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Abstract Recent studies have demonstrated that task success signals can modulate learning

during sensorimotor adaptation tasks, primarily through engaging explicit processes. Here, we

examine the influence of task outcome on implicit adaptation, using a reaching task in which

adaptation is induced by feedback that is not contingent on actual performance. We imposed an

invariant perturbation (rotation) on the feedback cursor while varying the target size. In this way,

the cursor either hit or missed the target, with the former producing a marked attenuation of

implicit motor learning. We explored different computational architectures that might account for

how task outcome information interacts with implicit adaptation. The results fail to support an

architecture in which adaptation operates in parallel with a model-free operant reinforcement

process. Rather, task outcome may serve as a gain on implicit adaptation or provide a distinct error

signal for a second, independent implicit learning process.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39882.001

Introduction
Multiple learning processes contribute to successful goal-directed actions in the face of changing

physiological states, body structures, and environments (Taylor et al., 2014; Huberdeau et al.,

2015; McDougle et al., 2016). Among these processes, implicit sensorimotor adaptation is of pri-

mary importance for maintaining appropriate calibration of sensorimotor maps over both short and

long timescales. A large body of work has focused on how sensory prediction error (SPE), the differ-

ence between predicted and actual sensory feedback, drives sensorimotor adaptation

(Shadmehr et al., 2010). In addition, there is growing appreciation of the contribution of other pro-

cesses to sensorimotor learning, including strategic aiming and reward-based learning (Taylor et al.,

2014; Wu et al., 2014; Bond and Taylor, 2015; Galea et al., 2015; Nikooyan and Ahmed, 2015;

Summerside et al., 2018). In terms of the latter, several recent studies have shown that rewarding

successful actions alone is sufficient to learn a new sensorimotor mapping (Izawa and Shadmehr,

2011; Therrien et al., 2016; Therrien et al., 2018).

Little is known about how feedback about task outcome impacts adaptation from SPE; indeed,

the literature presents an inconsistent picture of how reward impacts performance in sensorimotor

adaptation tasks. For example, two recent visuomotor rotation studies using similar tasks and reward

structures led to divergent conclusions: One reported that reward enhanced retention of the

adapted state, but had no effect on the rate of adaptation (Galea et al., 2015), whereas the other

reported a beneficial effect of rewards specifically on adaptation rate (Nikooyan and Ahmed,
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2015). More recently, Leow and colleagues (Leow et al., 2018) created a situation in which task out-

come was experimentally manipulated by shifting the target on-line to either intersect a rotated cur-

sor or move away from the cursor. Task success, artificially imposed by allowing the displaced cursor

to intersect the target, led to attenuated adaptation.

One factor that may contribute to these inconsistencies is highlighted by studies showing that,

even in relatively simple sensorimotor adaptation tasks, overall behavior reflects a combination of

explicit and implicit processes (Taylor and Ivry, 2011; Taylor et al., 2014). That is, while SPE is

thought to drive adaptation (Tseng et al., 2007), participants are often consciously aware of the per-

turbation and strategically aim as one means to counteract the perturbation. It may be that reward

promotes the activation of such explicit processes (Bond and Taylor, 2015). Consistent with this

hypothesis, Codol and colleagues (Codol et al., 2017), showed that at least one of the putative

effects of reward, the strengthening of motor memories (Shmuelof et al., 2012), is primarily the

result of re-instantiating an explicit aiming strategy rather than via the direct modulation of adapta-

tion. As explicit processes are more flexible than implicit processes (Bond and Taylor, 2015), differ-

ential demands on strategies may contribute toward the inconsistent effects reported across

previous studies manipulating reward (Holland et al., 2018).

We recently introduced a new method, referred to as clamped visual feedback, designed to iso-

late implicit adaptation (Morehead et al., 2017; Kim et al., 2018). During the clamp, the angular

trajectory of the feedback cursor is invariant with respect to the target location and thus spatially

independent of hand position (Shmuelof et al., 2012; Vaswani et al., 2015; Morehead et al.,

2017; Kim et al., 2018; Vandevoorde and Orban de Xivry, 2018). Participants are informed of the

invariant nature of the visual feedback and instructed to ignore it. In this way, explicit aiming should

be eliminated and, thus, allow for a clean probe of implicit learning (Morehead et al., 2017).

Here, we employ the clamp method to revisit how task outcome, even when divorced from actual

performance, influences implicit adaptation. In a series of three experiments, the clamp angle was

held constant and only the target size was manipulated. We assume that the clamp angle, defined

with respect to the centers of the target and feedback cursor, specifies the SPE. In contrast, by vary-

ing the target size, we independently manipulate the information regarding task outcome, compar-

ing conditions in which the feedback cursor signals the presence or absence of a target error (TE),

defined in a binary manner by whether the cursor misses or hits the target. Given that the partici-

pants are aware that they have no control over the feedback cursor, the effect of this task outcome

information would presumably operate in an implicit, automatic manner, similar to how we assume

the clamped feedback provides an invariant SPE signal.

Our experiments show that hitting the target has a strong effect on performance, attenuating the

rate and magnitude of learning. Through computational modeling, we explore hypotheses that

might account for this effect, considering three models in which implicit learning is driven by both

SPE and task outcome information. In the first two models, hitting the target serves as an intrinsic

reward signal that either reinforces associated movements or directly modulates adaptation. In the

third model, hitting or missing the target serves as a task-outcome feedback signal that drives a sec-

ond implicit learning process, one that operates in parallel with implicit adaptation.

Results
In all experiments, we used clamped visual feedback, in which the angular trajectory of a feedback

cursor is invariant with respect to the target location and thus spatially independent of hand position

(Morehead et al., 2017). The instructions (see Supplementary file 1-Target Size Experiment Instruc-

tions) emphasized that the participant’s behavior would not influence the cursor trajectory: They

were to ignore this stimulus and always aim directly for the target. This method allows us to isolate

implicit learning from an invariant error, eliminating potential contributions from explicit aiming that

might be used to reduce task performance error.

Experiment 1
In Experiment 1, we asked if the task outcome, defined in terms of whether or not the cursor hit the

target, would modulate learning under conditions in which the feedback is not contingent on behav-

ior. We tested three groups of participants (n = 16/group) with a 3.5˚ clamp for 80 cycles (eight tar-

gets per cycle). The purpose of this experiment was to examine the effects of three different
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relationships between the clamp and target while holding the visual error (defined as the center-to-

center distance between the cursor and target) constant (Figure 1b): Hit Target (when the terminal

position of the clamped cursor is fully embedded within a 16 mm diameter target), Straddle Target

(when roughly half of the cursor falls within a 9.8 mm target, with the remaining part outside the tar-

get), Miss Target (when the cursor is fully outside a 6 mm target).

Figure 1. Hitting the target attenuates the behavioral change from clamped feedback. (a) During clamped visual feedback, the angular deviation of the

cursor feedback is held constant throughout the perturbation block, and participants are fully informed of the manipulation. (b) The clamp angle was

equal across all three conditions tested in Experiment 1, with only the target size varying between conditions. (c) Block design for experiment. (d) As in

previous studies with clamped feedback, the manipulation elicits robust changes in hand angle. However, the effect was attenuated in the Hit Target

condition, observed in the (e) rate of early adaptation, and, more dramatically, in (f) late learning. (g) The proportion of learning retained over the no

feedback block following the clamp did not differ between groups. Dots represent individuals; shading and error bars denote SEM.

DOI: https://doi.org/10.7554/eLife.39882.002

The following source data is available for figure 1:

Source data 1. This file contains hand angle data for each trial and participant in Experiment 1, and was used to generate Figure 1d–g.

DOI: https://doi.org/10.7554/eLife.39882.003
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Hitting the target reduced the overall change in behavior (Figure 1d). Statistically, there was a

marginal difference on the rate of initial adaptation (one-way ANOVA: F(2,45)=2.67, p=0.08,

h2 = 0.11; permutation test: p=0.08; Figure 1e) and a significant effect on late learning (F(2,45)

=4.44, p=0.016, h2 = 0.17; Figure 1f). For the latter measure, the value for the Hit Target group was

approximately 35% lower than for the Straddle and Miss Target groups, with post-hoc comparisons

confirming the substantial differences in late learning between the Hit Target and both the Straddle

Target (95% CI [�16.13˚, �2.34˚], t(30)=-2.73, p=0.010, d = 0.97) and Miss Target (95% CI [�16.76˚,

�2.79˚], t(30)=-2.86, p=0.008, d = 1.01) groups. These differences were also evident in the afteref-

fect measure, taken from the first cycle of the no feedback block (see Materials and methods). The

learning functions for the Straddle and Miss Target groups were remarkably similar throughout the

entire clamp block and reached similar magnitudes of late learning (95% CI [�7.90˚, 8.97˚], t(30)=.13,

p=0.898, d = 0.05).

As seen in Figure 1d, the change in hand angle from the final cycle of the clamp block to the final

cycle of the no feedback block was less for the Hit than the Straddle and Miss groups (one-way

ANOVA: F(2,45)=4.42, p=0.018, h2 = 0.16; Hit vs Miss: 95% CI [1.47˚, 8.00˚], t(30)=2.96, p=0.006,

d = 1.05; Hit vs Straddle: 95% CI [1.06˚, 8.74˚], t(30)=2.61, p=0.014, d = 0.92). This result indicates

that retention was strongest in the Hit group. However, retention is generally analyzed as a relative,

rather than absolute measure, especially when the amount of learning differs between groups. We

thus re-analyzed the change in hand angle across the no feedback block, but now as the ratio of the

last no-feedback cycle relative to the last clamp cycle. In this analysis, there was no difference

between the three groups (Figure 1g; F(2,45)=2.06, p=0.139, h2 = 0.08; permutation test: p=0.138).

Interestingly, the results from this experiment are qualitatively different to those observed when

manipulating the angular deviation of the clamp. Our previous study using clamped visual feedback

demonstrated that adaptation in response to errors of varying size, which was assessed by manipu-

lating the clamp angle, results in different early learning rates, but produces the same magnitude of

late learning (Kim et al., 2018). In contrast, the results in Experiment 1 show that hitting the target

attenuates learning, with the effect becoming pronounced after prolonged exposure to the pertur-

bation. Furthermore, the effect of task outcome appears to be categorical, as it was only observed

for the condition in which the cursor was fully embedded within the target (Hit Target), and not

when the terminal position of the cursor fell partially outside the target (Straddle Target).

Experiment 2
Experiment 2 was designed to extend the results of Experiment 1 in two ways: First, to verify that

the effect of hitting a target generalized to other contexts, we changed the size of the clamp angle.

We tested two groups of participants (n = 16/group) with a small 1.75˚ clamp. For the Hit Target

group (Figure 2a), we used the large 16 mm target, and thus, the cursor was fully embedded. For

the Straddle Target group, we used the small 6 mm diameter target, resulting in an endpoint config-

uration in which the cursor was approximately half within the target and half outside the target. We

did not test a Miss Target condition because having the clamped cursor land fully outside the target

would have necessitated an impractically small target (~1.4 mm). Moreover, the results of Experi-

ment 1 indicate that this condition is functionally equivalent to the Straddle Target group. The sec-

ond methodological change was made to better assess asymptotic learning. We increased the

number of clamped reaches to each location to 220 (reducing the number of target locations to four

to keep the experiment within a 1.5 hr session). This resulted in a nearly three-fold increase in the

number of clamped reaches per location.

Consistent with the results of Experiment 1, the Hit Target group showed an attenuated learning

function compared to the Straddle Target group (Figure 2b). Statistically, there was again only a

marginal difference in the rate of early adaptation (95% CI [�0.52˚/cycle, .01˚/cycle], t(30)=-1.96,

p=0.06, d = 0.69; Figure 2c), whereas the difference in late learning was more pronounced (95% CI

[�11.38˚, �1.25˚], t(30)=-2.54, p=0.016, d = 0.90; permutation test: p=0.007; Figure 2d). Indeed,

the 35% attenuation in asymptote for the Hit Target group compared to the Straddle Target group

is approximately equal to that observed in Experiment 1.

We used a different approach to examine retention in Experiment 2, having participants complete

10 cycles with a 0˚ clamp following the extended 1.75˚ clamp block (Shmuelof et al., 2012). We

opted to use this alternative method since the presence of the 0˚ clamp would create less contextual

change when switching from the clamp to the retention block, compared to the no feedback block
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of Experiment 1. In terms of absolute change across the 0˚ clamp block, there was a trend for

greater retention in the Hit group compared to the Straddle group (95% CI [�0.27˚, 3.53˚], t(30)

=1.75, p=0.090, d = 0.62). However, when analyzed as a proportional change, the difference was

not reliable (95% CI [�0.06,. 27], t(30)=1.27, p=0.21, d = 0.45).

The results of these first two experiments converge in showing that learning from an invariant

error is attenuated when the cursor hits the target, relative to conditions in which at least part of the

cursor falls outside the target. This effect replicated across two experiments that used different

clamp sizes.

Figure 2. The effects of hitting a target generalize to a different context and remain consistent at asymptote. The attenuation of adaptation caused by

hitting the target (a) generalizes to a different clamp angle and is stable over an extended clamp block (b). As in Experiment 1, there was (c) a marginal

difference in early adaptation rate that became (d) a more dramatic difference in late learning. (e) Again, there was no difference in the proportion of

retention, this time during a 0˚ clamp block. Dots represent individuals; shading and error bars denote SEM.

DOI: https://doi.org/10.7554/eLife.39882.004

The following source data is available for figure 2:

Source data 1. This file contains hand angle data for each trial and participant in Experiment 2, and was used to generate Figure 2b–e.

DOI: https://doi.org/10.7554/eLife.39882.005
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Attenuated behavioral changes are not due to differences in motor
planning
Although we hypothesized that manipulating target size in Experiments 1 and 2 would influence

learning mechanisms that respond to the differential task outcomes (i.e., hit or miss), it is also impor-

tant to consider alternative explanations for the effect of target size on learning. Figure 3 provides a

schematic of the core components of sensorimotor adaptation. The figure highlights that changes in

adaptation might arise because target size alters the inputs on which learning operates, rather than

from a change in the operation of the learning process itself. For example, increasing the target size

may increase perceptual uncertainty, creating a weaker error signal. We test this hypothesis in a con-

trol condition in Experiment 3.

Another hypothesis centers on how variation in target size might alter motor planning. Assuming

target size influences response preparation, participants in the Hit Target groups had reduced accu-

racy demands relative to the other groups, given that they were reaching to a larger target (Soecht-

ing, 1984). If the accuracy demands were reduced for these large targets, then the motor command

could be more variable, resulting in more variable sensory predictions from a forward model, and

thus a weaker SPE (Körding and Wolpert, 2004). While we do not have direct measures of planning

noise, a reasonable proxy can be obtained by examining movement variability during the unper-

turbed baseline trials (data from clamped trials would be problematic given the induced change in

behavior). If there is substantially more noise in the plan for the larger target, then the variability of

hand angles should be higher in this group (Churchland et al., 2006). In addition, one may expect

faster movement times (or peak velocities) and/or reaction times for reaches to the larger target,

assuming a speed-accuracy tradeoff (Fitts, 1992).

Examination of kinematic and temporal variables (see Appendix 1) did not support the noisy

motor plan hypothesis. In Experiment 1, average movement variability across the eight targets dur-

ing cycles 2–10 of the veridical feedback baseline block were not reliably different between groups

(variability: F(2,45)=2.32, p=0.110, h2 = 0.093). Movement times across groups were not different (F

(2,45)=2.19, p=0.123, h2 = 0.089). However, we did observe a difference in baseline RTs (F(2,45)

=4.48, p=0.017, h2 = 0.166), with post hoc t-tests confirming that the large target (Hit) group had

faster RTs than the small target (Miss) group (95% CI [�108 ms, �16 ms], t(30)=-2.74, p=0.010,

d = 0.97) and medium target (Straddle) group (95% CI [�66 ms, �10 ms], t(30)=-2.76, p=0.010,

d = 0.97). The medium target (Straddle) and small target groups’ RTs were not reliably different

(95% CI [�74 ms, 26 ms], t(30)=-.984, p=0.333, d = 0.348). This baseline difference in RTs was only

observed in this experiment (see Appendix 1), and there was no correlation between baseline RT

and late learning for the large target group (r = 0.09, p=0.73), suggesting that RTs are not associ-

ated with the magnitude of learning.

During baseline trials with veridical feedback in Experiment 2, mean spatial variability, measured

in terms of hand angle, was actually lower for the group reaching to the larger target (Hit Target

group: 3.09˚ ±. 18˚; Straddle Target group: 3.56˚ ±. 16˚; t(30)=-1.99 p=0.056, d = 0.70). Further

Figure 3. Target size could affect adaptation due to increased perceptual uncertainty or greater variability in

motor planning. In the case of perceptual uncertainty, the feedback signal is weakened, thus leading to a weaker

SPE signal. In the case of noisy motor planning, the forward model prediction would also be more variable and

effectively weaken the SPE.

DOI: https://doi.org/10.7554/eLife.39882.006

Kim et al. eLife 2019;8:e39882. DOI: https://doi.org/10.7554/eLife.39882 6 of 28

Research Communication Neuroscience

https://doi.org/10.7554/eLife.39882.006
https://doi.org/10.7554/eLife.39882


supporting the argument that planning was no different across conditions, neither reaction times

(Hit Target: 378 ± 22 ms; Straddle Target: 373 ± 12 ms) nor movement times (Hit Target: 149 ± 8

ms; Straddle Target: 157 ± 8 ms) differed between the groups (t(30)=-0.183, p=0.856, d = 0.06 and

t(30)=0.71, p=0.484, d = 0.25, respectively).

One reason for not observing consistent effects of target size on accuracy or temporal measures

could be due to the constraints of the task. Studies showing an effect of target size on motor plan-

ning typically utilize point-to-point movements (Soechting, 1984; Knill et al., 2011) in which accu-

racy requires planning of both movement direction and extent. In our experiments, we utilized

shooting movements, thus minimizing demands on the control of movement extent. Endpoint vari-

ability is generally larger for movement extent compared to movement direction (Gordon et al.,

1994). It is also possible that participants are near ceiling-level performance in terms of hand angle

variability.

Theoretical analysis of the effect of task outcome on implicit learning
Having ruled out a motor planning account of the differences in performance in Experiments 1 and

2, we next considered different ways in which target error could affect the rate and asymptotic level

of learning. Adaptation from SPE can be thought of as recalibrating an internal model that learns to

predict the sensory outcome of a motor command (Figure 3). Here, we model adaptation with a sin-

gle rate state-space equation of the of the following form:

xðnþ 1Þ ¼ A�xðnÞ þ UðeÞ (1)

where x represents the motor output on trial n, A is a retention factor, and U represents the update/

correction size (or, learning rate) as a function of the error (clamp) size, e. This model is mathemati-

cally equivalent to a standard single rate state-space model (Thoroughman and Shadmehr, 2000),

with the only modification being the replacement of the error sensitivity term, B, with a correction

size function, U (Kim et al., 2018). Unlike standard adaptation studies where error size changes over

the course of learning, e is a constant with clamped visual feedback and thus, U(e) can be estimated

as a single parameter. We refer to this model as the motor correction variant of the standard state

space model. The first two experiments make clear that a successful model must account for the dif-

ferences between hitting and missing the target, even while holding the error term in Equation. (1)

(clamp angle) constant.

We consider three variants to the basic model that might account for how task outcome influen-

ces learning. The first model is motivated by previous studies that have considered how reinforce-

ment processes might operate in sensorimotor adaptation tasks, and in particular, the idea that task

outcome information impacts a model-free operant reinforcement process (Huang et al., 2011;

Shmuelof et al., 2012). We can extend this idea to the clamp paradigm, considering how the manip-

ulation of target size affects reward signals: When the clamp hits the target, the feedback generates

a positive reinforcement signal; when the clamp misses (or straddles) the target, this reinforcement

signal is absent. We refer to the positive outcome as an intrinsic reward given that it is not contin-

gent on the participant’s behavior. This signal could strengthen the representation of its associated

movement (Gonzalez Castro et al., 2011; Shmuelof et al., 2012), and thus increase the likelihood

that future movements will be biased in a similar direction.

We combine this idea with the state space model to create a Movement Reinforcement model

(Figure 4a). Here, a model-free reinforcement-based process is combined with a model-based adap-

tation process. Intuitively, this model accounts for the attenuated learning functions for the Hit con-

ditions in Experiments 1 and 2 because the effect of movement reinforcement resists the directional

change in hand angle induced by SPEs. In this model, intrinsic reward has no direct effect on SPE-

driven adaptation. That is, reward and error-based learning are assumed to operate independently

of each other, with the final movement being the sum of these two processes.

Here, we formalize a Movement Reinforcement model, taking this as illustrative of a broad class

of operant reinforcement models in which the reinforcement process acts in parallel to a traditional

state space model of sensorimotor adaptation. The motor output, y, is a weighted sum of a model-

free reinforcement process and an adaptation process, x:

yðnÞ ¼ ð1�V1ðnÞÞ
�
xðnÞ þ V1ðnÞ

�
VdðnÞ (2)
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where a population vector (Georgopoulos et al., 1986), V, indicates the current bias of motor repre-

sentations within the reinforcement system (see Materials and methods). The direction of this vector

(Vd) corresponds to the mean preferred direction resulting from the reinforcement history, with the

length (Vl) corresponding to the strength of this biasing signal. This vector can be viewed as a weight

on the movement reinforcement process (0 = no wt, 1 = full wt), relative to the adaptation process.

In sum, the Movement Reinforcement model entails four parameters, composed of separate

update and retention parameters for the reinforcement learning process and the adaptation process

(see Materials and methods). The former is model-free, dependent on an operant conditioning pro-

cess by which a task outcome signal modifies movement biases, whereas the latter is model-based,

using SPE to recalibrate an internal model of the sensorimotor map. Importantly, the predictions of

this model are not dependent on whether we model the effect of reinforcement as operating on

Figure 4. Three models of how intrinsic reward or target error could affect learning. (a) In the Movement Reinforcement model, reward signals cause

reinforcement learning processes to bias future movements toward previously rewarded movements. The adaptation process is sensitive only to SPE

and not reward. The overall movement reflects a composite of the two processes. (b) In the Adaptation Modulation model, reward directly attenuates

adaptation to SPE. (c) In the Dual Error model, a second, independent implicit learning process, one driven by TE, combines with SPE-based

adaptation to modify performance.

DOI: https://doi.org/10.7554/eLife.39882.007
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discrete units, as we have done here, or as basis functions (Donchin et al., 2003; Tanaka et al.,

2012; Taylor et al., 2013).

The second model entails a single process whereby the task outcome directly modulates the

adaptation process. For example, an intrinsic reward signal associated with hitting the target could

modulate adaptation, attenuating the trial-to-trial change induced by the SPE (Figure 4b). In this

Adaptation Modulation model, the reward signal can be interpreted as a gain controller, similar to

previous efforts to model the effect of explicit rewards and punishments on adaptation (Galea et al.,

2015). In Experiments 1 and 2, hitting the target presumably reduces the gain on adaptation, thus

leading to attenuated learning.

We formalize the Adaptation Modulation model as follows:

xðnþ 1Þ ¼ gA
�A�xðnÞþgu

�UðeÞ (3)

where gA and gu are gains on the retention and update parameters, respectively. In the current

implementation, we set gA and gu to one on miss trials and estimate the values of gA and gu for the

hit trials. Although this could be reversed (e.g. set gains to one on hit trials and estimate values on

miss trials), our convention seems more consistent with previous modeling studies of adaption where

the movements generally miss the target. We impose no additional constraint on the gain parame-

ters; the effect of retention or updating can be larger or smaller on hit trials compared to miss trials.

As with the Movement Reinforcement model, the Adaptation Modulation model has four free

parameters.

The third model we consider here, the Dual Error model, postulates that learning is the compos-

ite of two implicit learning processes that operate on different error signals. The first is an adapta-

tion process driven by SPE (as in Equation (1)). The second process operates in the same manner as

adaptation, but here the error signal is sensitive to the task outcome. This idea of a TE-sensitive pro-

cess stems from previous studies in which an error is produced, not by perturbing the visual feed-

back of hand position, but rather by displacing the visual feedback of the target position

(Magescas and Prablanc, 2006; Cameron et al., 2010a; Cameron et al., 2010a; Schmitz et al.,

2010). The resulting mismatch between the hand position and displaced target position can be

viewed as a TE rather than SPE, under the assumption that the veridical feedback of hand position

roughly matches the predicted hand position (see Discussion). When this error signal is consistent

(e.g. target is displaced in the same direction on every trial), a gradual change in heading angle is

observed, similar to that seen in studies of visuomotor adaptation. Moreover, this form of learning is

implicit: By shifting the target position during a saccade, just prior to the reach, the participants are

unaware of the target displacement.

In the Dual Error model, the motor output is the sum of two processes:

xtotalðnÞ ¼ xspeðnÞ þ xteðnÞ (4)

where

xspeðnþ 1Þ ¼ Aspe
�xspeðnÞþUspe

�ðSPEÞ (5)

xteðnþ 1Þ ¼ Ate
�xteðnÞþUte

�ðTEÞ (6)

Equation (5) is the same as in the other two models, describing adaptation from a sensory pre-

diction error, but with the notation modified here to explicitly contrast with the second process.

Equation (6) describes a second implicit learning process, but one that is driven by the target error.

The SPE-sensitive process updates from the error term on every trial given that the SPE is always

present, even on hit trials. In contrast, the TE-sensitive process only updates from the error term on

miss trials. The error component of Equation (6) is absent on hit trials. This would account for the

attenuated learning observed in the large target (Hit) conditions in Experiments 1 and 2. In the con-

text of our clamp experiments, TE is modeled as a step function (Figure 4c), set to 0 when the cur-

sor hits the target and one when the cursor misses or straddles the target. However, if the cursor

position varied (as in studies with contingent feedback), TE might take on continuous, signed values,

similar to SPE.
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We note that the Dual Error model is similar to the influential two-process state space model of

adaption introduced by Smith and colleagues (Smith et al., 2006). In their model, dual-adaptation

processes have different learning rates and retention factors, resulting in changes that occur over dif-

ferent time scales. Here, the different learning rates and retention factors are related to the different

error signals, TE and SPE. Whereas the dual-rate model imposes a constraint on the parameters (i.e.

process with faster learning must also have faster forgetting), the four parameters in the Dual Error

model are unconstrained relative to each other.

Experiment 3
The experimental design employed in Experiments 1 and 2 cannot distinguish between these three

models because all make qualitatively similar predictions. In the Movement Reinforcement model,

the attenuated asymptote in response to Hit conditions arises because movements are rewarded

throughout, including during early learning, biasing future movements toward baseline. The Adapta-

tion Modulation model predicts a lower asymptote during the Hit condition because the adaptation

system is directly attenuated by reward. The Dual Error model similarly predicts a lower asymptote

because only one of two learning processes is active when there is no target error.

In contrast to the single perturbation blocks used in Experiments 1 and 2, a transfer design in

which the target size changes after an initial adaptation phase affords an opportunity to contrast the

three models. In Experiment 3, we tested two groups of participants (n = 12/group) with a 1.75˚

clamp, varying the target size between the first and second halves of the experiment (Figure 5a).

The key manipulation centered on the order of when the target was large (hit condition) or small

(straddle condition).

For the Straddle-to-Hit group, a small target was used in an initial acquisition phase (first 120

clamp cycles). Based on the results of Experiments 1 and 2, we expect to observe a relatively large

change in hand angle at the end of this phase since the outcome is always an effective ‘miss’. The

key test comes during the transfer phase (final 80 clamp cycles), in which the target size is increased

such that the invariant clamp now results in a target hit. For the Movement Reinforcement model,

hitting the target will produce an intrinsic reward signal, reinforcing the associated movement.

Therefore, there should be no change in performance (hand angle) following transfer since the SPE

remains the same and the current movements are now reinforced (Figure 5b). In contrast, both the

Adaptation Modulation and Dual Error models predict that, following transfer to the large target,

there will be a drop in hand angle, relative to the initial asymptote. For the former, hitting the target

will attenuate the adaptation system; for the latter, hitting the target will shut down learning from

the process that is sensitive to target error.

We also tested a second group in which the large target (hit) was used in the acquisition phase

and the small target (effective ‘miss’) in the transfer phase (Hit-to-Straddle group). All three models

make the same qualitative predictions for this group. At the end of the acquisition phase, there

should be a smaller change in hand angle compared to the Straddle-to-Hit group, due to the persis-

tent target hits. Following transfer, all three models predict an increase in hand angle, relative to the

initial asymptote. For the Movement Reinforcement model, the reduction in target size removes the

intrinsic reward signal, which over time, lessens the contribution of the reinforcement process as the

learned movement biases decay in strength. The Adaptation Modulation model predicts that hand

angle will increase due to the removal of the attenuating effect on adaptation following transfer. The

Dual Error model also predicts an increase in hand angle, but here the effect occurs because the

introduction of a target error activates the second implicit learning process. Although the Hit-to-

Straddle group does not provide a discriminative test between the three models, the inclusion of

this group does provide a second test of each model, as well as an opportunity to rule out alterna-

tive hypotheses for the behavioral effects at transfer. For example, the absence of a change at trans-

fer might be due to reduced sensitivity to the clamp following a long initial acquisition phase.

Experiment 3 – behavioral analyses
For our analyses, we first examined performance during the acquisition phase. Consistent with the

results from Experiments 1 and 2, the Hit-to-Straddle Target group adapted slower than the Strad-

dle-to-Hit group (95% CI [�0.17˚/cycle, �0.83˚/cycle], t(22)=-3.15, p=0.005, d = 1.29; Figure 5c) and
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reached a lower asymptote (95% CI [�5.25˚, �15.29˚], t(22)=-4.24, p=0.0003, d = 1.73; permutation

test: p=0.0003; Figure 5d). The reduction at asymptote was approximately 45%.

We next examined performance during the transfer phase where the target size reversed for the

two groups. Our primary measure of behavioral change for each subject was the difference in late

learning (average hand angle over last 10 cycles) between the end of the acquisition phase and the

end of the transfer phase. As seen in Figure 5d, the two groups showed opposite changes in behav-

ior in the transfer phase, evident by the strong (group x phase) interaction (F(2,33)=43.1, p<10�7,

partial h2 = 0.72). The results of a within-subjects t-test showed that the Hit-to-Straddle group

showed a marked increase in hand angle following the decrease in target size (95% CI [4.9˚, 9.1˚], t

(11)=7.42, p<0.0001, dz = 2.14; Figure 5e), consistent with the predictions for all three models.

Figure 5. Within-subject transfer design to evaluate models of the impact of task outcome on implicit motor learning. (a) Using a transfer design, (b)

the models diverge in their behavioral predictions for the Straddle-to-Hit group following transfer. The Movement Reinforcement model predicts a

persistent asymptote following transfer, whereas the Adaptation Modulation and Dual Error models predict a decay in hand angle. During the

acquisition phase, we again observed differences between the Hit and Straddle groups in the (c) early adaptation rate as well as (d) late learning. All

participants in both groups demonstrated changes in reach angle consistent with the Adaptation Modulation and Dual Error models. (e) The learning

functions were inconsistent with the Movement Reinforcement model. Note that the rise in hand angle for the Hit-to-Straddle group is consistent with

all three models. Dots represent individuals; shading and error bars denote SEM.

DOI: https://doi.org/10.7554/eLife.39882.008

The following source data is available for figure 5:

Source data 1. This file contains hand angle data for each trial and participant in Experiment 3, and was used to generate Figure 5c–e and Figure 7.

DOI: https://doi.org/10.7554/eLife.39882.009
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Figure 6. Model fits of the learning functions from Experiment 3. The failure of the (a) Movement Reinforcement

model to qualitatively capture the decay in hand angle following transfer in the Straddle-to-Hit condition argues

against the idea that the effect of task outcome arises solely from a model-free learning process that operates

independent of model-based adaptation. In contrast, both the (b) Adaptation Modulation and (c) Dual Error

Figure 6 continued on next page
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The Straddle-to-Hit group’s transfer performance provides an opportunity to compare differential

predictions, and in particular, to pit the Movement Reinforcement model against the other two mod-

els. Following the switch to the large target, there was a decrease in hand angle. Applying the same

statistical test, the mean decrement in hand angle was 5.7˚ from the final cycles of the training phase

to the final cycles of the transfer phase (95% CI [�3.1˚, �8.2˚], t(11)=-4.84, p=0.0005, dz = 1.40;

Figure 5e). This result is consistent with the prediction of the Adaptation Modulation and Dual Error

models. In contrast, the reduction in hand angle cannot be accounted for by the Movement Rein-

forcement model.

Experiment 3 – modeling results
We evaluated the three models by simultaneously fitting group-averaged data for both groups. As

depicted in Figure 6, all three models capture the initial plateau followed by increased learning of

the Hit-to-Straddle group. However, the quality of the fits diverges for the Straddle-to-Hit group,

where the Movement Reinforcement model cannot produce a decrease in hand angle once the large

target is introduced. Instead, the best-fit parameters for this model result in an asymptote that falls

between the hand angle values observed during the latter part of each phase. In contrast, the Adap-

tation Modulation and Dual Error models both predict the drop in hand angle during the second

phase of the experiment for the Straddle-to-Hit group.

Consistent with the preceding qualitative observations, the Movement Reinforcement model

yielded a lower R2 value and higher Akaike Information Criterion (AIC) score (higher AIC indicates

relatively worse fit) than the Adaptation Modulation and Dual Error models (Table 1). A comparison

of the latter two shows that the Dual Error model provides the best account of the results. This

model yielded a lower AIC score and accounted for 90% of the variance in the group-averaged data

compared to 86% for the Adaptation Modulation model.

To better understand the effects of target size on learning and retention, we examined the

parameter estimates for the Adaptation Modulation and Dual Error models. We first generated 1000

bootstrapped samples of group-averaged behavior by resampling with replacement from each

group. We then fit each of the bootstrapped samples simultaneously and report the results here in

terms of 95% confidence intervals. For the Adaptation Modulation model, the estimates of gu*U

were larger during miss than hit conditions, with no overlap of the confidence intervals ([.693, 1.302]

vs [.182,. 573], respectively); thus, the error-driven adjustment in the state of the internal model was

much larger after a miss than a hit. For the Dual Error model, the estimates of Uspe were larger than

for Ute, again with no overlap of the confidence intervals ([.414, 1.08], vs [.157,. 398]), indicating that

the state change was more strongly driven by SPE than TE. For each model, the process that

Figure 6 continued

models accurately predict the changes in hand angle following transfer in both the Hit-to-Straddle and Straddle-

to-Hit conditions.

DOI: https://doi.org/10.7554/eLife.39882.010

The following figure supplement is available for figure 6:

Figure supplement 1. Correlations between bootstrapped parameter estimates.

DOI: https://doi.org/10.7554/eLife.39882.011

Table 1. Model evaluations.

Basic models # of free parameters R-squared AIC

Movement Reinforcement 4 0.824 363

Adaptation Modulation 4 0.861 269

Dual Error 4 0.895 156

Hybrid Models

Movement Reinforcement + Adaptation Modulation 6 0.945 �100

Movement Reinforcement + Dual Error 6 0.945 �97

DOI: https://doi.org/10.7554/eLife.39882.012
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produced a larger error-based update also had the lower retention factor, although here there was

overlap in the 95% confidence intervals for the latter (g r*A for Miss: [.939,.969] vs Hit: [. 961,.989];

Aspe: [.900,.972] vs Ate: [.938,.993]). In sum, our model fits suggest the impact of task outcome (hit

or miss) was primarily manifest in the estimates of the learning rate parameters. However, this inter-

pretation is tempered by the correlations observed between certain parameters (Cheng and Sabes,

2006) (see Figure 6—figure supplement 1).

The behavioral pattern observed in Experiment 3, complemented by the modeling results, are

problematic for the Movement Reinforcement model, challenging the idea that the effect of task

outcome arises solely from a model-free learning process that operates independent of model-

based adaptation. However, this does not exclude the possibility that task outcome information

influences both model-free and model-based processes. For example, hitting the target might not

only reinforce an executed movement, but might also modulate adaptation. Formally, this hypothe-

sis would correspond to a hybrid model that combines the Adaptation Modulation and Movement

Reinforcement models. Indeed, hybrids that combine the Movement Reinforcement model with

either the Adaptation Modulation or Dual Error models (see Materials and methods) yield improved

model fits and lower AIC values, with the two hybrids producing comparable values (see Table 1).

Control group for testing perceptual uncertainty hypothesis
Across the three experiments, the amount of learning induced by clamped visual feedback was

attenuated when participants reached to the large target. We considered if this effect could be due,

in part, to the differences between the Hit and Straddle/Miss conditions in terms of perceptual

uncertainty. For example, the reliability of the visual error signal might be weaker if the cursor is fully

embedded within the target; in the extreme, failure to detect the angular offset might lead to the

absence of an error signal on some percentage of the trials.

To evaluate this perceptual uncertainty hypothesis, we tested an additional group in Experiment

3 with a large target, but modified the display such that a bright line, aligned with the target direc-

tion, bisected the target (Figure 7). With this display, the feedback cursor remained fully embedded

in the target, but was clearly off-center. If the attenuation associated with the large target is due to

Figure 7. Effect of large target is not due to perceptual uncertainty. (a) A control group was tested in a transfer design in which the large target was

used in both phases, but a bisection line was present only during the acquisition phase. (b) The behavior of the control group (magenta) during the

acquisition phase was not significantly different than that observed for the group that was tested with the (non-bisected) large target in the acquisition

phase of Experiment 3 (re-plotted here in green), suggesting that perceptual uncertainty did not make a substantive contribution to the effects of

hitting the target. Note that we do not display transfer data for the large target group since the target size changed for this group. (c) No change in

asymptote was observed when going from the bisected target to the standard large target.

DOI: https://doi.org/10.7554/eLife.39882.013
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perceptual uncertainty, then the inclusion of the bisecting line should produce an adaptation effect

similar to that observed with small targets. Alternatively, if perceptual uncertainty does not play a

prominent role in the target size effect, then the adaptation effects would be similar to that

observed with large targets.

Consistent with the second hypothesis, performance during the acquisition phase for the group

reaching to a bisected target was similar to that of the group reaching to the standard large target

(Hit-to-Straddle, Figure 7). To provide support for this observation, we first performed an omnibus

one-way ANOVA on the late learning data at the end of the acquisition phase, given our analysis

plan entailed multiple planned pair-wise comparisons. There was a significant effect of group (F

(2,33)=9.33, p=0.0006, h2 = 0.36). Subsequent planned pair-wise comparisons showed no significant

differences between the bisected target and standard large target (Hit-to-Straddle) groups (early

adapt: 95% CI [�0.34˚/cycle,. 22˚/cycle], t(22)=-.47; p=0.64,; d = 0.19; late learning: 95% CI [�7.80˚

1.19˚], t(22)=-1.52; p=0.14; d = 0.62). In contrast, the group reaching to bisected targets showed

slower early adaptation rates (95% CI [�0.81˚/cycle, �0.07˚/cycle], t(22)=-2.49, p=0.02, d = 1.02) and

lower magnitudes of late learning (95% CI [�12.58˚, �1.35˚], t = �2.57, p=0.017, d = 1.05) when

compared with the group reaching to small targets (Straddle-to-Hit).

During the transfer phase, the target size for the perceptual uncertainty group remained large,

but the bisection line was removed. If perceptual uncertainty underlies the effect we have attributed

to hitting the target, we would expect to observe a decrease in hand angle following transfer, since

uncertainty would increase. However, following transfer to the non-bisected large target, there was

no change in asymptote (95% CI [�0.87˚, 2.32˚], t(11)=1.0, p=0.341, dz = 0.29). In sum, the results

from this control group indicate that the attenuated adaptation observed when the cursor is fully

embedded within the target is not due to perceptual uncertainty.

Discussion
Models of sensorimotor adaptation have emphasized that this form of learning is driven by sensory

prediction errors, the difference between the observed and predicted sensory consequences of a

movement. In this formulation, task outcome, defined as hitting or missing the target, is not part of

the equation (although in most adaptation tasks, the sensory prediction is at the target, thus conflat-

ing SPE and task outcome). While a number of recent studies have demonstrated that task outcome

signals can influence overall performance in these tasks (Galea et al., 2015; Reichenthal et al.,

2016; Leow et al., 2018; van der Kooij et al., 2018), it is unclear whether these reinforcement sig-

nals impact sensorimotor adaptation (Shmuelof et al., 2012; Galea et al., 2015), or whether they

are exploited by other learning systems, distinct from SPE-driven implicit adaptation (Codol et al.,

2018; Holland et al., 2018).

The interpretation of the results from these studies is complicated by the fact that the experimen-

tal tasks may conflate different learning processes. In the present study, we sought to avoid this

complication by employing a new method to study implicit learning, one in which participants are

specifically instructed to ignore an invariant visual error signal, thus eliminating explicit processes

(Morehead et al., 2017). Using this clamp method, we observed a striking difference between con-

ditions in which the final position of the cursor was fully embedded in the target compared to condi-

tions in which the cursor either terminated outside or straddled the target: When the cursor was fully

embedded, the rate of learning was reduced and the asymptotic level of learning was markedly

attenuated.

Characterizing the information associated with task outcome
We manipulated task outcome by varying the size of the target, and, across experiments, manipu-

lated SPE by varying the clamp size. Although the experimental instructions remained unchanged,

these stimulus changes might be expected to also influence the perception of the error or motor

planning processes. However, the behavioral differences arising from the manipulation of task out-

come did not appear to arise from these factors. Movement kinematics were essentially the same

when reaching to the different sized targets, and the perceptual control condition showed that

reducing perceptual uncertainty did not influence performance. Moreover, the finding in Experiment

1 that the Straddle group performed similar to the Miss group, suggests that the effect of target

size is, to some degree, categorical rather than continuous.
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With clamped visual feedback, participants have no control over the invariant task outcome. In

our earlier work with this method, we hypothesized that the cursor feedback is interpreted by the

adaptation system as an error signal. We assume the adaptation system is ‘fooled’ by the temporal

correlation between the motion of the hand and feedback signal, even though the participants are

fully aware that the angular position of the cursor is causally unrelated to their behavior

(Morehead et al., 2017). This hypothesis is consistent with earlier work showing that SPEs will drive

implicit adaptation, even at the cost of reduced task success (Mazzoni and Krakauer, 2006;

Taylor and Ivry, 2011).

One interpretation of the effect of task outcome is that an automatic signal is generated when

the cursor hits the target; that is, this outcome is intrinsically rewarding (Huang et al., 2011;

Leow et al., 2018), even though the participant is aware that the outcome does not depend on the

accuracy of their movements. In two of our proposed models, we assume that hitting the target

leads to the automatic generation of a positive reinforcement signal. In the Movement Reinforce-

ment model, this signal strengthens associated movement representations, producing a bias on

behavior. In the Adaptation Modulation model, this signal directly attenuates adaptation. Alterna-

tively, one could emphasize the other side of the coin, namely, that the absence of reward (i.e. miss-

ing the target) results in a negative reinforcement signal, or what we refer to here as target error.

Consideration of two types of error signals is, of course, central to the Dual Error model. We could

also reframe the Adaptation Modulation model: Rather than view adaptation as being attenuated

following a positive task outcome, it may be that adaptation is enhanced following a negative task

outcome.

With the current procedure, we do not have evidence, independent of the behavior, that the task

outcome with non-contingent feedback results in a reinforcement signal (either positive or negative).

Methods such as fMRI (Daw et al., 2011) or pupillometry (Manohar et al., 2017) could provide an

independent means to assess the presence of well-established signatures of reward. Nonetheless,

our results indicate, more generally, that task outcome is an important factor mediating the rate and

magnitude of implicit motor learning.

Modeling the influence of task outcome on implicit changes in
performance
Our modeling analysis makes clear that parallel, independent activity of sensorimotor adaptation

and task outcome-driven operant reinforcement processes cannot account for the behavioral

changes observed in the present set of experiments. In particular, the Movement Reinforcement

Model fails to predict the change in reach direction observed when the target size was decreased in

the Straddle-to-Hit condition of Experiment 3. In this model, the Straddle-to-Hit group’s asymptotic

learning during the acquisition phase is due to the isolated operation of the adaptation system,

given that none of the reaches are rewarded. The SPE signal would be expected to persist following

transfer, maintaining this asymptote. Moreover, movements in this direction would be further

strengthened given that, with the introduction of the large target, they would be reinforced by an

intrinsic reward signal. Importantly, the predicted absence of behavioral change following transfer

should hold for all models in which a model-free reinforcement-based process is combined with a

task outcome-insensitive model-based adaptation process. For example, the prediction is indepen-

dent of whether the reinforcement process follows a different time course than adaptation (e.g.

faster or slower), or if we model the effect of reinforcement as basis functions (Donchin et al., 2003;

Tanaka et al., 2012; Taylor et al., 2013) rather than discrete units. Thus, we propose that any

model in which adaptation and reinforcement processes act independently will fail to show the

observed decrease in hand angle following transfer from a miss condition to a hit condition.

The failure of the Movement Reinforcement model requires that we consider alternatives in which

information about the task outcome interacts with model-based processes. The Adaptation Modula-

tion model postulates that a signal associated with the task outcome directly modulates the adapta-

tion process. In the current instantiation, we propose that hitting the target results in an intrinsic

reward signal that reduces the gain on adaptation (Leow et al., 2018), although an alternative inter-

pretation would be that missing the target results in an error signal that amplifies the gain. This

model was able to account for the reduced asymptote observed in the Straddle-to-Hit condition of

Experiment 3, outperforming the Movement Reinforcement model.
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The Adaptation Modulation model makes explicit assumptions of previous work in which reward

was proposed to act as a gain controller on the adaptation process (Galea et al., 2015;

Nikooyan and Ahmed, 2015). In terms of the standard state space model, the results indicate that

the main effect of task outcome was on the learning rate parameter. Hitting the target reduced the

learning rate by approximately 40%, consistent with other studies showing reduced behavioral

changes when hitting the target (Reichenthal et al., 2016; Leow et al., 2018).

Galea et al. (2015) also used a model-based approach to examine the influence of reinforcement

on adaptation, comparing conditions in which participants received or lost money during a standard

visuomotor rotation task. Their results indicated that reward had a selective effect on the retention

parameter in the state space model, suggesting the effect was on memory rather than learning. We

also observed higher retention parameters when the cursor hit the target, although the effect size

here was a relatively smaller ~3% increase and not reliably different from the miss/straddle condition,

based on bootstrapped parameter estimates. We suspect that the effect on retention in Galea et al.

(2015) was, in large part, not due to a change in the adaptation process itself, but rather the residual

effects of an aiming strategy induced by the reward. That is, the monetary rewards might have rein-

forced a strategy during the rotation block, and this carried over into the washout block. Indeed, the

idea that reward impacts strategic processes has been advanced in studies comparing conditions in

which the performance could be enhanced by re-aiming (Codol et al., 2018; Holland et al., 2018).

By using non-contingent clamped feedback, we eliminate strategy use and thus provide a purer

assessment of how reward influences adaptation.

We recognize that the hypothesized modulation of sensorimotor adaptation by task outcome is,

at least superficially, contrary to previous conjectures concerning the independent effects of SPE

and TE (Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011; Taylor et al., 2014;

Morehead et al., 2017; Kim et al., 2018). One argument for independence comes from a visuomo-

tor adaptation task in which participants are instructed to use an aiming strategy to compensate for

a large visuomotor rotation (Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011). By using the

instructed strategy, the cursor immediately intersects the target, eliminating the target error. How-

ever, over the course of subsequent reaches, the participants’ performance deteriorates, an effect

attributed to the persistence of an SPE, the difference between the aiming location and cursor posi-

tion. Taylor and Ivry (2011) modeled this behavior by assuming the operation of two independent

learning processes, adaptation driven by SPE and strategy adjustment driven by TE. In light of the

present results, it is important to note that there were actually very few trials in which target hits

actually occurred, given that the large SPE on the initial reaches resulted in target misses on almost

all trials. In addition, the strength of a task success signal may fall off with larger SPEs

(Cashaback et al., 2017). As such, the current study, in which SPE and task outcome are held con-

stant throughout learning, provides a much stronger assessment on the effect of task outcome on

sensorimotor adaptation.

The Dual Error model suggests an alternative account of the effect of task outcome on perfor-

mance. This model assumes that performance is the composite of two independent error-based pro-

cesses, an adaptation system that is sensitive to SPE, and a second implicit process that is sensitive

to target error. Of the three models tested here, the Dual Error model provided the best account of

the behavior in Experiment 3, accounting for 90% of the variance when the group-averaged data

from both the Straddle-to-Hit and Hit-to-Straddle conditions of Experiment 3 were fit

simultaneously.

Interestingly, in previous work, TE was thought to be a driving signal for explicit learning, and in

particular, for adjusting a strategic aiming process that can lead to rapid improvements in perfor-

mance (Taylor and Ivry, 2011; Taylor et al., 2014; McDougle et al., 2015; Day et al., 2016). Con-

ceptualizing TE-based learning as supporting an explicit process does not appear warranted here.

We have no evidence, either based on performance or verbal reports obtained during post-experi-

ment debriefing sessions (Kim et al., 2018), that participants employ a strategy to counteract the

clamp. Rather, all the observed changes in behavior are implicit.

Alternatively, we can consider whether the TE-based process constitutes a form of implicit aiming.

The notion of implicit aiming has previously been suggested in work showing that, with extended

practice, strategic aiming may become automatized (Huberdeau et al., 2017). One interpretation of

this effect is that aiming strategies eventually become ‘cached’ and are automatically retrieved dur-

ing response preparation (Haith and Krakauer, 2018). While the idea of a cached strategy may be
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reasonable in the context of traditional sensorimotor perturbation studies, it does not seem to offer

a reasonable psychological account of the effect of task outcome in the current context. Given that

participants do not employ a strategy to counteract the clamp, there is no strategy to cache. Fur-

thermore, parameter estimates for the Dual Error model indicate that the TE-sensitive process

learned at a slower rate and retained more than the SPE-sensitive process. Were implicit aiming to

share core features of explicit aiming, the modeling results would be inconsistent with previous work

indicating that explicit aiming from TE is faster (McDougle et al., 2015) and more flexible

(Bond and Taylor, 2015; Hutter and Taylor, 2018) than adaptation from SPE. Despite the argu-

ments against an implicit aiming interpretation, the current results and those from other studies

(Magescas and Prablanc, 2006; Cameron et al., 2010a; Cameron et al., 2010b; Schmitz et al.,

2010) suggest that there may exist another form of implicit error-based learning, one driven by TE

rather than SPE.

Although the Dual Error model provided a better fit of the behavioral results compared to the

Adaptation Modulation model, the challenge for future research is to design experiments that can

evaluate their unique predictions. In the current study, we manipulated TE by varying the size of the

target, with SPE held constant. An alternative method to manipulate TE is to ‘jump’ the target dur-

ing the movement; Leow et al., 2018 shifted the target in the same direction as a visuomotor rota-

tion, ensuring that the feedback cursor landed in the target. Their results showed attenuated

adaptation relative to a condition in which the target position does not change. Future studies could

employ the target jump method, varying the size of the target, with a 0˚ clamp. In this way, SPE is

eliminated, but task outcome, that is miss or hit, will depend on the size of target and its displace-

ment. The Dual Error model, as presently formulated would predict learning during miss trials, and

no learning during hit trials. The Adaptation Modulation model, on the other hand, would predict no

learning in either case since there is no SPE.

In terms of neural mechanisms, converging evidence points to a critical role for the cerebellum in

SPE-driven sensorimotor adaptation (Tseng et al., 2007; Taylor et al., 2010; Izawa et al., 2012;

Schlerf et al., 2012; Butcher et al., 2017), including the observation that patients with cerebellar

degeneration show a reduced response to visual error clamps (Morehead et al., 2017). An impor-

tant question for future research is whether the cerebellum is also essential for learning driven by

information concerning task outcome. A recent behavioral study showed that individuals with cere-

bellar degeneration were unimpaired in learning from binary, reward-based feedback, once the

motor variability associated with their ataxia was taken into consideration (Therrien et al., 2016).

This finding provides one instance in which the cerebellum is not essential for learning from task out-

come. However, the complete retention observed in that study would indicate that learning was of a

different form than adaptation, perhaps related to the use of an explicit strategy (Holland et al.,

2018). Evidence that the cerebellum may be integral to processing task outcome signals that could

support implicit processes comes from research with animal models indicating that both simple

(Wagner et al., 2017) and complex (Ohmae and Medina, 2015) spike activity in the cerebellum

may signal information about task outcome and reward prediction errors. By testing individuals with

cerebellar impairment on a clamp design in which SPE is held constant and TE is manipulated, one

can simultaneously assess the role of the cerebellum in learning from these two error signals.

Conclusions
By using non-contingent feedback, we were able to re-examine the effect of task outcome on senso-

rimotor learning. The results clearly show that 1) implicit learning processes are influenced by infor-

mation concerning task outcome, either through the generation of an intrinsic reward or task error

signal and 2) that the effect cannot be accounted for by the engagement of a model-based adapta-

tion process operating in tandem with an independent model-free operant reinforcement process.

The behavioral results and our modeling work indicate the need for a more nuanced view of sensori-

motor adaptation. We outline two directions to consider. In the Adaptation Modulation model, task

outcome signals are proposed to serve as a gain on adaptation, contrary to previous views of a mod-

ular system that is immune to information about task success. The Dual Error model suggests the

need for a more expansive definition of adaptation in which multiple implicit learning processes

operate to keep the sensorimotor system well-calibrated. These models can serve as a springboard

for future research designed to further delineate how information about motor execution and task

outcome influence implicit sensorimotor learning.
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Materials and methods

Participants
Healthy, young adults (N = 116, 69 females; average age = 20.9 years old, range: 18.2–27.8) were

recruited from the University of California, Berkeley, community. Each participant was tested in only

one experiment and was right-handed, as verified with the Edinburgh Handedness Inventory (Old-

field, 1971) All participants provided written informed consent to participate in the study and to

allow publication of their data, and received financial compensation for their participation. The Insti-

tutional Review Board at UC Berkeley approved all experimental procedures under ID number 2016-

02-8439.

Experimental apparatus
The participant was seated at a custom-made tabletop housing an LCD screen (53.2 cm by 30 cm,

ASUS), mounted 27 cm above a digitizing tablet (49.3 cm by 32.7 cm, Intuos 4XL; Wacom, Vancou-

ver, WA). The participant made reaching movements by sliding a modified air hockey ‘paddle’ con-

taining an embedded stylus. The position of the stylus was recorded by the tablet at 200 Hz. The

experimental software was custom written in Matlab, using the Psychtoolbox extensions

(Pelli, 1997).

Reaching task
Center-out planar reaching movements were performed from the center of the workspace to targets

positioned at a radial distance of 8 cm. Direct vision of the hand was occluded by the monitor, and

the lights were extinguished in the room to minimize peripheral vision of the arm. The starting and

target locations were indicated by white and blue circles, respectively (start circle: 6 mm in diameter;

target: either 6, 9.8 or 16 mm depending on condition).

To initiate each trial, the participant moved the digitizing stylus into the start location. The posi-

tion of the stylus was indicated by a white feedback cursor (3.5 mm diameter). Once the start loca-

tion was maintained for 500 ms, the target appeared. For Experiments 1 and 3, the target could

appear at one of eight locations, placed in 45˚ increments around a virtual circle (0˚, 45˚, 95˚, 135˚,

180˚, 225˚, 270˚, 315˚). For Experiment 2, the target could appear at one of four locations placed in

90˚ increments around a virtual circle (45˚, 135˚, 225˚, 315˚). We reduced the number of targets from

8 to 4 in Experiment 2 in order to increase the overall number of training cycles with the clamp to

ensure that participants reach a stable asymptote, while keeping the experiment under 1.5 hr. Partic-

ipants were instructed to accurately and rapidly ‘slice’ through the target, without needing to stop

at the target location. Visual feedback, when presented, was provided during the reach until the

movement amplitude exceeded 8 cm. As described below, the feedback either matched the posi-

tion of the stylus (veridical) or followed a fixed path (clamped). If the movement duration (excluding

RT) was not completed within 300 ms, the words ‘too slow’ were generated by the sound system of

the computer.

After the hand crossed the target ring, endpoint cursor feedback was provided for 50 ms either

at the position in which the hand crossed the virtual target ring (veridical feedback) or at a fixed dis-

tance determined by the size of the clamp. During the return movement, the feedback cursor reap-

peared when the participant’s hand was within 1 cm of the start position.

Experimental feedback conditions
Across the experimental session, there were three types of visual feedback. On no-feedback trials,

the cursor disappeared when the participant‘s hand left the start circle and only reappeared at the

end of the return movement. On veridical feedback trials, the cursor matched the position of the sty-

lus during the 8 cm outbound segment of the reach. On clamped feedback trials, the feedback fol-

lowed a path that was fixed along a specific hand angle. The radial distance of the cursor from the

start location was still based on the radial extent of the participant’s hand during the 8 cm outbound

segment, but the angular position was fixed relative to the target (i.e. independent of the angular

position of the hand).

The primary instructions to the participant (experiment script included) remained the same across

the experimental session: Specifically, that they were to reach directly toward the visual target. Prior
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to the introduction of the clamped feedback trials, participants were briefed about the feedback

manipulation. They were informed that the position of the cursor would now follow a fixed trajectory

and that the angular position would be independent of their movement. They were explicitly

instructed to ignore the cursor and continue to reach directly to the target. Participants also per-

formed three instructed trials with the clamp perturbation on. During these practice trials, a target

appeared at the 90˚ location (straight ahead), and the experimenter instructed the participant to first

‘reach straight to the left’ (i.e. 180˚). For the second practice trial, the participant was instructed to

‘reach straight to the right’ (0˚). For the last trial, the participant was instructed to ‘reach straight

down (towards your torso)’ (ie, 270˚). The purpose of these trials was to familiarize the participant

with the exact clamp condition they were about to experience. Following these three practice trials,

the experimenter confirmed with the participant they understood now what was meant by clamped

visual feedback. These practice trials were removed from future analyses.

The same instructions in abbreviated form (‘Ignore the cursor and move your hand directly to the

target location’) were repeated verbally and with onscreen text at every block break during the

clamp perturbation. Participants were debriefed at the end of the experiment and asked whether

they ever intentionally tried to reach to locations other than the target. All subjects reported aiming

to the target throughout the experiment.

We counterbalanced clockwise and counterclockwise clamps within each group for all three

experiments.

Experiment 1
Participants (n = 48, 16/group) were randomly assigned to one of three groups, each training with a

3.5˚ clamp but differing only in terms of the size of the target: 6 mm, 9.8, or 16 mm diameter. These

sizes were chosen so that at an 8 cm radial distance the clamped cursor would be adjacent to the

target without making any contact (Target Miss group), straddling the target by being roughly half

inside and half outside the target (Straddle Target group), or fully embedded within the target (Hit

Target group). The Euclidean distance for this clamp size, measured from the centers of cursor and

target, was 4.9 mm.

The session began with two baseline blocks, the first comprised of five movement cycles (40 total

reaches to eight targets) without visual feedback and the second comprised of 10 cycles with a

veridical cursor displaying hand position. The experimenter then informed the participant that the

visual feedback would no longer be veridical and would now be clamped at a fixed angle from the

target location. Immediately following these general instructions, the experimenter continued pro-

viding instructions for the three practice trials which immediately followed (see Experimental Feed-

back Conditions). After the practice trials and confirming the participant’s understanding of the task,

the clamp block ensued for a total of 80 cycles. A short break (<1 min), as well as a reminder of the

task instructions, was provided after 40 cycles (i.e. at the halfway point of this block). Immediately

following the perturbation block, there were two washout blocks, first a five cycle block in which

there was no visual feedback, followed by 10 cycles with veridical visual feedback. These blocks

were preceded by instructions regarding the change in experimental condition and participants

were reminded to always aim for the target and to attempt to slice through it with their hand.

Experiment 2
In Experiment 2, we assessed adaptation over an extended number of clamped visual feedback tri-

als. The purpose of extending the perturbation block was to ensure that participants reached asymp-

totic levels of learning. In order to achieve a greater number of training cycles, we reduced the

number of target locations within the set from 8 to 4.

Participants (n = 32, 16/group) trained with a 1.75˚ clamp (2.4 mm distance between target and

cursor centers) and were assigned to either a small (Straddle) or large (Hit) target condition. The ses-

sion started with two baseline blocks, 10 cycles (40 reaches) without visual feedback and then 10

cycles with veridical feedback. Following three practice trials with the clamp, the number of cycles in

the clamped visual feedback block was nearly tripled from that of Experiment 1 to 220 cycles, with

breaks provided after every 70 cycles. Following 220 cycles of training with a 1.75˚ clamp, there

were two washout blocks, first a 10 cycle block in which there was a 0˚ clamp, followed by 10 cycles
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with veridical visual feedback. Prior to washout, participants were again instructed to always aim

directly to the target.

Experiment 3
Experiment 3 used a transfer design to evaluate different hypotheses concerning the role of task

outcome on implicit sensorimotor learning. Our main predictions focused on the transfer phase,

comparing the participants’ behavior to the predictions of three models (see section, Theoretical

analysis of the effect of task outcome on implicit learning). We tested two main groups (n = 12/

group) in Experiment 3, using a 1.75˚ clamp in both the acquisition and transfer phases. The session

started with two baseline blocks, five cycles (40 reaches) without visual feedback and then five cycles

with veridical feedback. After the baseline blocks, clamp instructions and three practice trials were

provided to all participants. The first clamp block (acquisition phase) lasted 120 cycles, with partici-

pants training with either a small or large target. Following the first 120 cycles, the target sizes were

reversed for the next 80 cycles (transfer phase: Straddle-to-Hit or Hit-to-Straddle conditions). Breaks

of <1 min were provided after every 35 cycles of training. On the break preceding the transfer (15

cycles before target switch), participants were told that everything would continue on as before,

except that the target size would change at some point during the block. The purpose of staggering

the break with the transfer was to mitigate any change in adaptation due to temporal decay that

could result from a break in training (Hadjiosif and Smith, 2013).

Control group
A third group (n = 12) was added to test whether the attenuation of adaptation in the large target

condition was due to perceptual uncertainty. Here, the block structure was identical to the first two

groups. We used a modified large target (16 mm), one which had a bright green bisecting line

through the middle, aligned with the target direction. The clamped cursor always fell within one half

of the target (either clockwise or counter-clockwise depending on the condition), thus providing a

clear indication that the cursor was off center. At the transfer, the bisecting line was removed and

participants trained for 80 cycles with the standard large target.

Data analysis
All statistical analyses and modeling were performed using MATLAB 2015b and the Statistics Tool-

box. Data and code are available on GitHub at: https://github.com/hyosubkim/Influence-of-task-out-

come-on-implicit-motor-learning (Kim, 2019; copy archived at https://github.com/elifesciences-

publications/Influence-of-task-outcome-on-implicit-motor-learning). The primary dependent variable

in all experiments was hand angle at peak radial velocity, defined by the angle of the hand relative

to the target at the time of peak radial velocity (i.e., angle between lines connecting start position to

target and start position to hand). Throughout the text, we refer to this variable as hand angle. Addi-

tional analyses were performed using hand angle at ‘endpoint’ (angle of the hand as it crossed the

invisible target ring) rather than peak radial velocity. The results were essentially identical for the two

dependent variables; as such, we only report the results of the analyses using peak radial velocity.

Data used in statistical analyses were tested for normality and homogeneity of variance using Sha-

piro-Wilks and Levene’s tests, respectively. When normality or homogeneity of variance was violated,

we performed non-parametric permutation tests in addition to standard parametric tests (i.e. t-tests

and ANOVAs) and report results from both. For comparisons between two groups, we used the dif-

ference between group means as our test statistic. This value was compared to a null distribution,

created by random shuffling of group assignment in 10,000 Monte Carlo simulations (resampling

with replacement), to obtain an exact p-value. When a comparison involved more than two groups,

we used a similar approach, but used the F-value obtained from a one-way ANOVA as our test

statistic.

Outlier responses were removed from the analyses. For the sole purpose of identifying outliers,

the Matlab ‘smooth’ function was used to calculate a moving average (using a five-trial window) of

the hand angle data for each target location. Outliers were trials in which the observed hand angle

was greater than 90˚ or deviated by more than three standard deviations from the moving average.

In total, less than 0.8% of trials overall were removed, and the most trials removed for any individual

across all three experiments was 2%.
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Individual baseline biases for each target location were subtracted from all data. Biases were

defined as the average hand angles across cycles 2–10 (Experiments 1 and 2) or 2–5 (Experiment 3)

of the feedback baseline block. These same cycles were used to calculate mean baseline RTs, MTs,

and movement variability (SD). To calculate each participant’s baseline RT or MT, we took the aver-

age of median values at each target location. To calculate each participant’s movement variability,

we took the average of the standard deviations of hand angles at each target location.

In order to pool all the data and to aid visualization, we flipped the hand angles for all partici-

pants clamped in the counterclockwise direction.

For Experiments 1 and 3, movement cycles consisted of 8 consecutive reaches (one reach/target);

for Experiment 2, we only used four targets, thus a movement cycle consisted of four consecutive

reaches (one reach/target). To estimate the rate of early adaptation, we calculated the mean change

in hand angle per cycle over the first five cycles. To provide a more stable estimate of hand angle at

cycle 5, we averaged over cycles 3–7 of the clamp block. We opted to use this measure of early

adaptation rather than obtain parameter estimates from exponential fits since the latter approach

gives considerable weight to the asymptotic phase of performance, and, therefore, would be less

sensitive to early differences in rate. This would be especially problematic in Experiment 2, which uti-

lized 220 clamp cycles. We also performed a secondary analysis of early adaptation rates using a

larger window, cycles 2–11 (Krakauer et al., 2005). Results from using this alternate metric were

consistent with the reported analyses (i.e. slower rates for Hit Target groups), only they resulted in

larger effect sizes due to the gradually increasing divergence of learning functions. Asymptotic adap-

tation (i.e. late learning) was defined as the average hand angle over the last 10 cycles within a

clamp block. In Experiment 1, the aftereffect was quantified by using the data from the first no-feed-

back cycle following the last clamp cycle. This measure yielded similar statistical results as that based

on the analysis of asymptotic adaptation.

All t-tests were two-tailed. Posthoc pairwise comparisons following significant ANOVAs were per-

formed using two-tailed t-tests, with a corrected a of .017 due to multiple comparisons. Cohen’s d,

eta squared (h2), partial eta squared (for mixed model ANOVA), and dz (for within-subjects design)

values are provided as standardized measures of effect size (Lakens, 2013). Values in main text are

reported as 95% CIs in brackets and mean ± SEM.

No statistical methods were used to predetermine sample sizes. The chosen sample sizes were

based on our previous studies using the clamp method (Morehead et al., 2017; Kim et al., 2018),

as well as prior psychophysical studies of human sensorimotor learning (Huang et al., 2011;

Galea et al., 2015; Vaswani et al., 2015; Gallivan et al., 2016).

Modeling
For the Movement Reinforcement model, a population vector (Georgopoulos et al., 1986), V, indi-

cates the current bias of motor representations within the reinforcement system. In this model, the

vector is composed of directionally-tuned units, with the strength of each unit reflective of its reward

history. The direction of this vector (Vd) was calculated for each trial in the following manner:

VxðnÞ ¼ rðnÞ.ux

VyðnÞ ¼ rðnÞ.uy

VdðnÞ ¼ tan�1ðVyðnÞ=VxðnÞÞ

Here, r represents the weights on every unit in u, a vector containing 36,000 total unit vectors

pointing in every direction around the circle, representing a resolution of .01˚ (x and y subscripts rep-

resent the x- and y-components for both V and u). The update rule for r takes into account the task

outcome on each trial:

r�ðnþ 1Þ ¼A’�r�ðnÞþ s

r~�ðnþ 1Þ ¼A’�r~�ðnÞ

where q indexes the unit corresponding to the direction of the movement, y(n), on hit trials, and ~q
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indexes all the other units on hit trials and all units on miss trials. In this simplified reward scheme,

the weight to the unit corresponding to the rewarded movement direction is increased by magni-

tude s on a trial-by-trial basis, and all weights are decremented due to a retention factor, A’, on

every trial. The latter ensures that these reward-dependent weights revert back to zero in the

absence of reward. The mean preferred direction, Vd, was converted from radians into degrees. The

strength of the biasing signal, Vl, is equal to the population vector length:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
x þV2

y

q

, with the con-

straint that 0 � Vl � 1.

In order to calculate confidence intervals for the parameter estimates, we applied standard boot-

strapping techniques, constructing group-averaged hand angle data 1000 times by randomly resam-

pling with replacement from the pool of participants within each group. Using Matlab’s fmincon

function, we started with 10 different initial sets of parameter values and estimated the retention

and learning parameters that minimized the least squared error between the bootstrapped data and

model output (xn). Parameter estimates were bounded such that 0 < A < 1 and 0 < U(e)<e, where e

is equal to the clamp size in degrees.

The hybrid models combined the Movement Reinforcement with either the Adaptation Modula-

tion or Dual Error model. Each hybrid incorporated the equations for the Movement Reinforcement

model. However, when movement reinforcement was combined with the Adaptation Modulation

model, the contribution of the adaptation system, x, to the motor output, y, was derived from the

gain modulation equation (Equation (3)). When movement reinforcement was combined with the

Dual Error model, Equations (4-6) were used, with xtotal now substituting for x in Equation (2).
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Appendix 1

DOI: https://doi.org/10.7554/eLife.39882.016

Experiment 3 – kinematic variables
Baseline movement variability was not different across all three groups, including the control

group trained with the bisected target (F(2,33)=1.38, p=0.267, h2 = 0.077). Similarly, no

differences across groups were observed for either RTs (F(2,33)=1.51, p=0.236, h2 = 0.0084)

or MTs (F(2,33)=.46, p=0.634, h2 = 0.027).

Appendix 1—table 1. Average Reaction Times (RTs) in ms. Values represent mean ± SEM.

Experiment 1 Baseline Early clamp Late clamp No feedback

Hit 325 � 7 327 � 7 347 � 11 344 � 12

Straddle 362 � 12 359 � 14 397 � 32 407 � 33

Miss 386 � 22 383 � 19 378 � 15 385 � 15

Experiment 2 0˚ clamp

Hit 378 � 22 376 � 27 354 � 9 351 � 9

Straddle 373 � 12 366 � 13 368 � 15 373 � 16

Experiment 3

Hit-to-Straddle 356 � 19 350 � 15 326 � 9 N/A

Straddle-to-Hit 360 � 8 360 � 7 355 � 7 N/A

Bisected-to-Normal 400 � 28 395 � 27 400 � 25 N/A

DOI: https://doi.org/10.7554/eLife.39882.017

Appendix 1—table 2. Average Movement Times (MTs) in ms. Values represent mean ± SEM.

Experiment 1 Baseline Early clamp Late clamp No feedback

Hit 153 � 11 150 � 10 137 � 8 133 � 9

Straddle 162 � 8 149 � 8 139 � 7 131 � 7

Miss 137 � 7 134 � 7 124 � 6 118 � 6

Experiment 2 0˚ clamp

Hit 149 � 8 159 � 20 155 � 11 127 � 7

Straddle 157 � 8 161 � 15 170 � 18 130 � 8

Experiment3

Hit-to-Straddle 158 � 7 189 � 12 168 � 12 N/A

Straddle-to-Hit 164 � 11 207 � 28 169 � 13 N/A

Bisected-to-Normal 151 � 11 165 � 14 166 � 15 N/A

DOI: https://doi.org/10.7554/eLife.39882.018

Appendix 1—table 3. Movement variability during baseline block. Values represent

mean ± SEM.

Experiment 1 Baseline SD

Hit 4.19 �. 26˚

Straddle 3.61 �. 16˚

Miss 3.80 �. 15˚

Experiment 2

Hit 3.09 �. 18˚

Straddle 3.57 �. 16˚

Appendix 1—table 3 continued on next page
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Appendix 1—table 3 continued

Experiment 1 Baseline SD

Experiment 3

Hit-to-Straddle 3.30 �. 22˚

Straddle-to-Hit 3.85 �. 37˚

Bisected-to-Normal 3.97 �. 31˚

DOI: https://doi.org/10.7554/eLife.39882.019

Kim et al. eLife 2019;8:e39882. DOI: https://doi.org/10.7554/eLife.39882 28 of 28

Research Communication Neuroscience

https://doi.org/10.7554/eLife.39882.019
https://doi.org/10.7554/eLife.39882

