PMID: 19896537

29. Koch KL, Stern RM. Handbook of Electrogastrography. Oxford University Press; 2003.

30. Simonian HP, Panganamamula K, Parkman HP, Xu X, Chen JZ, Lindberg G, et al. Multichannel electro-

gastrography (EGG) in normal subjects: a multicenter study. Dig Dis Sci. 2004; 49(4):594–601. https://

doi.org/10.1023/B:DDAS.0000026304.83214.50 PMID: 15185863

31. Yin J, Chen JD. Electrogastrography: methodology, validation and applications. J Neurogastroenterol

Motil. 2013; 19(1):5–17. https://doi.org/10.5056/jnm.2013.19.1.5 PMID: 23350042

32. Wolpert N, Rebollo I, Tallon-Baudry C. Electrogastrography for psychophysiological research: Practical

considerations, analysis pipeline, and normative data in a large sample. Psychophysiology. 2020.

https://doi.org/10.1111/psyp.13599 PMID: 32449806

33. Calhoun VD, Adali T, Pekar JJ, Pearlson GD. Latency (in)sensitive ICA. Group independent component

analysis of fMRI data in the temporal frequency domain. Neuroimage. 2003; 20(3):1661–9. https://doi.

org/10.1016/S1053-8119(03)00411-7 PMID: 14642476

34. Richter CG, Babo-Rebelo M, Schwartz D, Tallon-Baudry C. Phase-amplitude coupling at the organism

level: The amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow

gastric basal rhythm. Neuroimage. 2017; 146:951–958. https://doi.org/10.1016/j.neuroimage.2016.08.

043 PMID: 27557620

35. Ghoos YF, Maes BD, Geypens BJ, Mys G, Hiele MI, Rutgeerts PJ, et al. Measurement of gastric empty-

ing rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology. 1993; 104

(6):1640–7. https://doi.org/10.1016/0016-5085(93)90640-X PMID: 8500721

36. Stehling MK, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of

a second. Science. 1991; 254(5028):43–50. https://doi.org/10.1126/science.1925560 PMID: 1925560

37. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI.

Magnetic resonance in medicine. 1999; 42(5):952–962. https://doi.org/10.1002/(SICI)1522-2594

(199911)42:5%3C952::AID-MRM16%3E3.0.CO;2-S PMID: 10542355

38. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.

Computers and Biomedical research. 1996; 29(3):162–173. https://doi.org/10.1006/cbmr.1996.0014

PMID: 8812068

39. Egolf E, Kiehl K, Calhoun V. Group ICA of fMRI toolbox (GIFT). Proc HBM Budapest, Hungary. 2004;.

40. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional

MRI data using independent component analysis. Human brain mapping. 2001; 14(3):140–151. https://

doi.org/10.1002/hbm.1048 PMID: 11559959

41. Li YO, Adalı T, Calhoun VD. Estimating the number of independent components for functional magnetic

resonance imaging data. Human brain mapping. 2007; 28(11):1251–1266. https://doi.org/10.1002/

hbm.20359 PMID: 17274023

42. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, et al. A baseline for the multivariate

comparison of resting-state networks. Frontiers in systems neuroscience. 2011; 5:2. https://doi.org/10.

3389/fnsys.2011.00002 PMID: 21442040

43. Allen EA, Erhardt EB, Wei Y, Eichele T, Calhoun VD. Capturing inter-subject variability with group inde-

pendent component analysis of fMRI data: a simulation study. Neuroimage. 2012; 59(4):4141–4159.

https://doi.org/10.1016/j.neuroimage.2011.10.010 PMID: 22019879

44. Himberg J, Hyvärinen A, Esposito F. Validating the independent components of neuroimaging time

series via clustering and visualization. Neuroimage. 2004; 22(3):1214–1222. https://doi.org/10.1016/j.

neuroimage.2004.03.027 PMID: 15219593

45. Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS, Maumet C, et al. NeuroVault.org: a

web-based repository for collecting and sharing unthresholded statistical maps of the human brain.

Front Neuroinform. 2015; 9:8. https://doi.org/10.3389/fninf.2015.00008 PMID: 25914639

46. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject

ICA methods for analysis of fMRI data. Human brain mapping. 2011; 32(12):2075–2095. https://doi.org/

10.1002/hbm.21170 PMID: 21162045

PLOS ONE Phase-locking of brain networks with the stomach

PLOS ONE | https://doi.org/10.1371/journal.pone.0244756 January 5, 2021 17 / 19

https://doi.org/10.1098/rstb.2005.1634
http://www.ncbi.nlm.nih.gov/pubmed/16087444
https://doi.org/10.1016/j.brainres.2008.08.028
http://www.ncbi.nlm.nih.gov/pubmed/18789314
https://doi.org/10.1016/j.neuroimage.2009.10.080
http://www.ncbi.nlm.nih.gov/pubmed/19896537
https://doi.org/10.1023/B:DDAS.0000026304.83214.50
https://doi.org/10.1023/B:DDAS.0000026304.83214.50
http://www.ncbi.nlm.nih.gov/pubmed/15185863
https://doi.org/10.5056/jnm.2013.19.1.5
http://www.ncbi.nlm.nih.gov/pubmed/23350042
https://doi.org/10.1111/psyp.13599
http://www.ncbi.nlm.nih.gov/pubmed/32449806
https://doi.org/10.1016/S1053-8119(03)00411-7
https://doi.org/10.1016/S1053-8119(03)00411-7
http://www.ncbi.nlm.nih.gov/pubmed/14642476
https://doi.org/10.1016/j.neuroimage.2016.08.043
https://doi.org/10.1016/j.neuroimage.2016.08.043
http://www.ncbi.nlm.nih.gov/pubmed/27557620
https://doi.org/10.1016/0016-5085(93)90640-X
http://www.ncbi.nlm.nih.gov/pubmed/8500721
https://doi.org/10.1126/science.1925560
http://www.ncbi.nlm.nih.gov/pubmed/1925560
https://doi.org/10.1002/(SICI)1522-2594(199911)42:5%3C952::AID-MRM16%3E3.0.CO;2-S
https://doi.org/10.1002/(SICI)1522-2594(199911)42:5%3C952::AID-MRM16%3E3.0.CO;2-S
http://www.ncbi.nlm.nih.gov/pubmed/10542355
https://doi.org/10.1006/cbmr.1996.0014
http://www.ncbi.nlm.nih.gov/pubmed/8812068
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/hbm.1048
http://www.ncbi.nlm.nih.gov/pubmed/11559959
https://doi.org/10.1002/hbm.20359
https://doi.org/10.1002/hbm.20359
http://www.ncbi.nlm.nih.gov/pubmed/17274023
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.3389/fnsys.2011.00002
http://www.ncbi.nlm.nih.gov/pubmed/21442040
https://doi.org/10.1016/j.neuroimage.2011.10.010
http://www.ncbi.nlm.nih.gov/pubmed/22019879
https://doi.org/10.1016/j.neuroimage.2004.03.027
https://doi.org/10.1016/j.neuroimage.2004.03.027
http://www.ncbi.nlm.nih.gov/pubmed/15219593
https://doi.org/10.3389/fninf.2015.00008
http://www.ncbi.nlm.nih.gov/pubmed/25914639
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1002/hbm.21170
http://www.ncbi.nlm.nih.gov/pubmed/21162045
https://doi.org/10.1371/journal.pone.0244756


47. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis

of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience.

2011; 2011:1. https://doi.org/10.1155/2011/156869 PMID: 21253357

48. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Human

brain mapping. 1999; 8(4):194–208. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-

HBM4>3.0.CO;2-C PMID: 10619414

49. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to mul-

tiple testing. Journal of the Royal statistical society: series B (Methodological). 1995; 57(1):289–300.

50. Aydore S, Pantazis D, Leahy RM. A note on the phase locking value and its properties. Neuroimage.

2013; 74:231–244. https://doi.org/10.1016/j.neuroimage.2013.02.008 PMID: 23435210

51. Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS, Maumet C, et al. NeuroVault. org: a

web-based repository for collecting and sharing unthresholded statistical maps of the human brain.

Frontiers in neuroinformatics. 2015; 9:8. https://doi.org/10.3389/fninf.2015.00008 PMID: 25914639

52. Oxford English Dictionary. 2nd ed. Oxford University Press; 1989.

53. Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013; 77(4):624–38.

https://doi.org/10.1016/j.neuron.2013.02.008 PMID: 23439117

54. Seth AK, Friston KJ. Active interoceptive inference and the emotional brain. Philos Trans R Soc Lond B

Biol Sci. 2016; 371 (1708). https://doi.org/10.1098/rstb.2016.0007 PMID: 28080966

55. Owens AP, Allen M, Ondobaka S, Friston KJ. Interoceptive inference: From computational neurosci-

ence to clinic. Neurosci Biobehav Rev. 2018; 90:174–183. https://doi.org/10.1016/j.neubiorev.2018.04.

017 PMID: 29694845

56. Azzalini D, Rebollo I, Tallon-Baudry C. Visceral Signals Shape Brain Dynamics and Cognition. Trends

Cogn Sci. 2019; 23(6):488–509. https://doi.org/10.1016/j.tics.2019.03.007 PMID: 31047813

57. Orfanos S, Toygar T, Berthold-Losleben M, Chechko N, Durst A, Laoutidis ZG, et al. Investigating the

impact of overnight fasting on intrinsic functional connectivity: a double-blind fMRI study. Brain Imaging

Behav. 2017. https://doi.org/10.1007/s11682-017-9777-9

58. Al-Zubaidi A, Heldmann M, Mertins A, Jauch-Chara K, Munte TF. Influences of Hunger, Satiety and

Oral Glucose on Functional Brain Connectivity: A Multimethod Resting-State fMRI Study. Neurosci-

ence. 2018; 382:80–92. https://doi.org/10.1016/j.neuroscience.2018.04.029 PMID: 29723574

59. Murdaugh DL, Cox JE, Cook r E W, Weller RE. fMRI reactivity to high-calorie food pictures predicts

short- and long-term outcome in a weight-loss program. Neuroimage. 2012; 59(3):2709–21. https://doi.

org/10.1016/j.neuroimage.2011.10.071 PMID: 22332246

60. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and antici-

pated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;

117(4):924–35. https://doi.org/10.1037/a0013600 PMID: 19025237

61. Smith KR, Papantoni A, Veldhuizen MG, Kamath V, Harris C, Moran TH, et al. Taste-related reward is

associated with weight loss following bariatric surgery. The Journal of Clinical Investigation. 2020.

https://doi.org/10.1172/JCI137772 PMID: 32427584

62. Marzetti L, Basti A, Chella F, D’Andrea A, Syrjala J, Pizzella V. Brain Functional Connectivity Through

Phase Coupling of Neuronal Oscillations: A Perspective From Magnetoencephalography. Front Neu-

rosci. 2019; 13:964. https://doi.org/10.3389/fnins.2019.00964 PMID: 31572116

63. Joel SE, Caffo BS, van Zijl PC, Pekar JJ. On the relationship between seed-based and ICA-based mea-

sures of functional connectivity. Magnetic Resonance in Medicine. 2011; 66(3):644–657. https://doi.org/

10.1002/mrm.22818 PMID: 21394769

64. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among

spatially independent resting-state components in schizophrenia. Neuroimage. 2008; 39(4):1666–

1681. https://doi.org/10.1016/j.neuroimage.2007.11.001 PMID: 18082428

65. Choe AS, Jones CK, Joel SE, Muschelli J, Belegu V, Caffo BS, et al. Reproducibility and Temporal

Structure in Weekly Resting-State fMRI over a Period of 3.5 Years. PLoS One. 2015; 10(10):e0140134.

https://doi.org/10.1371/journal.pone.0140134 PMID: 26517540

66. Berntson GG, Potolicchio J S J, Miller NE. Evidence for higher functions of the cerebellum: eating and

grooming elicited by cerebellar stimulation in cats. Proc Natl Acad Sci U S A. 1973; 70(9):2497–9.

https://doi.org/10.1073/pnas.70.9.2497 PMID: 4517662

67. Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neuro-

biol. 2008; 28(4):469–78. https://doi.org/10.1007/s10571-007-9236-z PMID: 18027085

68. Tuulari JJ, Karlsson HK, Hirvonen J, Salminen P, Nuutila P, Nummenmaa L. Neural circuits for cognitive

appetite control in healthy and obese individuals: an fMRI study. PloS one. 2015; 10(2):e0116640.

https://doi.org/10.1371/journal.pone.0116640 PMID: 25658479

PLOS ONE Phase-locking of brain networks with the stomach

PLOS ONE | https://doi.org/10.1371/journal.pone.0244756 January 5, 2021 18 / 19

https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
http://www.ncbi.nlm.nih.gov/pubmed/10619414
https://doi.org/10.1016/j.neuroimage.2013.02.008
http://www.ncbi.nlm.nih.gov/pubmed/23435210
https://doi.org/10.3389/fninf.2015.00008
http://www.ncbi.nlm.nih.gov/pubmed/25914639
https://doi.org/10.1016/j.neuron.2013.02.008
http://www.ncbi.nlm.nih.gov/pubmed/23439117
https://doi.org/10.1098/rstb.2016.0007
http://www.ncbi.nlm.nih.gov/pubmed/28080966
https://doi.org/10.1016/j.neubiorev.2018.04.017
https://doi.org/10.1016/j.neubiorev.2018.04.017
http://www.ncbi.nlm.nih.gov/pubmed/29694845
https://doi.org/10.1016/j.tics.2019.03.007
http://www.ncbi.nlm.nih.gov/pubmed/31047813
https://doi.org/10.1007/s11682-017-9777-9
https://doi.org/10.1016/j.neuroscience.2018.04.029
http://www.ncbi.nlm.nih.gov/pubmed/29723574
https://doi.org/10.1016/j.neuroimage.2011.10.071
https://doi.org/10.1016/j.neuroimage.2011.10.071
http://www.ncbi.nlm.nih.gov/pubmed/22332246
https://doi.org/10.1037/a0013600
http://www.ncbi.nlm.nih.gov/pubmed/19025237
https://doi.org/10.1172/JCI137772
http://www.ncbi.nlm.nih.gov/pubmed/32427584
https://doi.org/10.3389/fnins.2019.00964
http://www.ncbi.nlm.nih.gov/pubmed/31572116
https://doi.org/10.1002/mrm.22818
https://doi.org/10.1002/mrm.22818
http://www.ncbi.nlm.nih.gov/pubmed/21394769
https://doi.org/10.1016/j.neuroimage.2007.11.001
http://www.ncbi.nlm.nih.gov/pubmed/18082428
https://doi.org/10.1371/journal.pone.0140134
http://www.ncbi.nlm.nih.gov/pubmed/26517540
https://doi.org/10.1073/pnas.70.9.2497
http://www.ncbi.nlm.nih.gov/pubmed/4517662
https://doi.org/10.1007/s10571-007-9236-z
http://www.ncbi.nlm.nih.gov/pubmed/18027085
https://doi.org/10.1371/journal.pone.0116640
http://www.ncbi.nlm.nih.gov/pubmed/25658479
https://doi.org/10.1371/journal.pone.0244756


69. Lee S, Kim KR, Ku J, Lee JH, Namkoong K, Jung YC. Resting-state synchrony between anterior cingu-

late cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa. Psy-

chiatry Research: Neuroimaging. 2014; 221(1):43–48. https://doi.org/10.1016/j.pscychresns.2013.11.

004 PMID: 24300085

70. Savoy R. Using small numbers of subjects in fMRI-based research. IEEE Engineering in Medicine and

Biology Magazine. 2006; 25(2):52–59. https://doi.org/10.1109/MEMB.2006.1607669 PMID: 16568937

71. Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A, Chen MY, et al. Long-term neural and phys-

iological phenotyping of a single human. Nat Commun. 2015; 6:8885. https://doi.org/10.1038/

ncomms9885 PMID: 26648521

72. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision Functional

Mapping of Individual Human Brains. Neuron. 2017; 95(4):791–807 e7. https://doi.org/10.1016/j.

neuron.2017.07.011 PMID: 28757305

73. Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen MY, et al. Functional System and

Areal Organization of a Highly Sampled Individual Human Brain. Neuron. 2015; 87(3):657–70. https://

doi.org/10.1016/j.neuron.2015.06.037 PMID: 26212711

74. Marek S, Siegel JS, Gordon EM, Raut RV, Gratton C, Newbold DJ, et al. Spatial and Temporal Organi-

zation of the Individual Human Cerebellum. Neuron. 2018; 100(4):977–993 e7. https://doi.org/10.1016/

j.neuron.2018.10.010 PMID: 30473014

75. Allen M; 2020. https://twitter.com/micahgallen/status/1222642907640991745.

76. Lange N, Strother SC, Anderson JR, Nielsen FA, Holmes AP, Kolenda T, et al. Plurality and resem-

blance in fMRI data analysis. Neuroimage. 1999; 10(3 Pt 1):282–303. https://doi.org/10.1006/nimg.

1999.0472 PMID: 10458943

77. The Nobel Assembly at Karolinska Institutet; 2017. https://www.nobelprize.org/prizes/medicine/2017/

press-release/.

78. Stern RM, Vitellaro K, Thomas M, Higgins SC, Koch KL. Electrogastrographic biofeedback: a technique

for enhancing normal gastric activity. Neurogastroenterol Motil. 2004; 16(6):753–7. https://doi.org/10.

1111/j.1365-2982.2004.00543.x PMID: 15601425

79. Levinthal DJ, Strick PL. Multiple areas of the cerebral cortex influence the stomach. Proceedings of the

National Academy of Sciences. 2020. https://doi.org/10.1073/pnas.2002737117 PMID: 32434910

80. Chen JE, Polimeni JR, Bollmann S, Glover GH. On the analysis of rapidly sampled fMRI data. Neuro-

image. 2019; 188:807–820. https://doi.org/10.1016/j.neuroimage.2019.02.008 PMID: 30735828

PLOS ONE Phase-locking of brain networks with the stomach

PLOS ONE | https://doi.org/10.1371/journal.pone.0244756 January 5, 2021 19 / 19

https://doi.org/10.1016/j.pscychresns.2013.11.004
https://doi.org/10.1016/j.pscychresns.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24300085
https://doi.org/10.1109/MEMB.2006.1607669
http://www.ncbi.nlm.nih.gov/pubmed/16568937
https://doi.org/10.1038/ncomms9885
https://doi.org/10.1038/ncomms9885
http://www.ncbi.nlm.nih.gov/pubmed/26648521
https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.1016/j.neuron.2017.07.011
http://www.ncbi.nlm.nih.gov/pubmed/28757305
https://doi.org/10.1016/j.neuron.2015.06.037
https://doi.org/10.1016/j.neuron.2015.06.037
http://www.ncbi.nlm.nih.gov/pubmed/26212711
https://doi.org/10.1016/j.neuron.2018.10.010
https://doi.org/10.1016/j.neuron.2018.10.010
http://www.ncbi.nlm.nih.gov/pubmed/30473014
https://twitter.com/micahgallen/status/1222642907640991745
https://doi.org/10.1006/nimg.1999.0472
https://doi.org/10.1006/nimg.1999.0472
http://www.ncbi.nlm.nih.gov/pubmed/10458943
https://www.nobelprize.org/prizes/medicine/2017/press-release/
https://www.nobelprize.org/prizes/medicine/2017/press-release/
https://doi.org/10.1111/j.1365-2982.2004.00543.x
https://doi.org/10.1111/j.1365-2982.2004.00543.x
http://www.ncbi.nlm.nih.gov/pubmed/15601425
https://doi.org/10.1073/pnas.2002737117
http://www.ncbi.nlm.nih.gov/pubmed/32434910
https://doi.org/10.1016/j.neuroimage.2019.02.008
http://www.ncbi.nlm.nih.gov/pubmed/30735828
https://doi.org/10.1371/journal.pone.0244756

