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Object: The purpose of our study was to investigate the microstructural changes of the

medial temporal cortex in mild cognitive impairment (MCI) patients with cerebral small

vascular disease (cSVD) using diffusion kurtosis imaging (DKI) and to examine whether

DKI parameters are correlated with MCI.

Method: A total of 82 cSVD patients admitted to the Department of Neurology Beijing

Chaoyang Hospital, Capital Medical University, were retrospectively enrolled in this study.

The Montreal cognitive assessment scale (MoCA) score was used to assess overall

cognitive function. According to the presence or absence of MCI, these patients were

divided into an MCI group (n = 48) and a non-MCI group (n = 34). The general clinical

data of the two groups were collected and analyzed. The regions of interest (ROIs) in

the medial temporal cortex were selected for investigation. The averaged values of DKI

parameters were measured in each ROI and compared between the two groups, and

the correlations between DKI parameters and MoCA score and between diffusion and

kurtosis parameters were examined.

Results: Compared to the non-MCI group, MCI patients showed significantly increased

mean diffusion (MD) and radial diffusion (RD) and significantly decreased mean kurtosis

(MK) in the left hippocampus (P = 0.005, 0.006, 0.002, respectively). In the left

hippocampus, fractional anisotropy (FA), MK, radial kurtosis (RK), and kurtosis fractional

anisotropy (KFA) showed significantly positive correlations with MoCA score (r = 0.374,

0.37, 0.392, 0.242, respectively, all P < 0.05), while MK and RD were negatively

correlated with MoCA score (r = −0.227, −0.255, respectively, both P < 0.05). In the

left parahippocampal region, axial kurtosis (AK) and KFA were positively correlated with

MoCA score (r = 0.228, 0.282, respectively, both P < 0.05), while RK was positively

correlated with MoCA score in the right parahippocampal region (r = 0.231, P < 0.05).
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Significant correlations of MD with MK, RD with RK, and FA with KFA were observed in

the medial temporal cortex (r = −0.254, −0.395, 0.807, respectively, all P < 0.05) but

not of axial diffusion (AD) with AK.

Conclusion: The DKI technique can be used to observe microstructural changes of the

medial temporal cortex in MCI patients with cSVD. The DKI-derived parameters might

be a feasible means of evaluating patients with MCI.

Keywords: mild cognitive impairment, cerebral small vascular disease, medial temporal cortex, diffusion kurtosis

imaging, changes

INTRODUCTION

Mild cognitive impairment (MCI) is a condition in which
patients demonstrate cognitive impairment with minimal
impairment of the instrumental activities of daily living and that
does not meet the diagnostic criteria for dementia (1). MCI is
common in senior adults, and its prevalence increases with age
and lower social/educational status. Patients with MCI are at
higher risk of dementia than age-matched controls (2). Studies
have shown that the medial temporal cortex is likely to be more
vulnerable to MCI and have revealed a 2.2-fold higher volume
loss in the hippocampus, 1.8-fold loss in the whole brain, and 1.5-
fold loss in the olfactory cortex in MCI patients (3). Takahashi
et al. found that a low MoCA score of 22 or less was associated
with medial temporal cortex atrophy in patients with amnestic
cognitive impairment after stroke (4). The meta-analysis also
revealed that the early changes in the olfactory cortex are a good
imaging biomarker that can be used to discriminate individuals
with MCI from normal control subjects and that a larger degree
of atrophy in the olfactory cortex predicts increased disease
severity (5). In recent years, many studies have been published
on diagnostic applications of diffusion tensor imaging (DTI) (6–
10). However, the simplified description of the diffusion process
assumed in DTI does not permit complex microstructures to
be completely mapped because the cellular components and
structures hinder and restrict the diffusion properties of water
molecules. These limitations can be partially overcome by DKI,
and DKI parameters have been found to be very sensitive in
identifying some alterations that characterize many neurological
diseases (11, 12). These changes are appreciable with DKI even
before any imaging findings through conventional imaging and
in a better way than with conventional DTI (13). However, few
DKI study results are available with which to comprehensively
investigate the changes in the medial temporal cortex in patients
with MCI. This study aimed to identify the early microstructural
alterations in the medial temporal cortex in MCI patients with
cSVD byDKI and further examine the relationship between these
parameters and MoCA score, which may provide neuroimaging
evidence for the evaluation of MCI patients.

METHODS

Subjects
We retrospectively collected 82 patients with cSVD who were
admitted to the Department of Neurology, Beijing Chaoyang

Hospital, Capital Medical University from January to December
2018, and the diagnosis was confirmed by conventional MRI scan
(including MRA) of the head (14). Inclusion criteria were: age
of ≥50 years, cranial MRI confirmed the presence of cSVD (15),
evaluation of daily life showed no functional disability, evaluation
of overall cognitive function performed using the MoCA score.
Exclusion criteria were: patients with severe medical diseases,
such as heart diseases, liver diseases, renal failure, tumors,
or other systemic diseases; patients with severe neurological
diseases, such as white matter lesions unrelated to vascular
diseases, tumor, Parkinson’s disease, and brain trauma; patients
with severe neuropsychological disorders, mental disease, or
medicated with drugs affecting cognition within the prior 24 h;
patients with contradictions to MRI or who were unable to
receive cranial MRI.

Cognitive Function and
Neuropsychological Assessment
All patients were assessed on the neuropsychological scale
at admission. We use the MoCA score to assess overall
cognitive function, which included attention and concentration,
executive function, memory, language, visual-spatial structure
skills, abstract thinking, calculation, and orientation. According
to their social/educational status, those in the illiterate group
with ≤13 points, in the primary school group with ≤19 points,
and in the junior high school and above group with ≤24 points
were considered to have objective cognitive impairment (16).
The 24 stems of the Hamilton Depression Scale (HAMD) and
the Hamilton Anxiety Scale (HAMA) were also performed to
assess the severity of depressive or anxiety disorders. All subjects
underwent routine blood biochemical tests and glycosylated
hemoglobin and serum homocysteine tests. The baseline
data collected for all subjects were age, gender, education,
hypertension, diabetes mellitus, hyperlipidemia, smoking, and
drinking history.

General Criteria for MCI
First, the patient is neither normal nor demented; second,
there is evidence of cognitive deterioration, shown by either
an objectively measured decline over time and/or subjective
report of decline by self and/or informant in conjunction with
objective cognitive deficits; third, activities of daily living are
preserved, and complex instrumental functions are either intact
or minimally impaired (17).
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MRI DATA COLLECTION

MRI Scanning
All patients were scanned on a 3 Tesla whole-body MR system
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
with a 20-channel phased-array head coil. The head was fixed
with a sponge mat. T1-weighted images (T1WI) were scanned
using a 3D magnetization-prepared rapid acquisition gradient
echo (MPRAGE). The sequence parameters were set as follows:
repetition time (TR) = 2,300ms, inversion time (TI) = 900ms,
echo time (TE) = 89ms, flip angle (FA) = 8◦, field-of-view
(FOV) = 240 × 240mm, voxel size = 0.9mm isotropic, parallel
acceleration factor (PAT) = 2, and acquisition time = 5min
21 s. The diffusion imaging was performed using spin-echo
echo-planar imaging (SE-EPI) and was scanned in two blocks.
The parameters of the first block were TR = 7,700ms, TE =

89ms, imaging matrix = 74 × 74, FOV = 222 × 222mm,
number of slices = 50, slice thickness = 3mm, b = 0, 1,000,
2,000 s/mm2, 1 average, 30 gradient direction, PAT = 2, and
the acquisition time was 8min 14 s. The parameters of the
second block were the same as for the first except only b
= 0 s/mm2 was used, 9 average, and acquisition time was
1min 34 s. The total scan time of the diffusion scan was
9min 48 s.

Processing of DKI Data
Two radiologists (KL with 10 years’ experience in neuroimaging,
ZPwith 20 years’ experience in neuroimaging) viewed the images.
The medial temporal cortex mainly includes the hippocampus,
and olfactory and parahippocampal regions, and the label indices
of 21, 22, 37, 38, 39, 40 were selected as ROIs according
to the Anatomical Automatic Labeling (AAL) template (18).
The scanned diffusion-weighted images were first transformed
to NII file format using the dcm2nii tool and then supplied
to the diffusional kurtosis estimator (DKE) to generate DKI
parameter maps. However, during the acquisition, to reduce the
eddy current (EC) effect, we applied the vendor-provided EC
sensitivity reduction and dynamic field correction option in the
protocol. The T1W images acquired by MP-RAGE were supplied
to the SPM12 toolbox (19). The AAL template was non-linearly
registered to T1W images, and the AAL labels were aligned to
the T1W image space using the generated wrapping field and
transformation matrix. The DWI images (b = 0 s/mm2) were
rigidly aligned to the T1WI space, and the transformed matrix
was applied onto the DKI parameter maps. The average values
of MD, AD, RD, FA, MK, AK, RK, and KFA in these segmented
ROIs were then automatically calculated using MATLAB (2017a,
The MathWorks, Inc., Natick, MA). Although, in gray matter,
due to its near isotropic diffusion, the independent parameters
were considered to contain only MD and MK (12), we presented
the preliminary results in this study for all parameters including
the directional ones to provide a comprehensive perspective
with potential findings. MK is calculated as the average of
the kurtosis along all directions of diffusion gradients (20),
and AK, RK, and KFA are calculated similarly to AD, RD,
and FA, which are of interest for white matter bundles since
they give additional information on the axonal and myelin
integrity (21).

Statistical Analyses
Statistical analyses were performed using SPSS (version 22.0, IBM
Corp., Armonk, NY). The one-sample Kolmogorov–Smirnov
test was applied to test the normality of the data distribution.
Data were expressed as mean ± standard deviation (X ± SD)
when normality assumptions were satisfied. Otherwise, data were
expressed in terms of quartile. The independent sample t-test,
Mann–Whitney U-test, or the χ

2-tests were used appropriately
for comparison between the two groups. Multivariate logistic
regression was applied to determine the risk factors for patients
with MCI. We corrected multiple comparisons using the Šídák-
Bonferroni method, and the corrected P-value was statistically
significant when P < 0.0083 (0.05/6 = 0.0083). Correlation
between the MoCA score and the DKI diffusivity and kurtosis
parameters were analyzed. Pearson correlation analysis was
applied when normality assumptions were satisfied; otherwise,
Spearman correlation analysis was used. A value of P < 0.05 was
considered statistically significant.

RESULTS

General Characteristics and Cognitive
Functions
Of the 82 patients, 47 were male and 35 were female. The age
ranged from 50 to 88 years, with a median age of 64 (59, 69)
years old. The length of education was from 0 to 18 years, and
the median length was 8 (8, 11) years. According to the presence
or absence of MCI, the 82 patients were divided into an MCI

TABLE 1 | General characteristics and cognitive function of MCI and non-MCI

patients.

MCI group

N = 48

Non-MCI group

N = 34

U/x2 P

Age (year) 64 (60, 71) 63 (57, 67) −0.862 0.389

Sex (male) 28 (58.3%) 19 (55.9%) 0.049 0.825

Duration of education (year) 8 (7, 10) 9.5 (8, 11) −1.708 0.088

HAMD 23 (47.9%) 14 (41.2%) 0.365 0.546

HAMA 19 (39.6%) 13 (38.2%) 0.015 0.902

Hyperlipidemia 27 (56.3%) 15 (44.1%) 1.173 0.279

DM 10 (20.8%) 14 (41.2%) 3.979 0.046*

Hypertension 33 (68.8%) 21 (61.8%) 0.432 0.511

History of drinking 13 (27.1%) 11 (32.4%) 1.794 0.498

History of smoking 18 (37.5%) 14 (41.2%) 0.138 0.934

Glucose (mmol/L) 5.3 (4.9,6.5) 5.3 (4.7, 7.2) −0.108 0.914

UA (umol/L) 294 (236, 381) 283 (253, 346) −0.376 0.707

CR (umol/L) 69.2 (63.4, 84.9) 67.5 (56.7, 75.7) −1.633 0.102

TC 4.4 (3.6, 4.9) 4.5 (3.9, 5.0) −0.734 0.463

TG 1.5 (1.1, 1.9) 1.3 (0.9, 1.9) −0.932 0.351

LDL-C 2.3 (1.9, 2.8) 2.4 (2.−0, 2.8) −0.438 0.662

LPa 174 (71, 385) 135 (54, 182) −1.412 0.158

HCY 14.3 (12, 16.5) 12.3 (10.8, 15.3) −1.823 0.068

Glycated hemoglobin 6 (5.8, 6.8) 6.4 (5.8, 6.8) −0.972 0.331

MoCA 21 (19, 22) 27 (5, 28) −6.983 0.000**

DM, Diabetes mellitus; UA, Uric acid; Cr, Creatinine; TC, Total cholesterol; TG, Triglyceride;

LDL-C, Low-density lipoprotein cholesterol; Lpa, Lipoprotein a; HCY, Homocysteine;

MoCA, Montreal Cognitive Assessment; MCI, mild cognitive impairment.

*P < 0.05, **P < 0.01.
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group (48 cases) and a non-MCI group (34 cases). There were 28
males and 20 females in the MCI group, their ages ranged from
50 to 88 years old, with a median age of 64 (60, 71) years old,
their education period was from 0 to 18 years, and the median
duration of education was 8 (7, 10) years. There were 19 males
and 15 females in the non-MCI group, their ages ranged from
50 to 78 years old, with a median age of 63 (57, 67) years old,
their duration of education was from 8 to 11 years, and the
median duration of education was 9.5 (8, 11) years. There were
no significant differences in gender, age, and years of education
between the two groups (P > 0.05).

The risk factors of cerebrovascular disease (such as
hypertension, diabetes mellitus, hyperlipidemia, and history
of smoking and drinking), the blood test results (such as total
cholesterol, serum glucose, serum homocysteine, etc.), theMoCA
score, and the HAMA and HAMD score were also comparable
between the groups. MCI patients had evident cognitive
impairment and shared significant reductions in MoCA score
(P < 0.01). Patients with non-MCI had more type 2 diabetes
mellitus. However, there was no significant difference between

the two groups after multivariate logistic regression was applied
(see Table 1). We have also evaluated the enlarged perivascular
space (EPVS) and white matter hyperintensities (WMHs)
according to cranial MRI (see Supplementary Figures 1, 2). We
found patients with MCI had more severe total WMHs, however,
there were no significant differences between the two groups
in the severity of EPVS. Logistic regression was performed to
determine risk factors for patients with MCI, and found that
the severity of WMHs was an independent risk factor for MCI
patients (see Supplementary Tables 1, 2).

Comparison of DKI Parameters in the
Medial Temporal Cortex Between the MCI
and Non-MCI Groups
Compared to the non-MCI group, the MCI group showed
significantly increased MD and RD (P = 0.005, 0.006,
respectively) and significantly decreased FA, AK, MK, RK,
and KFA in the left hippocampal region (P = 0.017, 0.01, 0.002,
0.016, and 0.023, respectively). In the right olfactory region,

TABLE 2 | Comparison of DKI parameters in the hippocampus between patients in the MCI and non-MCI groups.

Group MCI group

N = 48

Non-MCI group

N = 34

t/U-Valuea P-Valuea t/U-Valueb P-Valueb

Left Right Left Right

AD 1.99 (1.82, 2.29) 1.80 (1.63, 2.07) 1.96 (1.77, 2.06) 1.67 (1.58, 1.90) 644.0 0.105 628.0 0.077

MD 1.79 ± 0.30 1.51 (1.30, 1.80) 1.63 ± 0.22 1.37 (1.25, 1.53) 620.0 0.065 5.51 0.005

RD 1.65 ± 0.29 1.36 (1.17, 1.63) 1.48 ± 0.23 1.24 (1.11, 1.40) 645.0 0.108 3.94 0.006

FA 0.16 (0.14, 0.19) 0.21 ± 0.06 0.18 (0.16, 0.24) 0.22 ± 0.07 0.44 0.72 563.5 0.017

AK 0.63 ± 0.05 0.65 ± 0.06 0.66 ± 0.04 0.68 ± 0.06 0.00 0.08 3.28 0.01

MK 0.70 ± 0.07 0.74 ± 0.08 0.74 ± 0.07 0.75 ± 0.09 0.15 0.37 0.00 0.002

RK 0.74(0.70, 0.80) 0.83 ± 0.13 0.79(0.74, 0.92) 0.84 ± 0.15 0.37 0.67 559.0 0.016

KFA 0.26 ± 0.05 0.31 ± 0.05 0.29 ± 0.05 0.32 ± 0.07 0.53 0.30 0.16 0.023

DKI, Diffusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean

kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.
aThe right-side group test value and P-value.
bThe left-side group test value and P-value.

TABLE 3 | Comparison of DKI parameters in the olfactory region between patients in the MCI and non-MCI groups.

Group MCI group

N = 48

Non-MCI group

N = 34

t/U-Valuea P-Valuea t/U-Valueb P-Valueb

Left Right Left Right

AD 1.70 ± 0.43 1.69 ± 0.39 1.66 ± 0.36 1.66 ± 0.37 0.21 0.77 0.32 0.65

MD 1.47 ± 0.41 1.45 ± 0.35 1.46 ± 0.35 1.43 ± 0.37 0.19 0.77 0.14 0.85

RD 1.38±0.37 1.33±0.34 1.33 ± 0.31 1.30 ± 0.36 0.44 0.67 0.22 0.53

FA 0.15 ± 0.04 0.16 ± 0.04 0.15 ± 0.03 0.17 ± 0.05 0.82 0.24 0.41 0.50

AK 0.70 (0.65, 0.76) 0.68 (0.64, 0.73) 0.71 (0.67, 0.79) 0.72 (0.67, 0.78) 581.0 0.027 726.5 0.40

MK 0.72 (0.66, 0.77) 0.71 (0.66, 0.76) 0.73 (0.69, 0.80) 0.78 (0.69, 0.83) 594.0 0.037 712.0 0.328

RK 0.72 (0.65, 0.82) 0.73 (0.66, 0.82) 0.74 (0.70, 0.80) 0.80 (0.68, 0.87) 637.0 0.092 706.0 0.301

KFA 0.28 (0.24, 0.32) 0.29 (0.25, 0.34) 0.29 (0.26, 0.32) 0.31 (0.26, 0.40) 734.0 0.44 728.0 0.408

DKI, Diffusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean

kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.
aThe right-side group test value and P-value.
bThe left-side group test value and P-value.
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TABLE 4 | Comparison of DKI parameters in the parahippocampus between patients in the MCI and non-MCI groups.

Group MCI group

N = 48

Non-MCI group

N = 34

t/U-Valuea P-Valuea t/U-Valueb P-Valueb

Left Right Left Right

AD 2.20 ± 0.37 1.90 ± 0.25 1.14 ± 0.27 1.93 ± 0.34 3.72 0.75 1.52 0.44

MD 1.92 ± 0.35 1.65 ± 0.23 1.88 ± 0.25 1.68 ± 0.33 4.22 0.73 1.58 0.57

RD 1.78 ± 0.34 1.53 ± 0.23 1.73 ± 0.25 1.54 ± 0.32 4.66 0.79 1.16 0.48

FA 0.15 (0.13, 0.17) 0.15 (0.14, 0.18) 0.16 (0.14, 0.17) 0.16 (0.14, 0.18) 771.0 0.762 688.0 0.228

AK 0.63 ± 0.08 0.66 (0.62, 0.68) 0.65 ± 0.04 0.67 (0.64, 0.71) 663.0 0.15 9.15 0.044

MK 0.69 ± 0.10 0.69 ± 0.07 0.71 ± 0.05 0.71 ± 0.06 0.14 0.19 6.32 0.175

RK 0.72 (0.66, 0.78) 0.73 ± 0.10 0.74 (0.71, 0.82) 0.76 ± 0.08 0.32 0.27 630.0 0.08

KFA 0.23 ± 0.04 0.27 ± 0.06 0.25 ± 0.03 0.27 ± 0.06 0.22 0.94 0.68 0.087

DKI, Diffusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean

kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.
aThe right-side group test value and P-value.
bThe left-side group test value and P-value.

TABLE 5 | Spearson’s correlations of DKI parameters with MoCA score.

MoCA Brain region AD MD RD FA AK KFA MK RK

Olfactory_R −0.035 −0.029 −0.036 0.134 0.157 0.161 0.137 0.161

Olfactory_L −0.033 0.000 −0.034 −0.009 −0.010 0.097 −0.078 −0.034

Hippocampus_R −0.079 −0.138 −0.145 0.109 0.106 0.095 0.173 0.154

Hippocampus_L −0.147 −0.227* −0.255* 0.374** 0.220 0.242* 0.370** 0.392**

Parahippocampal_R −0.074 −0.077 −0.086 0.143 0.212 0.097 0.218 0.231*

Parahippocampal_L −0.131 −0.122 −0.134 0.152 0.228* 0.282* 0.180 0.161

R, Right; L, Left; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional

anisotropy; MoCA, Montreal cognitive assessment scale.

*P < 0.05, **P < 0.01.

AK and MK were significantly lower in patients with MCI (P =

0.027 and 0.037, respectively), while in the left parahippocampal
region, AK was significantly lower in patients with MCI (P =

0.044). No parameters were found to be significantly different
between the two groups in the left olfactory, right hippocampus,
and right parahippocampal regions. The Šídák-Bonferroni
method was applied for multiple comparisons, and MD, RD, and
MK still remained statistically significantly different in the left
hippocampal region (P = 0.005, 0.006, and 0.002, respectively;
see Tables 2–4).

Spearman Correlations With DKI
Parameters and MoCA Score
In the left hippocampal region, FA, MK, RK, and KFA were
positively correlated with MoCA score (r = 0.374, 0.370, 0.392,
and 0.242, respectively, all p < 0.05), while MD and RD
were negatively correlated with MoCA score (r = −0.227 and
−0.255, respectively, both p < 0.05). In the left parahippocampal
region, AK and KFA were positively correlated with MoCA
score (r = 0.228 and 0.282, respectively, both p < 0.05), and
RK was positively correlated with MoCA score in the right
parahippocampal region (r = 0.231, p < 0.05), while the
other parameters had no correlation with MoCA score (detailed
Spearman coefficients are summarized in Table 5 and Figure 1).

Pearson Correlations Between Diffusivity
and Kurtosis Parameters
Considering the values of parameters obtained from all patients
for the medial temporal regions, there were significant positive
correlations between FA and KFA (r = 0.807, p < 0.001), and
RD was found to negatively correlate with RK (r = −0.395,
P < 0.001). Similar inverse correlation was observed between
MD and MK (r = −0.254, P = 0.021), but there were no
significant correlations between the AD and AK parameters
(Figure 2 presents the correlations mentioned above).

DISCUSSION

Our study mainly found that compared to the non-MCI group,
the MCI group showed significantly increased MD and RD
and significantly decreased MK in the left hippocampal region.
In the left hippocampal region, FA, MK, RK, and KFA were
significantly positively correlated with MoCA score, while MD
and RD were significantly negatively correlated with MoCA
score. In the left parahippocampal region, AK and KFA were
significantly positively correlated with MoCA score, while RK
was significantly positively correlated with MoCA score in the
right parahippocampal region.With the exception of AD andAK,
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FIGURE 1 | Correlations between DKI parameters and MoCA score in left Hippocampus.

significant correlations were observed between the other three
diffusion and kurtosis parameters in the medial temporal cortex.

In our study, the results showed that compared to non-MCI
patients, the values of MK in the left hippocampal region was
significantly lower in MCI patients, while the values of MD
and RD were significantly increased. Consistent with our results,
earlier studies comparing MCI, Alzheimer’s disease, and controls
also found decreased values of MK in MCI and Alzheimer’s
disease (12, 22). Falangola et al. demonstrated that MCI
and Alzheimer’s disease patients showed statistically significant
differences in kurtosis parameters in selected brain regions
(segmented prefrontal white matter, prefrontal oval, genu of the
corpus callosum, anterior corona radiate, segmented temporal
white matter, temporal oval, and hippocampus) compared to
controls (22). Ryu et al. also found that patients with subjective
memory impairment (SMI) exhibited DTI changes (lower FA
and higher MD in SMI) in the hippocampal body and olfactory
white matter compared to controls (23). The decrease of MK
and elevated MD and RD suggests a change in the gray matter
microstructure in the medial temporal cortex. This may be due
to the loss of neuron cell bodies, synapses, and dendrites, which
would increase the extracellular space and result in elevatedmean
diffusivity and radial diffusivity.

Our study also found that in the left hippocampal region, FA,
MK, RK, and KFA were positively correlated with MoCA score,
while MD and RD were negatively correlated with MoCA score.
In the left parahippocampal region, AK and KFA were positively
correlated with MoCA score, and in the right parahippocampal,
RK was positively correlated with MoCA score, while the other

parameters were observed have no correlation with MoCA score.
NJ G etc. found no significant correlations between MMSE
score and any of the kurtosis parameters in the gray matter of
the temporal cortex (12); this may have been due to the small
number of cases, as their study had only 18 Alzheimer’s disease
patients and 12 MCI patients. We also found that, with the
exception of AD and AK, significant correlations were observed
between kurtosis and diffusivity parameters (between MK and
MD, between FA and KFA, and between RK and RD), which
is consistent with the study of NJ G. The results suggested
that the changes in diffusivity were accompanied by a change
in diffusional non-gaussianity, and kurtosis parameters were
suggested to be at least complementary to, if not more sensitive
than diffusivity parameters for detecting microstructural changes
in the medial temporal cortex.

In addition, our study revealed bilateral asymmetry in the
microstructural changes of themedial temporal cortex in patients
with MCI. Compared to non-MCI patients, the microstructural
changes in the left hippocampus were more obvious than in
the right in MCI patients. The possible reason for this is that,
in normal people, the hippocampal cortex shows asymmetry. A
meta-analysis of asymmetry of the hippocampus and amygdala
revealed that both the hippocampus and the amygdala are
reliably asymmetrical structures in normal adults, with larger
right hippocampal and right amygdala volumes (24). This finding
was also supported by Yue et al. in a study of subjective
cognitive decline among community-dwelling Chinese (25). De
Toledo-Morrell et al. found that the right olfactory cortex may
be more vulnerable to the aging process than the left because it
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FIGURE 2 | Correlations between diffusivity and kurtosis parameters from all ROIs.

was smaller in elderly subjects (26). A recent longitudinal study
showed that a smaller thickness in the right olfactory region
predicted the onset of symptoms (27). Therefore, we speculated
that the left hippocampus is smaller than the right, and the left
hippocampal microstructural changes are more vulnerable in
MCI patients.

Our study also has several limitations. First, the relatively
small sample size may have contributed to the significant group
differences. Second, our study lacks a normal healthy control
group and long-term follow-up, which has a certain impact on
the results of the study. Third, due to the small number of MCI
patients in this study, we did not further analyze the subtypes
of MCI. Fourth, although interesting findings regarding kurtosis
parameters were observed in the medial temporal cortex, their
underlying pathophysiological significance must be examined in
further studies.

CONCLUSION

It is feasible to use DKI to observe the microstructural changes
of the medial temporal cortex in MCI patients with cSVD.
Compared to the non-MCI group, DKI-derived parameters
of the medial temporal cortex were significantly different in

the MCI group. Furthermore, some of the DKI parameters
showed heterogeneous patterns of correlations with the clinical
evaluation score of MCI patients, which might provide insights
into the imaging evaluation of MCI patients with cSVD.
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