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ABSTRACT
CD19-specific chimeric antigen receptor (CAR)C T cells have demonstrated clinical efficacy and long-lasting
remissions, concomitant with tolerable normal B-cell aplasia. However, many tumor-associated antigens
(TAAs) are expressed on normal tissues, the destruction of which would lead to intolerable toxicity. Thus,
there is a need to engineer CARC T cells with improved safety profiles to restrict toxicity against TAA-
expressing normal tissues. Bioengineering approaches include: (i) targeting CARC T cells to the tumor site,
(ii) limiting CARC T-cell persistence, and (iii) restricting CAR activation. We review and evaluate strategies
to engineer CARC T cells to reduce the potential of on-target, off-tissue toxicity.

Abbreviations: ADCC, antibody-dependent cell cytotoxicity; CAIX, carbonic anhydrase IX; CAR, chimeric antigen
receptor; CCR, chimeric co-stimulation receptor; CEA, carcinoembryonic antigen; EGFR, epidermal growth factor
receptor; FITC, fluorescein isothiocyanate; huEGFRt, truncated human epidermal growth factor receptor; HSV-TK,
herpes simplex virus-derived thymidine kinase; iCAR, inhibitory CAR; iCasp9, inducible caspase 9; ODDD, oxygen-
dependent degradation domain; PD-1, programmed death receptor 1; PNE, peptide neo-epitope; PSMA, prostate-
specific membrane antigen; SAE, serious adverse event; scFv, single-chain variable sequence; TAA, tumor-associated
antigen
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Introduction

Genetic modification of T cells to express chimeric antigen
receptors (CARs) endows specificity to tumor-associated anti-
gens (TAAs) via a single-chain variable sequence (scFv) derived
from a monoclonal antibody (mAb) coupled to T-cell activa-
tion domains. Reports of phase I/II clinical trials of CD19-spe-
cific CARC T cells for B-cell malignancies reveal antitumor
efficacy, long-term B-cell aplasia, and acute toxicity related to
elevated serum cytokines.1-4 Human trials have identified three
mechanisms of toxicity from CAR-engineered T cells: (i), cyto-
kine release syndrome, (ii) anaphylactic response to foreign
moieties, and (iii) on-target, off-tissue toxicity (Fig. 1). This
review is focused on engineering approaches to limit on-target,
off-tissue toxicity.

CD19 expression is restricted to B-lineage cells; therefore,
targeting CD19 on B-lineage malignancies also eliminates nor-
mal B cells, which is considered tolerable for recipients with
advanced leukemias and lymphomas.5-8 However, CARC T
cells targeting TAAs with widespread normal tissue expression
can result in serious adverse events (SAEs), which has restricted
their application. Targeting renal cell carcinoma with a CAR
redirected to carbonic anhydrase IX (CAIX) showed activity
against normal tissues expressing CAIX, resulting in damage to
bile ducts and reversible cholangitis.9 Infusion of HER2-redir-
ected CAR T cells to treat colorectal cancer resulted in respira-
tory distress and death in one patient after massive pulmonary
T-cell infiltration, attributed to normal expression of HER2 on
pulmonary tissue.10

Paradoxically, CARs targeting HER2 and EGFR in recent
trials for patients with osteosarcoma or EGFR-overexpressing
tumors, respectively, have demonstrated good tolerability.11, 12

Differences in HER2-specific CAR designs and dosing may be
responsible for the difference in toxicity profiles, including dif-
ferences in (i) scFv, (ii) endodomain, (iii) dose-escalation trial
design, and the absence of both (iv) lymphodepletion and (v)
concomitant IL-2 administration. These data provide encour-
agement that approaches exist for harnessing CAR biology to
safely target antigens with normal tissue expression.

Locoregional delivery of CARC T cells may restrict systemic
circulation and circumvent toxicity to normal tissue beyond
the biodistribution of the administered product. In a phase I
study, carcinoembryonic antigen (CEA)-specific CARC T cells
were infused via the hepatic artery to limit extrahepatic toxic-
ity.13 Stable disease was achieved in one of the six patients, and
no SAEs were reported. Minor adverse events, including fever
and colitis, were attributed to IL-2, although a contribution of
CAR T cells could not be excluded. A similar loco-regional
delivery strategy applied IL13Ra2-specific CARC T cells for
glioblastoma by direct delivery into the postsurgical resection
cavity, and was associated with temporary, manageable inflam-
mation.14 No other adverse events were reported. In a murine
model of mesothelioma, intrapleural delivery of mesothelin-
specific CARs demonstrated enhanced antitumor efficacy,
long-term remission, and functional persistence. However, they
also effectively eliminated extrathoracic tumor, indicating that
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locoregional delivery alone is insufficient to prevent normal tis-
sue toxicity.15

Aside from route of delivery, CARC T cells can be bioengi-
neered to reduce the potential for normal tissue toxicity. These
approaches can be categorized as three main strategies: (i) tar-
geting systemically-administered CARC T cells to the tumor
site (Fig. 2), (ii) limiting CARC T-cell persistence (Fig. 3), and
(iii) restricting CAR-mediated T-cell activation (Fig. 4).

Targeting CARC T cells to tumor site

Homing via introduced chemokine receptors

Co-expression of homing molecules with CAR, such as CCR2,
CCR4, and CXCR2, can direct migration of genetically modified
T cells to tumor sites (Fig. 2A).16-19 Engineering T cells with che-
mokine receptors matched to chemokines produced by the tumor,
such as CXCR2 to migrate to melanoma, CCR2 to migrate to
mesothelioma and neuroblastoma, and CCR4 to migrate to
Hodgkin lymphoma results in enhanced tumor infiltration and
antitumor activity.16-19 However, these models demonstrated sig-
nificant T cell numbers in normal tissues (e.g., lung and liver)

shortly after T-cell infusion, with chemokine-redirected T cells
significantly accumulating at the tumor site around 6 days post
infusion. Therefore, this strategy will not limit short-term normal
tissue toxicity mediated by CAR T cells before their homing to
tumor sites. Likewise, chemokines secreted by tumors can also be
secreted in normal tissue, such as during tissue trauma and heal-
ing. Therefore, combining these treatments with other treatment
modalities, such as surgery, chemotherapy, and radiation therapy,
may risk attracting T cells to normal cells, with subsequent dam-
age resulting in toxicity.

Conditional CAR expression in hypoxia

Development of a CAR preferentially expressed in hypoxic con-
ditions, common in many tumors, has been achieved by fusing a
CAR to an oxygen-dependent degradation domain (ODDD)
derived from HIF-1a (Fig. 2B).20 A cMet-specific CAR fused to
ODDD was expressed in low oxygen tension (1% O2) but
degraded in normoxia (20% O2), resulting in c-Met-specific lysis
in hypoxic, but not normoxic, conditions.21 Because the degrada-
tion of the CAR in T cells migrating from hypoxia to normoxia
mediated by ODDD degradation may take minutes to hours, it

Figure 1. Potential mechanisms of toxicity mediated by infused chimeric antigen receptor (CAR)C T cells. Cytokine-induced toxicity describes damage mediated by T-cell
activation and release of inflammatory cytokines, as exhibited in clinical trials with CD19-specific CARC T cells. Anaphylactic response (anaphylaxis) describes development
of an IgE-mediated immune response to foreign CAR moieties that degranulates mast cells. On-target, off-tissue toxicity describes CARC T-cell recognition of tumor-asso-
ciated antigens (TAAs) expressed on normal tissue(s).

Figure 2. Strategies to limit on-target, off-tissue toxicity by targeting CARC T cells to the tumor site. (A) Homing via introduced chemokine receptors. Genetically intro-
duced chemokine receptors enable CAR-modified T cells to home to chemokine-secreting malignancies, enriching biodistribution in the tumor microenvironment. (B)
Conditional expression of CAR in hypoxia. CAR fused to an oxygen-dependent degradation domain results in degradation of CAR in normoxic, normal tissue, and selective
expression of CAR in hypoxia, a common environmental condition in many malignancies.
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is feasible for on-target, off-tissue toxicity to occur before CAR
degradation. In addition, although the centers of many tumors
are hypoxic, well-vascularized peripheral tumor regions may
have sufficient oxygen concentration to degrade CARs, poten-
tially limiting the antitumor activity of CAR T cells.22

Limiting CARC T-cell persistence

Suicide genes

Suicide genes that eliminate infused T cells that are exhibiting
toxicity upon administration of a prodrug have been used
(Fig. 3A, left). Initially, T cells were modified with herpes simplex
virus-derived thymidine kinase (HSV-TK) to ablate T cells upon
treatment with ganciclovir. However, HSV-TK proved to be
immunogenic, and anti-transgene immune responses negatively
affected T-cell persistence.23,24 A novel inducible caspase 9
(iCasp9) has been developed in which a chemical inducer of
dimerization (CID), AP1903, can be administered to patients to
cause iCasp9 activation, which triggers apoptosis. This results in
>90% elimination of T cells within 30 min of CID administra-
tion and reversal of T-cell-related toxicity. The inducing agent is
also biologically inert, thereby enhancing safety.25, 26 Although

suicide genes effectively and rapidly reverse toxicity, ablation of
T cells to mitigate normal tissue toxicity also mitigates the long-
term potential for antitumor efficacy.

Alternatively, cell surface expression of a target recognizable
by a clinically available antibody can be used to ablate T cells
(Fig. 3A, right). Expression of CD20 in T cells rendered them
sensitive to in vitro complement-mediated cytotoxicity, resulting
in 86–97% of T cells specifically ablated in the presence of rituxi-
mab.27,28,29 Similarly, a truncated, inert form of the epidermal
growth factor receptor (huEGFRt) specifically sensitized CAR T
cells to in vitro cytotoxicity in the presence of cetuximab and
activated peripheral blood mononuclear cells by antibody-depen-
dent cell cytotoxicity (ADCC).30 Cetuximab treatment signifi-
cantly delayed engraftment and eliminated murine T cells that
expressed huEGFRt in 4–6 d. Because the CAR onset of T-cell
mediated toxicity can be rapid, this elimination time mediated
by antibody recognition of introduced targets may not be suffi-
cient to reverse clinical manifestations of toxicity.

CAR expression by mRNA modification

An alternative strategy to self-limit persistence is to introduce
CARs as mRNA species. CARs targeting CD19, mesothelin,

Figure 3. Strategies to limit on-target, off-tissue toxicity by limiting CAR T-cell persistence. (A) Suicide genes. Conditional, selective ablation of CAR-modified T cells can be
achieved through enforced expression of suicide genes. Drug-induced suicide relies on administration of a drug, here a chemical inducer of dimerization, which bioacti-
vates in the T cell by inducing dimerization of inducible caspase 9 to result in initiation of a suicide program. Antibody dependent cell cytotoxicity (ADCC)-mediated sui-
cide occurs via introduction of a biologically inert, truncated protein on the surface of CAR-modified T cells. Administration of a clinically available monoclonal antibody
activates PBMC to mediate ADCC. (B) CAR expression by mRNA modification results in transient, self-limiting expression of CAR to reduce long-term antigen recognition
and temporally limit toxicity. (C) Inducible CAR expression can be achieved by dual expression of two chimeric molecules in which antigen A activates a syn-NOTCH recep-
tor, which in turn activates NOTCH responsive elements in the CAR promoter to selectively express a CAR specific for antigen B in the presence of antigen A. (D) Inducible
CAR expression may potentially be achieved by expression under a drug-inducible promoter, such as the Rheo-Switch Therapeutic System (RTS)� to allow for selective
CAR expression upon administration of an oral activating ligand.
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HER2, EGFR, GD2, and CD33 have been transiently expressed
by introduction of in vitro transcribed mRNA into human pri-
mary T cells (Fig. 3B).31-39 Expression of CARs by mRNA mod-
ification appears to offer a less cumbersome process for
regulatory approval, because there is no genome integration,
potentially shortening the preclinical development period for
CAR T-cell therapy against a new TAA. Furthermore, genera-
tion of CAR-modified T cells by mRNA transfer is quicker
than DNA-modification using viral and nonviral integration
systems. Improving the speed of the regulatory approval pro-
cesses and ex vivo manufacture time may quicken the pace of
translation from bench-to-bedside and back and potentially
improve potency and fine-tuning of these therapies for clinical
application.

In preclinical studies of a mesothelin-specific CAR expressed
via mRNA modification, reduced tumor burden and prolonged
survival in large, vascularized mesothelioma model was
observed after multiple injections.33 In a study targeting CD33,
CARs stably-expressed via DNA modification mediated signifi-
cant myelotoxicity.38 However, the transient expression of
CARs via mRNA modification resulted in the reduction of
myelotoxicity in a mouse model of acute myeloid leukemia
(AML). Similarly, mRNA-modification of T cells to express an
EGFR-specific CAR demonstrated desired transient CAR
expression and the corresponding specificity for EGFR
decreased with CAR expression.37 The half-life of CAR expres-
sion was shortened by cytokine and antigenic stimuli, mitigat-
ing cytotoxicity to normal EGFR-expressing kidney cells.

Figure 4. Strategies to limit on-target, off-tissue toxicity by restricting CAR T cell activation. (A) Dissociated signaling domains. Decoupling expression of CD3z and CD28
co-stimulation by expressing these intracellular endodomains in two separate chimeric proteins requires expression of two antigens to result in fully competent CAR acti-
vation. Selection of two antigens mutually co-expressed only on tumor cells limits recognition of normal tissue expressing only one antigen. (B) Inhibitory CAR to normal
tissue. Expression of a CAR with an inhibitory intracellular signaling domain derived from PD-1 that is antigen-restricted to normal tissue can result in reversible inhibition
of T-cell activation mediated by a second CAR specific for tumor antigen. (C) Pharmacological control of CAR activation can be achieved by inclusion of domains in the
CAR construct that come together and render the CAR functionally active only in the presence of an administered drug. Thus, in the absence of drug, CAR is functionally
inactive. (D) CARs recognizing adaptor molecules. Generation of tumor-specific scFvs tagged with unique molecules can be used as adaptor molecules to mediate recog-
nition of tumor by CARs specific to the unique tag. (E) CARs sensitive to antigen density. Because tumor cells often express antigens at a higher density than that of nor-
mal tissue, CARs can be generated to be sensitive only to high-density antigen by reducing the affinity of the scFv, thereby sparing normal tissue with low antigen
density from CAR recognition.
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The transient nature of CAR expression by mRNA modifi-
cation also limits antitumor activity, increasing the potential
for relapse. This has been demonstrated in a disseminated
model of neuroblastoma in which T cells expressing a GD2-
specific CAR introduced by mRNA exhibited reduced antitu-
mor efficacy and tumor infiltration relative to stably modified
CAR T cells. This may be due to a lack of antigen-driven migra-
tion or a proliferative difference, both of which could arise from
accelerated loss of the CAR after antigenic stimulation.37, 39

Extending the half-life of CAR expression by delivery of a
higher dose of mRNA or by use of synthetic mRNA with stabi-
lizing elements may enhance antitumor activity.33, 36 Duration
of CAR expression impacts both the potential to reduce normal
tissue toxicity and antitumor activity, and must be carefully bal-
anced to maximize therapeutic efficacy while minimizing nor-
mal tissue toxicity. In addition, lymphodepletion immediately
before infusion and weighted split-dosing, with one larger,
front-loaded dose followed by smaller maintenance doses given
weekly has been shown to enhance antitumor activity of RNA-
modified CAR T cells in models of leukemia and disseminated
ovarian cancer, approaching the efficacy observed from a single
treatment with stably modified CAR T cells.35, 40

Early clinical results have demonstrated feasibility and safety of
treatment with mRNA-modified mesothelin-specific CAR T cells,
with infusions being well-tolerated.41 Although reduced antitumor
activity of mRNA-modified CAR T cells may be overcome bymul-
tiple injections, this also poses risks for the development of immune
responses to foreign CAR moieties and the development of ana-
phylaxis to CAR T cells, which was observed in one patient receiv-
ing mRNA-modified mesothelin-specific CAR T cells that was
attributed to an intermittent dosing schedule.42 Transiently-modi-
fied CAR T cells have limited potential to mediate long-term nor-
mal tissue toxicity, but the potential for potent normal tissue
activity exists from themoment of infusion, before CAR expression
declines. Serious adverse events from T-cell therapy can progress
rapidly from the onset of clinical symptoms; therefore, a strategy to
protect normal tissue from the moment of CARC T-cell infusion is
optimal.7, 8

Inducible CAR expression

Inducible CAR expression in the local tumor environment can
be achieved via the dual synNotch receptor/CAR system,
dubbed AND-gate T cells (Fig. 3C).43 In this system, the first
receptor, a synNotch receptor recognizing a TAA designated
“A” on the tumor, is constitutively expressed and activates the
transcription of a second, traditional CAR under inducible con-
trol of synNotch response elements in the promoter region,
which recognizes TAA “B” on tumor cells, thereby, activating
cytolytic machinery in T cells. In a bilateral, subcutaneous
tumor model, tumors expressing both antigen A and antigen B,
but not antigen B alone, were significantly targeted by AND-
gate T cells, indicating a lack of bystander cytotoxicity after
priming in the tumor microenvironment. CAR-expressing
AND-gate T cells infiltrated and accumulated in dual antigen-
expressing tumors, but much less so in single antigen B-
expressing tumors. This was attributed to the short half-life of
the CAR, about 8 h, relative to the time required for T cells to
migrate, and the increased receptor-engagement of AND-gate

T cells in tissues expressing both antigens. Identifying two tar-
gets uniquely co-expressed on tumors and absent on normal
tissue creates a profile to distinguish malignant from normal
tissue and limits on-target, off-tissue toxicity. Because AND-
gate T cells require dual antigen expression for CAR activation
and tumor clearance, this approach is best suited for antigens
with complete, homogeneous tumor expression, because elimi-
nation of either antigen will result in deactivation of CAR func-
tion and incomplete tumor clearance.

Inducible expression of cytokines such as IL-12 has been
demonstrated in genetically engineered cells via a drug-acti-
vated inducible promoter.44, 45 This Rheo-Switch Therapeutic
System� (RTS�) allows for tight regulation of protein expres-
sion by administration of an oral ligand, veledimex, to activate
the promoter. Preclinical and clinical studies have demon-
strated efficacy and biologic activity of the RTS. Control of
CAR expression by this drug-inducible promoter regulation
could be used to conditionally express the CAR, and effectively
discontinue CAR expression in the event of observed toxicity
(Fig. 3D). This is a theoretical approach and represents a future
area of investigation.

Clinical applicability of ligand-induced CARs requires that (i)
the promoter is specifically activated by the drug, (ii) no immunor-
eceptor is expressed in the absence of the drug, and (iii) the kinetics
of CAR expression and recycling are characterized. To reduce on-
target, off-tissue toxicity, withdrawal of the oral activator ligand
must reduce expression of the CAR quickly enough to resolve
symptoms of clinical toxicity before they become severe. A benefit
to this approach is that reduced CAR expression by withdrawal of
the oral ligand is reversible, and therapy could potentially be
resumed once the toxicity has subsided, in contrast to ablating
CAR-expressing T cells with suicide genes or transient expression
of CAR inmRNA-modified T cells.

Restricting CARC T-cell activation

Dissociated signaling domains

Dual-specific, complementary receptors with two specificities can
selectively activate T cells when two targeted TAAs are co-
expressed on the tumor, by dissociating signaling domains. In this
system, a traditional CAR that recognizes TAA “A” signals via
CD3z, while a second receptor (termed a chimeric co-stimulation
receptor [CCR]), recognizing TAA “B,” activates co-stimulation
endodomains (Fig. 4A). Thus, complete T-cell activation and effec-
tor functions are only attained with simultaneous engagement of
CAR and CCR by co-expression of the two antigens.46-48 This
approach has been piloted with CAR and CCR with specificities
redirected toward HER2 and MUC1 for breast cancer, prostate-
specific membrane antigen (PSMA) and PSCA for prostate cancer,
and mesothelin and a-folate receptor for ovarian cancer. However,
studies have demonstrated that low-level T-cell activation and lytic
function can occur against single antigen-expressing targets via
CAR expression in the absence of CCR activation.46, 47 One strategy
to overcome this limitation is to develop a CAR with suboptimal
affinity, such that it barely renders T cells functional when activated
by a single antigen, and activation is only rescued by ligation of
CCR.48 The requirement for two immunoreceptors to be co-
expressed on T cells requires consideration of the spatial
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stoichiometry of the two TAAs on malignant cells for efficient T-
cell activation. In addition, loss of either antigen increases the
potential for the emergence of antigen-escape variants.

Inhibitory CARs to normal tissue antigen

An inhibitory CAR (iCAR) with specificity for an antigen
found on normal cells but not tumor cells, and coupled to pro-
grammed death receptor 1 (PD-1) signaling endodomains, is
capable of inhibiting T-cell-mediated killing and cytokine pro-
duction after binding of normal tissue antigen (Fig. 4B).49

iCAR T-cell inhibition is reversible, and T cells are subse-
quently capable of productive responses upon encountering
TAAs. This strategy’s success also depends on consideration of
temporal and spatial stoichiometric expression of CAR/iCAR
and their respective antigens. Therefore, normal tissue toxicity
could still occur if iCAR or antigen expression is insufficient in
the presence of overwhelming CAR/TAA expression.

Pharmacologic control of CAR activation

Inducible CAR activation has been achieved by using a pair of
well-defined heterodimerizing proteins, the FK506-binding pro-
tein (FKBP) and FKBP-rapamycin binding (FRB) domains,
which are brought together in the presence of the small molecule
rapamycin or its less immunosuppressive analog AP21967
(Fig. 4C).50,51 Two studies have engineered CARs including these
domains to result in conditional activation in the presence of
dimerizing small molecules. In one engineering strategy, the
CAR was dissociated into two separate proteins: an antigen-bind-
ing domain that recognizes TAA and an intracellular signaling
domain containing 41BB and CD3z.50 These two receptors
dimerized to produce an activated CAR complex at engineered
FKBP and FRB domains in the presence of AP21967. Antigen-
specific activity of CAR T cells, including production of IL-2 and
IFNg, proliferation, and in vitro and in vivo cytotoxicity required
both antigen and small molecule presence and was titratable.

In a second engineering strategy, the FKBP and FRB domains
were included within the extracellular hinge region of a CAR,
which destabilizes cell-surface expression by distancing the scFv
from the cell membrane.51 Addition of rapamycin or its analog
AP21967 binds and brings together the FKBP and FRB domains,
shortening the CAR extracellular domain and “switching on” CAR
expression. CAR expression increased 15-fold after rapamycin
addition at clinically relevant concentrations. Lytic activity in
response to CD19C Daudi cells was titratable by the amount of
small molecule activator and was insignificant in the activator’s
absence. However, Daudi cells have relatively low CD19 expression
relative to Nalm-6 or Raji cell lines.52 Whereas CAR expression
was reduced in the absence of rapamycin or its analog AP21967, it
was not completely absent, raising the possibility that basal CAR
expression would contribute to toxicity. Indeed, T-cell activation is
impacted by the density of CAR and target antigen expression,
such that a low density of CAR may activate T cells by highly
expressed antigen, but not low levels of antigen.53 Thus, it is possi-
ble that the low levels of CAR expression in the absence of rapamy-
cin or AP2967 are still capable of on-target, off-tissue toxicity in
response to high levels of antigen expression.

Sustained locoregional delivery of the small molecule could be
used to exercise spatial control over CAR activity and reduce
normal tissue toxicity. Because the rapalog AP21967 has a rela-
tively short half-life (4 hours), cessation of administration at the
onset of clinical symptoms of serious adverse events should
result in rapid clearance and reversal of CAR-mediated toxicity.
In addition, tacrolimus binds the FKBP, but not FRB, domain,
and can be used to antagonize CAR expression by competing
with rapamycin.51 Therefore, this approach for controlling CAR
expression may have an added clinical benefit of being able to
switch-off CAR expression in the event of adverse toxicity.

CARs recognizing adaptor molecules

Another method to limit the spectrum of CAR binding includes
the use of adaptor molecules to mediate recognition between
universal CARs and TAAs (Fig. 4D). Antibodies specific to anti-
gen are modified to express a switch, fluorescein isothiocyanate
(FITC) or a yeast-derived peptide neo-epitope (PNE) sequence,
and infused with switch-specific (i.e., FITC-specific or PNE-spe-
cific) CARC T cells.54,55 Optimization of the adaptor antibody
demonstrated that switch conjugates located proximal to antigen
binding domains improved CD19-specific CAR activation and
antitumor function, but that distal conjugation was optimal for
CD22-specific CARs, suggesting that optimal switch conjugation
needs to be empirically evaluated for each antibody/CAR pair. In
vivo evaluation demonstrated potent antitumor activity that was
dependent on the presence of antigen and adaptor molecule
dose and comparable with traditional CD19-specific CARs.
Titration of the antibody could be used to mitigate acute toxicity,
and halting the administration of the adaptor resulted in normal
B-cell repopulation. However, it is as yet unclear whether the
elimination of the switch will result in rapid reversal of severe,
acute toxicity in a clinical setting. In addition, because the adap-
tor molecule and genetically modified T cells are administered
systemically, it does not protect against short-term normal tissue
toxicity. There are added expenses associated with co-infusing
antibody and CARC T cells, which will need to be addressed for
widespread clinical application.

CARs sensitive to antigen density

Some TAAs are expressed on tumors at a higher density than
their physiologic level of expression on normal tissue(s). Recent
studies have exploited this difference to generate CARs capable
of distinguishing malignant from normal cells. Reducing the
affinity of scFv within a CAR allows the design to discriminate
between target cells based on antigen density, such that lower
affinity CARs bind preferentially to targets with high TAA den-
sity but not those with low density (Fig. 4E). These data have
been demonstrated in CAR species targeting HER2, a-folate
receptor, b-folate receptor, and EGFR.56-59 scFvs with reduced
affinity can be engineered using screening programs and site-
directed mutagenesis to the complement-determining regions
(CDRs). One advantage of tuning CAR affinity to reduce tar-
geting of normal cells is that T-cell effector function is not
dampened in response to docking with high-density TAAs on
tumors. However, affinity-tuned CAR T cells may also have
reduced capacity to mediate cytotoxicity against low-density
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TAA-expressing tumors, which may increase the potential for
outgrowth of tumor-escape variants.

In vivomodeling of on-target, off-tissue toxicity

Preclinical CAR T cell efficacy is often evaluated in orthotopic
murine model systems in which human T cells are modified to
target human xenografts in immune deficient murine hosts.
Inherent weaknesses of this model include the inability to
model the interactions of CAR T cells with the systemic and
local immune system and inability to predict on-target, off-tis-
sue toxicity since scFvs for human antigens often do not cross
react with murine counterparts. Thus, alternative models are
desirable to model CAR T cell activity in vivo.

Immune competent murine models evaluating CD19-specific
CAR T cell function have shown long-term B cell aplasia that
was also observed in human clinical trials, indicating their utility
in detecting normal tissue toxicity.60 In a fully murine model of
glioblastoma expressing EGFRvIII, EGFRvIII-specific CAR T
cells were able to cure mice and were protected from rechallenge
with EGFRvIIIneg tumor, suggesting potential epitope spread-
ing.61 However, in human clinical trials of EGFRvIII-specific
CAR T cells, the patients recurred with EGFRvIII negative
tumors, indicating immune competent murine models may still
be insufficient for human modeling. Optimization of dosing regi-
men and implication of systemic immune activation in this
model highlight benefits of immunocompetent murine models;
however, building the murine CAR (including scFv specific for
murine counterpart, and intracellular signaling components) is
laborious and may not recapitulate biology of the human CAR.
Furthermore, distribution of TAAs on normal tissue varies from
species to species, and targeting the murine epitope may not
recapitulate toxicity in human tissues. Normal tissue toxicity of a
ROR1-specific CAR was screened in an immunocompetent pri-
mate model since primates have high homology to human.62

Importantly, these models are often cost-prohibitive as the num-
bers of subjects needed are not sufficient to make meaningful
conclusions regarding the risks of toxicity.

Investigation of additional models to measure on-target, off-
tissue toxicity of CAR T cells is warranted. Orthotopic models
in mice transgenic for human antigen may provide a simple,
cost-effective method for evaluating on-target, off-tissue toxic-
ity, although location and density of human antigen will need
to be assayed for physiological relevance. Alternatively, treat-
ment of spontaneous tumors in companion canines using syn-
geneic CAR T cells may be a middle-ground between
immunocompetent murine models with disparate physiology
and expensive primate models, since canine T cells can be man-
ufactured using methods similar to those used to modify
human T cells.63

Conclusion

Determining the approach best suited to reduce normal tissue
toxicity by a particular CAR/antigen pair requires understand-
ing and leverage of the biology of the specific tumor against
itself. For example, the presence of unique factors in the tumor
microenvironment, such as hypoxia or secreted chemokines,
can be used to concentrate effector T cells at the tumor site.

Understanding the pattern of expression of the targeted TAA
on normal and tumor tissue is critical. Antigens widely
expressed on normal tissues require mechanisms with tight
control of CAR expression or T cell activation and should be
designed with back-up secondary control mechanisms, such as
suicide gene expression. Such a combination might include an
inducible CAR, AND-gate CARs requiring dual antigen expres-
sion, or CARs recognizing adaptor molecules with highly effec-
tive and fast-acting suicide signals via iCasp9. Targeting
multiple antigens uniquely co-expressed on tumors provides an
advantageous strategy to restrict activation at normal tissue
sites only expressing one antigen. In these instances, under-
standing the pattern of expression of both antigens relative to
each other is key. Two antigens expressed homogenously in a
tumor are ideal targets for AND-gate T cells or CARs with dis-
sociated signaling domains as uneven expression of one antigen
over another may lead to incomplete CAR activation and
tumor clearance. Use of inhibitory CARs to dampen activation
in response to normal tissue should take the stoichiometry of
activating and inhibitory antigens on normal tissue into
account, as a higher density of antigen for inhibitory receptor
would be ideal to ensure a robust signal to overcome the acti-
vating CAR signal. Finally, strategies in which toxicity is greatly
reduced to normal tissue, but may potentially still occur, such
as affinity-modulated CARs, could be strategically combined
with approaches to restrict their expression/activation to the
tumor microenvironment, such as homing via chemokine
receptors or utilized in an AND-gate approach to further
reduce the likelihood of normal tissue toxicity. These advances
in the bioengineering of T cells provide a pathway to expand T
cell therapies to TAAs with more widespread normal tissue
expression, widening application of CARs to additional tumors.
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