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Abstract 

The RAS oncogene is both the most frequently mutated oncogene in human cancer and the first confirmed human 
oncogene to be discovered in 1982. After decades of research, in 2013, the Shokat lab achieved a seminal break-
through by showing that the activated KRAS isozyme caused by the G12C mutation in the KRAS gene can be directly 
inhibited via a newly unearthed switch II pocket. Building upon this groundbreaking discovery, sotorasib (AMG510) 
obtained approval by the United States Food and Drug Administration in 2021 to become the first therapy to directly 
target the KRAS oncoprotein in any KRAS-mutant cancers, particularly those harboring the KRASG12C mutation. Adag-
rasib (MRTX849) and other direct KRASG12C inhibitors are currently being investigated in multiple clinical trials. In this 
review, we delve into the path leading to the development of this novel KRAS inhibitor, starting with the discovery, 
structure, and function of the RAS family of oncoproteins. We then examine the clinical relevance of KRAS, especially 
the KRASG12C mutation in human cancer, by providing an in-depth analysis of its cancer epidemiology. Finally, we 
review the preclinical evidence that supported the initial development of the direct KRASG12C inhibitors and summa-
rize the ongoing clinical trials of all direct KRASG12C inhibitors.
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Background
Since the discovery of KRAS in the 1960’s, little progress 
has been made recently in treating patients with KRAS-
driven cancers. After a period when directly targeting 
KRAS was considered unlikely, hence deeming KRAS 
“undruggable,” the Shokat lab reinvigorated the search 
for a direct KRAS inhibitor by discovering the KRASG12C 
switch II pocket in 2013. In May 2021, the United States 
Food and Drug Administration (FDA) approved sotora-
sib (Lumakras™) as the first treatment for adult patients 
with non-small cell lung cancer (NSCLC) harboring the 
KRASG12C genetic mutation who have received at least 
one prior systemic therapy. Thus, sotorasib became the 
first FDA-approved therapy to directly target the KRAS 

oncoprotein in tumors, particularly those with KRASG12C 
mutations. As of early August 2021, there have been 
twenty registered clinical trials investigating nine dif-
ferent direct KRASG12C inhibitors, with seven inhibitors 
currently being investigated.

The key purpose of this review is to convey a thorough 
account of the KRASG12C preclinical and clinical research 
landscape that has led to our present understanding 
of treating KRASG12C-mutant cancers. We aim for this 
review to serve as a comprehensive primer for any physi-
cian or scientist interested in pursuing KRASG12C inves-
tigation. To our knowledge, we are not aware of any 
published review that has provided as extensive a cover-
age of all the landmark preclinical and clinical research 
regarding KRASG12C inhibition specifically.
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Discovery of KRAS
Discovered by its namesake in 1967, the Kirsten murine 
sarcoma virus (Ki-MSV) was first isolated as a sarcoma-
inducing retrovirus during the passaging of murine 
leukemia viruses in rats [1]. In 1975, Scolnick et al. estab-
lished Ki-MSV to be a recombinant virus with incorpo-
rated sequences derived from the rat genome [2]. Soon 
after, these sequences were molecularly characterized [3], 
and Ki-MSV was established to contain the rat cellular 
gene Kras [4].

Around the same time the retrovirus oncogene stud-
ies were conducted, DNA transfection studies were ini-
tially performed to unearth genes capable of inducing 
morphologic cellular transformation. In 1979, Weinberg 
et  al. first reported the morphological transformation 
of NIH/3T3 mouse fibroblasts using genomic DNA iso-
lated from chemically transformed rodent fibroblasts [5], 
which was followed by additional transformation stud-
ies with NIH/3T3 cells transfected with different human 
tumor cell lines by other groups [6–10].

In 1982, perhaps serendipitously, the Cooper, Wein-
berg, Barbacid, and Aaronson groups [11–13] imple-
mented DNA hybridization with retroviral oncogene 
probes to determine that the human oncogenes which 
transformed the NIH/3T3 mouse fibroblast cell lines 
in the earlier transfection studies were homologous to 
the RAS genes identified in the Kirsten and Harvey sar-
coma viruses. In fact, it was later revealed that the first 
NIH/3T3 transformants reported by the Weinberg group 
possessed an activated KRAS oncogene [14]. By the end 
of 1982, a single missense mutation in codon 12 was 
found to be the molecular basis of HRAS gene activation 
in the EJ/T24 bladder carcinoma cell line [15–17]. More-
over, the codon 12 mutation was found to be the activat-
ing mutation in KRAS in lung and colon tumor cells [18]. 
Mutant RAS genes were later identified in patient tumors 
but not in normal tissue, which validated the fact that the 
mutant RAS genes from aforementioned tumor cell lines 
were real and not artifacts of in vitro cell passage [19–21]. 
Thorough reviews describing the discovery of the RAS 
family have been previously published [19, 22, 23].

Structure of RAS
Three genes (HRAS, NRAS and KRAS) encode the 
four major RAS isoforms: HRAS, NRAS, KRAS4A, 
and KRAS4B. KRAS encodes two variants due to alter-
native splicing of exon 4, which results in divergent 
C-terminal sequences. Both variants are expressed 
in human cells, but KRAS4B is the predominant iso-
form expressed in human cells while KRAS4A has low 
expression levels and is more similar to viral KRAS [19]. 
The amino-terminal residues 1–165 of the RAS pro-
teins share 92–98% sequence identity. The remaining 

23–24 carboxy-terminal residues diverge substantially 
in sequence and are thus defined as the hypervari-
able region (HVR) [24]. Although the protein sequences 
among RAS isomers are highly conserved, KRAS exhib-
its rare (i.e., genomically underrepresented) codon bias 
at the third (i.e., degenerate) position of codons: KRAS 
displays an A/T bias, resulting in relatively poor protein 
translation, while HRAS demonstrates an G/C bias. The 
degree of rare codon bias appears to be correlated with 
the mutation frequency among RAS isomers [25].

The initial 166–168 residues of the RAS proteins 
form a single-structured domain known as the G 
domain (Fig.  1), which is comprised of a mixed six-
stranded β-sheet and five-α-helix fold that is typical for 
α,β-nucleotide-binding proteins [24]. Bordering the 
nucleotide-binding pocket are four main regions: the 
phosphate-binding loop (P-loop, residues 10–17), switch 
I (residues 30–38), switch II (residues 60–76) and the 
base-binding loops (residues 116–120 and 145–147) [24]. 
Described as a loaded-spring mechanism [26], the switch 
regions undergo conformational changes between the 
GDP- (guanosine diphosphate) and GTP-bound (guano-
sine triphosphate) states. In the GTP-bound state, threo-
nine 35 (switch I region) and glycine 60 (switch II region) 
make hydrogen bonds with the γ-phosphate, holding the 
respective switch regions in their active conformations. 
Upon GTP hydrolysis and phosphate release, these two 
regions relax into their inactive GDP conformations. 
The two switch regions regulate all known nucleotide-
dependent interactions between RAS and its binding 
partners [24].

The remaining residues in the carboxy-terminal con-
stitute the HVR and lipid tail that appear to be poorly 
structured in solution. The HVR includes the CAAX (C: 
cysteine amino acid, A: aliphatic amino acid, X: amino 
acid dictating whether farnesylated or geranylated) motif, 
which is a membrane anchor sequence. Upon its ini-
tial synthesis in the cytosol, the RAS protein undergoes 
post-translational modifications to enable its association 
with the plasma membrane, which is essential for acti-
vation of its various downstream pathways. The subcel-
lular localization of RAS proteins is determined by the 
specific lipid modification, composition of local mem-
branes, and electrostatic nature of the isoform-specific 
HVR’s [27]. Once synthesized, RAS first undergoes pre-
nylation, which involves farnesylation of the cysteine 
residue in the CAAX motif by fanesyltransferase. Only 
HRAS is exclusively prenylated by farnesyltransferase, 
while KRAS and NRAS (to a lesser extent) can undergo 
alternative prenylation by geranylgeranyl transferase-I 
when farnesyltransferase activity is blocked [28]. This 
alternative prenylation was discovered after the disap-
pointing results of the promising clinical trials involving 
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farnesyltransferase inhibitors (FTI’s) when targeting 
KRAS-driven tumors [29]. After farnesylation, the -AAX 
motif is cleaved by RAS-converting enzyme 1 (RCE1), 
and the farnesylated cysteine residue is then carboxym-
ethylated by isoprenylcysteine carboxymethyltransferase 
(ICMT) [24].

All RAS proteins require a second signal for proper 
plasma membrane localization. Except for KRAS4B, 
this second signal includes palmitoylation at a second 
cysteine in the HVR, which creates a second hydrophobic 
anchor. Because KRAS4B lacks a second cysteine in the 
HVR, KRAS4B is not palmitoylated. Instead, the HVR of 
KRAS4B contains a polylysine region that anchors the 
protein to the plasma membrane via electrostatics. Simi-
larly, KRAS4A contains a bipartite polybasic sequence 
that also contributes to membrane attachment via elec-
trostatic interactions in addition to palmitoylation [24].

Function of RAS
RAS proteins are small, membrane-bound guanine nucle-
otide-binding GTPases. Functioning as binary switches, 
they cycle between their GTP-bound (active) and GDP-
bound (inactive) conformations to regulate multiple sig-
nal transduction pathways. RAS proteins play a pivotal 
role in the regulation of cell proliferation, differentiation, 
and survival that drive multiple aspects of transformation 
and tumor progression through these signal transduction 
cascades, which include the canonical RAF–MEK–ERK/
MAPK, PI3K–AKT–mTOR, and RALGDS–RAL path-
ways, among others (Fig. 2) [19, 30–35].

RAS signaling is regulated through a balance between 
activation by guanine nucleotide exchange factors (GEF’s) 
and inactivation by GTPase-activating proteins (GAP’s). 
RAS proteins intrinsically have a relatively slow off-rate 
for GDP (t1/2 = 6 min, koff = 2 × 10− 3 s− 1 at 20°) [36]. 
Thus, GEF’s, such as son of sevenless homologue (SOS) 
and RAS guanyl nucelotide-releasing protein (RAS-
GRP), are needed to accelerate the GDP/GTP exchange 
reaction by several orders of magnitude. Upon binding 
to GEF, RAS undergoes conformational changes in the 
switch regions and P loop that weaken the GDP affinity, 
ultimately resulting in GDP release and replacement by 
GTP [37]. Because RAS and GEF each have similar affini-
ties for GDP or GTP, increased levels of GTP-bound RAS 
occur mainly due to the ~ 10-fold higher cellular GTP 
concentration of GTP relative to GDP. Binding of GTP 
dissociates the GEF and leads to the formation of an 
active GTP-bound RAS that can bind effectors. Moreo-
ver, RAS proteins have a relatively slow rate of intrinsic 
GTP hydrolysis (t1/2 = 16 min, koff = 6 × 10− 4 s− 1) [36]. 
Therefore, for efficient GTP hydrolysis to occur, GAP’s, 
such as p120GAP and neurofibromin, function by accel-
erating the cleavage step by several orders of magnitude.

Epidemiology of the RAS family in human cancer
Overview of the RAS family
Numerous studies have reported mutant RAS as a key 
driver of transformation and tumor progression [19, 30, 
38]. Cross-referencing data from the four leading can-
cer mutation databases Catalogue of Somatic Muta-
tions in Cancer (COSMIC) [39], The Cancer Genome 

Fig. 1  The G domain corresponds to the initial 166–168 residues. Bordering the nucleotide-binding pocket are four main regions: the 
phosphate-binding loop (P-loop, residues 10–17), switch I (residues 30–38), switch II (residues 60–76) and the base-binding loops (residues 116–120 
and 145–147). The two switch regions regulate all known nucleotide-dependent interactions between RAS and its binding partners. The remaining 
residues in the carboxy-terminal constitutes the HVR, including the CAAX motif, a membrane anchor sequence. Abbreviations: HVR, hypervariable 
region; CAAX, C: cysteine amino acid, A: aliphatic amino acid, X: amino acid dictating whether farnesylated or geranylated
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Atlas (TCGA) [40], the Memorial Sloan Kettering Can-
cer Center (MSKCC) cBioPortal [41], and the Interna-
tional Cancer Genome Consortium (ICGC) [42], as well 
as the private Foundation Medicine dataset, Prior and 
colleagues estimated ~ 19% of cancer patients to have a 
RAS mutation, which is equivalent to ~ 260,000 inci-
dent cancer cases in the United States alone [43]. Glob-
ally, there are ~ 18 million new cancer diagnoses per year 
[44], from which Prior and colleagues extrapolated to be 
~ 3.4 million new cancer incidents with RAS mutations 
worldwide. Among mutations in the three RAS genes, 
gain-of-function missense mutations in KRAS account 
for the majority of RAS gene mutations (75%), followed 
by NRAS mutations (17%) and HRAS mutations (7%) [43, 
45]. In pan-cancer analyses, mutations in any of these 
RAS family genes is associated with poor patient progno-
sis [41, 46].

The particular RAS gene mutated in cancer demon-
strates a strong preference to its tissue of origin. In a 
given cancer type, KRAS mutations are the predomi-
nant RAS mutations found in pancreatic cancer (~ 88%). 
KRAS mutations are also notable in a variety of other 

cancer types including colon adenocarcinoma (50%), rec-
tal adenocarcinoma (50%), lung adenocarcinoma (32%), 
small intestine adenocarcinoma (26%), cholangiocarci-
noma (23%), plasma cell myeloma (18%), gallbladder car-
cinoma (16%), and anaplastic thyroid carcinoma (8.6%). 
Meanwhile, NRAS mutations are the most common RAS 
mutations in skin cutaneous melanoma (17%); hemato-
logic malignancies including plasma cell myeloma (19%), 
acute myeloid leukemia (14%), chronic myeloid leukemia 
(9.7%), and acute lymphoblastic leukemia (9.6%); and 
endocrine thyroid malignancies including anaplastic thy-
roid carcinoma (19%), follicular thyroid carcinoma (19%), 
and papillary thyroid carcinoma (5.9%). HRAS mutations 
are mostly found in head and neck squamous cell carci-
noma (5.1%) and bladder urothelial carcinoma (7%), and 
are also found in endocrine thyroid cancers to a lesser 
extent including follicular thyroid carcinoma (7%) [43].

RAS genes are further distinguished by their distinctive 
mutation frequency differences at three codon-specific 
hotspots, which also vary by tumor type. The most fre-
quent sites of oncogenic mutation in RAS are residues 
G12, G13, and Q61. Residues G12 and G13 are located 

Fig. 2  RAS proteins play a pivotal role in the regulation of cell proliferation, differentiation, and survival through various signal transduction 
cascades, including the canonical RAF–MEK–ERK/MAPK, PI3K–AKT–mTOR, and RALGDS–RAL pathways. Once the ligand binds to the extracellular 
domain of the RTK, the signal is transmitted through the transmembrane domain resulting in RTK dimerization and subsequent RAS activation. RAS 
signaling is further regulated by a balance between activation by GEF’s (e.g., SOS and RASGRP) and inactivation by GAP’s (e.g., NF and p120GAP). 
Abbreviations: RTK, receptor tyrosine kinase; GEF’s, guanine nucleotide exchange factors; GAP’s, GTPase-activating proteins; SOS, son of sevenless 
homologue; RASGRP, RAS guanyl nucelotide-releasing protein; NF, neurofibromin



Page 5 of 23Kwan et al. J Exp Clin Cancer Res           (2022) 41:27 	

in the P-loop region of RAS, while residue Q61 is located 
in the switch II region. Single base missense mutations at 
these three key residues account for 99% of all RAS muta-
tions [47]. Among KRAS mutations, G12 mutations are 
predominant (81%), followed by G13 mutations (14%) 
and Q61 mutations (2%) [43]. Among NRAS mutations, 
Q61 mutations are the majority (62%), followed by G12 
mutations (23%) and G13 mutations (11%). HRAS muta-
tions are more evenly split in residue preferences, but the 
preferences are still relatively apparent. Among HRAS 
mutations, Q61 mutations are the most prevalent (38%), 
followed by G12 mutations (26%) and G13 mutations 
(23%).

Furthermore, there are differences in the specific 
amino acid that is mutated at each of the three hotspots 
(G12, G13, and Q61), which also vary by tumor type (see 
below). Nineteen different activating mutations in codon 
12, 13, or 61 can be created in each RAS isoform by a sin-
gle base change. Among those three codons, five muta-
tions (G12D, G12V, G12C, G13D and Q61R) account for 
70% of all RAS-mutant cancers [43].

Mutant KRAS in human cancer
Globally, among the ~ 18 million new cancer diagnoses 
each year, ~ 2.6 million cancer patients are estimated to 
harbor a KRAS mutation (i.e., ~ 14% of all cancer cases) 
[43]. KRAS mutations alone account for ~ 1 million 
annual deaths worldwide, similarly to that for malaria 
and tuberculosis [28]. As stated earlier, gain-of-function 
missense mutations in KRAS account for the majority of 
RAS gene mutations in human cancer (75%). Among the 
29 cancer types with KRAS mutations that were included 
in Table  1 of the study by Prior and colleagues, 43% of 
all KRAS mutations in human cancer are found in colo-
rectal adenocarcinoma, followed by pancreatic adeno-
carcinoma (20%) and NSCLC adenocarcinoma subtype 
(14%). Within a particular cancer type, the three can-
cers in which KRAS mutations are the predominant RAS 
mutations are pancreatic cancer (~ 88%), colorectal ade-
nocarcinoma (50%) [colon adenocarcinoma (50%) and 
rectal adenocarcinoma (50%)], and lung adenocarcinoma 
(32%). Because these three cancers alone are responsible 
for the majority of KRAS mutations found in human can-
cer (77%), much of the current focus on KRAS-mutant 
cancer therapeutics is targeted against these cancers. 
However, as illustrated in Fig. 3, KRAS mutations are also 
noteworthy in a variety of other cancer types including 
small intestine adenocarcinoma (26%), biliary tract can-
cers [cholangiocarcinoma (23%), gallbladder carcinoma 
(16%)], plasma cell myeloma (18%), and anaplastic thy-
roid carcinoma (8.6%).

Differences are observed in codon-specific and 
amino acid-specific mutation patterns that further vary 

depending on tumor type. Among all residue-specific 
KRAS mutations, the G12 mutation is the predominant 
mutation (81%), followed by the G13 mutation (14%) 
and Q61 mutation (2%) [43]. Among KRAS mutations 
in pancreatic adenocarcinoma, residue G12 mutations 
(94%) predominate, while G13 and Q61 mutations (1.2 
and 2.4%, respectively) are rare [43]. On the other hand, 
among KRAS mutations in colon and rectal adenocar-
cinoma, G13 mutations are observed in relatively high 
frequencies (20 and 21%, respectively). Analyzing amino 
acid-specific KRAS mutations in the three cancer types 
responsible for most KRAS mutations, the most com-
mon KRAS mutation in NSCLC adenocarcinoma sub-
type is KRASG12C (glycine to cysteine) (33.4%), while 
the most common KRAS mutation in colon and rectal 
adenocarcinoma and pancreatic ductal adenocarcinoma 
is KRASG12D (glycine to aspartate) (32.7, 32.5, and 46.1%, 
respectively) [39].

Focusing on the KRASG12C mutant, this mutation is 
present in 12% of all KRAS-mutant cancers [39]. Prior 
et  al. gathered data from COSMIC and American Can-
cer Society (ACS) 2018 cancer incidence statistics to 
estimate the number of KRASG12C mutations found in 
newly diagnosed cancer patients each year in the U.S. 
alone. They estimated that 32.8% of all KRASG12C muta-
tions in human cancer are found most commonly in lung 
adenocarcinoma, followed by colorectal adenocarcinoma 
(18.8%) and pancreatic adenocarcinoma (4.6%) [43]. As 
a comparison, they estimated that KRASG12D mutant is 
most commonly found in pancreatic adenocarcinoma 
(29.9%), followed by colorectal adenocarcinoma (25.8%) 
and lung adenocarcinoma (5.9%) [43]. Analyzing the 
KRASG12C mutation frequencies in each of these three 
cancer types separately, Nassar et al. identified KRASG12C 
mutations in 13.8% of NSCLC (7.0% of lung adenocarci-
noma-subtype [39]), 3.2% of colorectal cancer, and < 1% 
of pancreatic cancer patients using data extracted from 
the registry of the American Association for Cancer 
Research Project Genomics Evidence Neoplasia Informa-
tion Exchange (GENIE), version 8.0 [48, 49]. In summary, 
these codon- and amino acid-specific mutation patterns 
that differ depending on the tumor tissue of origin must 
be taken into consideration when designing novel anti-
cancer therapeutics since they may implicate distinct 
oncogenic properties and thus clinical consequences.

Mechanistic and clinical implications of missense 
mutation‑specific hotspots
Missense gene mutations at amino acid residues G12, 
G13, and Q61 have unique structural and functional 
consequences on the RAS protein, respectively [36, 38]. 
Substitution of glycine at G12 or G13 by any amino acid 
except proline are believed to cause a steric block that 
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prevents the arginine finger of GAP from entering the 
GTPase site of RAS, thus discouraging hydrolysis as a 
result [50]. Because Q61 is part of the GTP hydrolysis 
mechanism, Q61 mutations abolish both intrinsic and 
GAP-mediated GTP hydrolysis. Overall, missense muta-
tions that affect these residues result in increased RAS 
activation via GTP-loading, thus bypassing normal physi-
ological activation by upstream input, for example, from 
receptor tyrosine kinases [28].

Mutagenesis studies first demonstrated the idea that 
certain amino acid substitutions at a given mutation 
hotspot can lead to varied functional consequences. In 
a study with HRAS as the model, a wide range of onco-
genic outcomes was shown with all 19 possible amino 
acid substitutions at the G12 codon [51]. Additionally, 
in a similar study that examined the outcomes of 17 dif-
ferent mutations on HRAS Q61, all 17 mutants shared 
comparable defects in GTP hydrolysis activity in  vitro, 
while the Q61P and Q61E mutations did not show 
increased transforming ability relative to HRAS WT 
[52]. In other studies, G12V mutation decreased GAP-
mediated hydrolysis, Q61L mutation reduced both GAP-
mediated and intrinsic hydrolysis and increased intrinsic 
nucleotide exchange, and G13D mutation reduced GAP-
mediated hydrolysis and noticeably increased intrinsic 
nucleotide exchange [53]. In addition to specific muta-
tions impacting direct RAS protein function, expanding 
evidence suggest mutation-specific consequences on the 
effector signaling pathways of RAS as well [54, 55].

To underscore the impact of the mutation-specific 
consequences on direct RAS protein function and its 
signaling pathways, Westover and colleagues profiled 
the biochemical and biophysical properties of com-
monly occurring KRAS mutants (G12A, G12C, G12D, 
G12R, G12V, G13D, Q61L, and Q61H) [36]. They ana-
lyzed the intrinsic and GAP-mediated GTP hydrolysis 
rates, GTP and GDP-binding kinetics, relative affinities 
for RAF kinase, and high-resolution crystal structures. 
Overall, mutations that affect the G12, G13 and Q61 resi-
dues resulted in decreased intrinsic and GAP-stimulated 
GTP-hydrolysis rates. Additionally, they showed that the 
G13D mutant expressed an increased rate of nucleotide 
exchange independent of GEF (e.g., SOS) regulation rela-
tive to the wild-type protein, which resulted in increased 
auto-activation and thus provided another potential 
mechanism of increased aberrant cellular RAS signaling.

Mutations impacting KRAS activity can be classified 
by having either a high (WT, G12C, G12D, G13D) or low 
(G12A, G12R, G12V, Q61L, and Q61H) level of intrinsic 
GTPase activity. Mutations can be further distinguished 
by having either high (WT, G12A, G12C, G13D, and 

Q61L) or low (G12R, G12V, and G12D) RAF affinity, 
based on their relative affinity for RAF kinase Ras-bind-
ing domain (RBD). With these criteria in mind, Westover 
and colleagues proposed a predictive model for the rela-
tive dependence on (i.e., activation of ) the RAF kinase 
pathway compared with other canonical RAS signaling 
pathways such as PI3K and RalGDS among tumors with 
KRAS mutations. The Westover model predicts tumors 
with G12A and Q61L mutations preferentially signal 
through the RAF kinase pathway due to their high affin-
ity for RAF kinase and relatively lower rates of intrinsic 
hydrolysis. In contrast, the model predicts G12D to have 
the lowest RAF activation levels due to its low affinity for 
RAF and faster hydrolysis rate. G12V and G12R would 
have moderate activation of RAF kinase due to their slow 
intrinsic hydrolysis rate coupled with a low RAF affin-
ity. Likewise, G12C and G13D would also be predicted 
to have moderate activation of RAF kinase due to their 
high affinity but more rapid intrinsic GTPase activity that 
likely results in an attenuated duration of RAF kinase 
activation compared with G12A and Q61.

While the therapeutic response to farnesyltransferase 
inhibitors appears to be dependent on the specific RAS 
isoform mutated [29], there is increasing evidence that 
mutations at specific hotspots can also impact treat-
ment outcomes among cancer patients. For example, 
based on clinical trials and various studies examining 
the efficacy of anti-epidermal growth factor receptor 
(EGFR) therapies such as cetuximab and panitumumab 
in treating colorectal cancer patients [56–61], the FDA 
revised their recommendation to exclude patients with 
KRAS G12 or G13 mutations from such treatment [62]. 
Currently, the National Comprehensive Cancer Net-
work (NCCN) advises that colorectal cancer patients 
with any KRAS or NRAS mutation will not benefit from 
anti-EGFR therapy [63].

With increasing preclinical and clinical evidence 
supporting the importance of RAS isoform- and res-
idue-specific mutation differences that are also both 
cellularly and genetically context-dependent [54], it 
appears for now that developing a single, universal 
anti-RAS therapeutic approach that specifically tar-
gets RAS mutants, without affecting RAS wild-type, 
in cancer is a challenging task. Thus, a pan-KRAS 
[64] or pan-RAS [65] inhibitor may have distinct 
advantages. For the foreseeable future, a targeted 
therapeutic approach that includes combinatory 
strategies and is dependent on both the RAS muta-
tion subset and its environmental context seems to 
be the next step in optimally treating patients with 
RAS-driven cancers.
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The path to the clinic: how it began
Introduction
Prior to the seminal discovery by Shokat and col-
leagues in 2013, KRAS was considered undruggable 
for several reasons. Firstly, the molecular structure of 
KRAS has intrinsically shown high resistance to small 
molecule modulation. Small molecule inhibitors, by 
design, primarily bind to identifiable pockets within 
a protein. However, KRAS is a small protein with a 
relatively smooth surface. Except for its GTP/GDP-
binding pocket, the KRAS protein does not appear to 
have any well-defined, hydrophobic pockets viable for 
small molecule inhibitor binding. Furthermore, under 
the physiological conditions, GTP almost exclusively 
occupies GTP/GDP-binding pocket with extremely 
high affinity in the picomolar range. Coupled with 
the relatively high cellular GTP concentrations in the 
micromolar range (~ 500 μM), designing a small mol-
ecule inhibitor that can achieve adequate intracellu-
lar concentration to compete with GTP at the GTP/
GDP-binding pocket appeared formidable. Examining 
the successful advent of tyrosine kinase inhibitors, as a 
comparison, the binding affinity with their natural co-
substrate ATP is in the micromolar range (a million-
fold difference in binding affinity), and ATP cellular 
concentrations range from 1 to 10 mM. Taking these 
factors into consideration, direct targeting of KRAS by 
small molecule inhibitors has been a challenging task 
[24, 31, 34, 47, 66–70].

Because of these challenges, therapeutic approaches 
primarily focused on targeting KRAS indirectly. These 
indirect therapeutic strategies include targeting down-
stream or upstream RAS signaling pathways, meta-
bolic pathways, and synthetic lethality approaches, all 
of which have yielded relatively disappointing results. 
Time and time again, indirect inhibition strategies 
have resulted in disappointing clinical trial outcomes 
in treating KRAS-mutant cancers [30, 31, 47, 66–68, 
71–80]. Efficacy with these treatments were lacking due 
to subsequent unexpected resistance mechanisms, as 
observed with the farnesyltransferase, BRAF, and EGFR 
inhibitors. However, in 2013, the groundbreaking foun-
dation set by Shokat and colleagues renewed hope for 
direct KRAS inhibition, paving way for pharmacothera-
peutics such as AMG510 and MRTX849 now currently 
being investigated in clinical trials with hopeful prelim-
inary outcomes.

Discovery of the KRASG12C inhibitor and the switch II 
pocket (S‑IIP)
In 2013, Ostrem, Shokat, and colleagues made a break-
through by successfully developing a series of compounds 
that covalently and irreversibly bound to the cysteine 

residue of the KRASG12C (glycine to cysteine substitution) 
mutant, the most potent compound being compound 12 
(Fig.  4) [24]. Creatively, they used a disulfide tethering 
approach that enabled identification of small molecular 
fragments that could noncovalently bind to shallow pock-
ets with low affinity under reducing conditions and cova-
lently tether with cysteine residues. With this approach, 
they identified compounds that bound to a newly discov-
ered allosteric pocket beneath the switch II region near 
the mutant cysteine, which they named the switch II 
pocket (S-IIP). This highly dynamic allosteric pocket was 
not apparent in the apo-crystal structures but appeared 
to be induced or stabilized by the compound. These com-
pounds preferentially bound to RAS in the GDP-bound 
state, decreased RAS affinity for GTP relative to GDP, 
impaired SOS-catalyzed nucleotide exchange from GDP 
to GTP, and blocked RAS-RAF effector interaction in 
the KRASG12C mutant cells. The blockade of RAS–RAF 
effector interaction may be attributed to a combina-
tion of inhibitor effects on nucleotide exchange, relative 
nucleotide affinities, and perhaps most critically, confor-
mation effects on switch I and switch II. Importantly, by 
depending on the mutant cysteine residue for binding, 
the compounds specifically target the KRASG12C mutant 
protein while sparing KRAS wild-type protein, an obser-
vation supported by the selectively inhibition of growth 
of cancer cell lines expressing KRASG12C. Specifically 
targeting KRAS mutants over KRAS wild-type would, in 
theory, minimize the toxicities and side effects associated 
with a potential pharmacotherapeutic agent, thus greatly 
enhancing its therapeutic index when treating cancer 
patients.

Examining the mechanism of action of the mutant-spe-
cific inhibitors in detail, by covalently binding to mutant 
cysteine in the S-IIP, the compounds were found to dis-
place glycine 60, located in the switch II region (residues 
60–76), towards the switch I region (residues 30–38). The 
displacement resulted in the disordering of the switch I 
region and loss of Mg2+ in several co-crystal structures 
produced by the Shokat lab. The GTP-bound state of 
RAS is quite sensitive to conformational disturbances 
in the regions of glycine 60 (switch II region) and threo-
nine 35 (switch I region), demonstrated by the dominant-
negative effects of the conservative mutants RASG60A 
and RAST35S. A co-crystal structure in the GTP state 
was unable to be obtained to confirm the conformational 
changes of the switch I and switch II regions upon inhibi-
tor binding, but the presence of the inhibitor in the S-IIP 
would have pronounced effects on the positions of these 
two described residues [24].

Preferential binding to GDP-bound RAS may appear 
to be an issue because it contradicts the widely held 
perception that RAS mutants in cancer are deficient in 
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both intrinsic and GAP-stimulated GTP hydrolysis activ-
ity, resulting in RAS mutants to be in the constitutively 
active, GTP-bound state independent of GEF activity at 
steady state. After all, codon 12 mutations are known 
to disable the activation of intrinsic RAS GTPase activ-
ity by GAP’s. However, this perception has been gradu-
ally dispersed as new evidence emerged in recent years. 
KRASG12 mutants have relatively high intrinsic GTPase 
activity (t1/2 = ~ 23–27 min) that is similar to that of wild-
type RAS proteins [36, 81, 82]. Biochemical and biophysi-
cal analyses by Westover and colleagues have shown that 
different RAS mutants exhibit variable rates of intrinsic 
and GAP-stimulated GTP hydrolysis, as well as variable 
intrinsic and GEF-mediated nucleotide exchange [36]. 
These discrepancies result in concentration differences 
in GTP-bound KRAS between KRAS mutations, even 
at a specific residue. Moreover, additional studies have 
strengthened the possibility that the nucleotide-bound 
state of RAS is in constant flux, instead of a single, consti-
tutively active state (see below) [82, 83]. These data may 
explain why the compounds are able to specifically bind 
to the inactive, GDP-bound KRAS mutants to ultimately 
reduce the level of the active, GTP-bound KRAS mutants 
in the cell.

The preclinical years
ARS‑853
Despite its initial success, the initial lead compound 
(compound 12) developed by the Shokat lab had sub-
optimal pharmacologic properties, with indeterminate 
potency against the KRASG12C mutant in a cellular con-
text. Indeed, two subsequent studies by Patricelli et  al. 
and Lito et  al. demonstrated that compound 12 was 
not capable of engaging KRASG12C in cells even at a 
relatively high dose and long incubation time [82, 83]. 
Compound 12 was eventually licensed to Wellspring 
Biosciences, a subsidiary of Araxes Pharma (both co-
founded by Kevan Shokat in 2012). Further optimiza-
tion of this scaffold resulted in an improved inhibitor, 
ARS-853, the first direct KRAS inhibitor shown to 
selectively inhibit KRAS in cells with potency in the 
range of a drug candidate [82].

ARS-853 had a very similar chemical structure to 
compound 12, which further supported the potential 
to inhibit the S-IIP [24], and also only covalently bound 
KRASG12C in the GDP-bound state. Target engagement 
by ARS-853 was demonstrated to be both time- and 
concentration-dependent, as expected for irreversible 
covalent interactions. In comparison to compound 12, 
the newly improved inhibitor rapidly bound KRASG12C, 
increasing the reaction rate in a biochemical assay by 
600-fold; bound KRASG12C at lower micromolar concen-
trations in both a biochemical and cellular context; and 

blocked nucleotide exchange (GDP to GTP) with much 
higher efficacy. ARS-853 potently inhibited the growth 
of KRASG12C mutant cells, but not non-KRASG12C cells, 
in ultra-low adherent 3D culture. Using mass spectrom-
etry, Patricelli et al. and Lito et al. demonstrated specific 
binding of ARS-853 to KRASG12C in cells and showed 
subsequent blockade of downstream signaling through 
the RAF–MEK–ERK and PI3K–AKT pathways, which is 
most likely due to failure of GTP loading onto RAS. The 
authors found no effects of ARS-853 on RAS signaling 
or growth in non-KRASG12C cells at concentrations up 
to 10-fold higher than its KRASG12C potency. Moreover, 
across the 2740 surface-exposed cysteine residues pro-
filed from 1584 proteins, KRASG12C was the most potent 
target of ARS-853, with only two off-targets (FAM213A 
and Reticulon-4) that also showed significant engage-
ment with ARS-853. In summary, the studies estab-
lished ARS-853 to be a selective, covalent inhibitor with 
low micromolar potency in cancer cells harboring G12C 
mutations in KRAS [82, 83].

As mentioned earlier, there is increasing evidence that 
KRAS mutants are not in a constitutively active, GTP-
bound configuration at steady state. Rather, RAS mutants 
exhibit variances in intrinsic nucleotide exchange and 
GTPase activity, and GEF- and GAP-mediated cycling, 
that ultimately create concentration differences of GTP-
bound (and GDP-bound) RAS within a cell. These vari-
ances depend on the RAS codon mutation, even down 
to the specific residue that is mutated. The studies on 
ARS-853 and direct KRASG12C inhibition conducted by 
Patricelli et al. and Lito et al. provide further support for 
the plasticity of the nucleotide cycle of KRAS mutants. 
When second-site substitution mutations were intro-
duced that accelerated intrinsic nucleotide exchange, a 
decrease in ARS-853-mediated KRASG12C inhibition was 
observed. Furthermore, when second-site substitution 
mutations were introduced that decreased the intrinsic 
rate of nucleotide hydrolysis, ARS-853-mediated inhibi-
tion of KRASG12C was prevented.

Observing that the KRAS mutant had intrinsic GTPase 
hydrolysis and nucleotide exchange activity, Patri-
celli et  al. and Lito et  al. assessed if increased cellular 
GEF activity regulated by upstream receptor tyrosine 
kinases (RTK’s) attenuated ARS-853 engagement with 
KRASG12C. Treatment with the EGFR inhibitor erlo-
tinib increased ARS-853 engagement with KRAS, which 
one would expect since treatment would result in an 
increased GDP/GTP-bound ratio of KRAS mutants due 
to the decrease in GEF activity, given that KRAS mutants 
truly do not exist in a constitutively active GTP-bound 
state. Furthermore, the impact of inhibiting downstream 
effectors of the RAS signaling pathway on ARS-853-me-
diated KRASG12C inhibition was investigated. Treatment 
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with the MEK inhibitor trametinib increased GTP-bound 
KRASG12C levels and decreased the efficacy of ARS-853 
in cells, possibly through the release of ERK-mediated 
negative feedback inhibition of the SOS1 GEF. Taken 
together, these findings further strengthen the possibil-
ity that KRASG12C retains appreciable intrinsic GTPase 
activity and nucleotide exchange such that it is not fully 
GTP bound in  vivo. Moreover, the studies revealed a 
potential mechanism of acquired resistance against direct 
KRASG12C inhibitors via increased upstream signaling by 
RTK-mediated GEF activity, hence supporting combina-
tion therapy with direct or indirect GEF inhibitors, such 
as EGFR inhibitors, in KRASG12C mutant cancers.

ARS‑1620
Although ARS-853 was the first KRASG12C inhibitor 
with cellular potency in the range of a drug candidate, it 
lacked adequate potency in  vivo in mouse tumor mod-
els. A major drawback of ARS-853 was the short meta-
bolic plasma stability and poor bioavailability. Thus, the 
inherent poor chemical and metabolic stability of ARS-
853 series made it unsuitable for further preclinical 
development.

Subsequently, Janes et  al. reported a new generation 
of KRASG12C S-IIP inhibitors, ARS-1620 [84]. ARS-1620 
was a direct KRASG12C small molecule inhibitor that is 
potent, selective, orally bioavailable, and well-tolerated in 
mice. The compound exhibited both in vitro and in vivo 
potency with a therapeutic window in the range of a drug 
candidate. With improved potency and pharmacologic 
properties, ARS-1620 was highly efficacious as a single 
agent in multiple human cancer cell line- and patient-
derived mouse xenograft tumor models. Thus, ARS-1620 
provided the first in vivo evidence that the S-IIP targeted 
approach may be a promising therapeutic strategy for 
patients with KRAS p.G12C mutant cancers.

As an interesting aside, Janes et al. noted that in vitro 
studies assessing KRAS dependency using monolayer 
(2D-adherent) cell cultures significantly underestimated 
KRAS dependence in  vivo, since they found that 3D 
ultra-low adherent suspension spheroid cultures bet-
ter predicted in vivo sensitivity of KRAS mutant cancer 
cells to ARS-1620. The authors were not aware of any 
approved oncology drugs that displayed differential activ-
ity between 2D and 3D cultures as substantial as KRAS 
inhibition. These findings have significant translational 

Fig. 3  A The pie chart depicts the percentage of each RAS isoform contributing to all RAS mutations. Gain-of-function missense mutations in KRAS 
account for the majority of RAS gene mutations (75%), followed by NRAS mutations (17%) and HRAS mutations (7%). The remaining 1% represents 
RAS mutations that are other than gain-of-function missense mutations. Among KRAS mutations, the G12 codon (81%) is the most frequently 
mutated, followed by G13 (14%) and Q61 (2%). B The bar graph portrays the proportion of RAS mutations that are KRAS mutations found in a given 
cancer type. KRAS mutations are the most common RAS mutations in pancreatic cancer (~ 88%), followed by colon adenocarcinoma (50%), rectal 
adenocarcinoma (50%), lung adenocarcinoma (32%), small intestine adenocarcinoma (26%), cholangiocarcinoma (23%), plasma cell myeloma 
(18%), gallbladder carcinoma (16%), and anaplastic thyroid carcinoma (8.6%)
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implications for interpreting in vitro synthetic lethal rela-
tionships of KRAS as a driving oncogene. However, the 
value of using 3D cultures to predict clinical response to 
KRASG12C-directed inhibitors needs to be validated by 
patient response rates in clinical trials.

AMG510
Prior to the Shokat lab’s initial disclosure of their efforts 
targeting KRASG12C, Amgen had also independently ini-
tiated their own research program to identify covalent 
inhibitors of KRASG12C [85]. In collaboration with Car-
mot Therapeutics, Amgen utilized Carmot’s Chemo-
type Evolution platform, a custom library synthesis and 
screening platform, and structure-based design to iden-
tify a series of selective covalent inhibitors of KRASG12C, 
which ultimately resulted in advanced lead 1 that potently 
inactivated KRASG12C in biochemical and cellular assays 
[86]. Similar to ARS-1620, advanced lead 1 also attached 
to the S-IIP and covalently bound to mutant cysteine. 
However, cocrystallization of advanced lead 1 with GDP-
bound KRASG12C revealed advanced lead 1 to occupy a 
previously unexploited cryptic pocket on the surface of 
KRAS [85], which was first independently identified ear-
lier by Gentile et al. [87]. The hidden pocket is bordered 
by the H95, Y96, and Q99 side chains, and was unveiled 
by rotation of the H95 (histidine 95) side chain. Engage-
ment of this cryptic pocket led to a multifold enhance-
ment in cellular potency relative to ARS-1620. However, 
advanced lead 1 was not suitable for preclinical develop-
ment due to its high clearance and low oral bioavailability 
in vivo in rodent model systems. Subsequently, superpo-
sition of binding modalities of advanced lead 1 and ARS-
1620 led to the substitution of the quinazoline nitrogen 
(N1) of ARS-1620 as an alternative approach to exploit 
the H95/Y96/Q99 cryptic pocket. After further improve-
ments, compound (R)-38 was created with enhanced 
potency and optimized pharmacokinetics suitable for 
preclinical development, and it was later nominated as a 
clinical candidate and coded as AMG510.

In a series of experiments, Canon et al. demonstrated 
AMG510 to be potent, efficacious, and selective in 
both cellular and mouse tumor models [88]. Treatment 
resulted in regression of KRASG12C-specific tumors and 
decreased downstream p-ERK signaling. Sharing struc-
tural similarities with ARS-1620, AMG510 selectively 
bound to KRASG12C, not KRAS wild-type, in the S-IIP 
region and covalently bound to mutant cysteine as well. 
However, unlike ARS-1620, AMG510 additionally bound 
to the His95 groove. One prominent liability of ARS-
1620 is its suboptimal potency resulting from the small 
volume of the S-IIP that it occupies, which provided lim-
ited avenues for additional protein–ligand interactions. 
In contrast, the isopropyl-methylpyridine substituent of 

AMG510 occupying the His95 groove engaged in a con-
tinuous network of 25 ligand–protein van der Waals con-
tacts, which extends from the backbone of helix 2 (His95, 
Tyr96) to the backbone of the flexible switch II loop. 
These interactions enhanced the potency of AMG510 by 
approximately 10-fold [mean half-maximum inhibitory 
concentration (IC50) = 0.09 μM)] compared to ARS-1620 
in a nucleotide-exchange assay with recombinant GDP-
bound KRASG12C.

Additionally, Canon et al. examined various combina-
tion therapies with AMG510 to assess if combination 
therapy could overcome potential resistance and enhance 
tumor-cell killing. Referencing the clinically validated 
strategy of combining BRAF and MEK inhibitors in treat-
ing melanoma [89], they investigated combinations of 
AMG510 and various inhibitors of the MAPK and AKT 
signaling pathways, including inhibitors of HER kinases, 
EGFR, SHP2, PI3K, AKT and MEK. Multiple combina-
tions resulted in synergistic activity, especially with the 
MEK inhibitor trametinib, a combination that demon-
strated significantly enhanced anti-tumor activity in 
monolayer and spheroid cell culture models as well as 
in mouse tumor models compared to using either agent 
alone. Given the prevalence of KRASG12C mutations in 
lung adenocarcinoma, the authors also investigated com-
bination treatment of AMG510 with carboplatin, a stand-
ard-of-care chemotherapeutic for lung cancers. While 
both drugs alone significantly inhibited tumor growth in 
KRASG12C-mutant NCI-H358 (NSCLC) xenograft mice 
models, combination therapy resulted in greater anti-
tumor activity. In summary, these preclinical data pro-
vide support for the clinical combination of AMG510 
with MAPK inhibitors or chemotherapeutic agents to 
potentially bypass compensatory mechanisms of resist-
ance, increase potency of therapeutic effects, and create a 
durable response to treatment.

Moreover, the authors investigated the role of the 
immune system in affecting the efficacy of AMG510 in 
treating KRASG12C-mutant cancers. They reported that 
AMG510 induced long-term cures in immunocompe-
tent mice with KRASG12C-mutant CT-26 (colorectal) 
xenograft mice models, and induced tumor regression 
but not cures in the same mice tumor models lacking 
T cells (immunocompromised). Thus, they examined 
a combination strategy with immunotherapy, specifi-
cally with anti-PD-1 immune checkpoint inhibition since 
immune checkpoint blockade involving programmed cell 
death protein 1 (PD-1) and programmed death-ligand 1 
(PD-L1) has been clinically validated in multiple settings 
[90, 91]. As monotherapy, AMG510 or anti-PD-1 inhi-
bition caused complete tumor regression in only one of 
ten mice, respectively. However, combination treatment 



Page 11 of 23Kwan et al. J Exp Clin Cancer Res           (2022) 41:27 	

resulted in significantly improved survival, with complete 
and durable tumor regression in nine out of ten mice.

Analyzing the treatment effects on the immune cell 
composition of the tumor microenvironment, Canon 
et  al. reported that AMG510, alone and in combina-
tion with anti-PD-1 inhibition, promoted a pro-inflam-
matory tumor microenvironment. Notably, there was 
increased T cell infiltration, primarily cytotoxic CD8+ 
T cells, into the tumor in both treatment arms relative 
to anti-PD-1 inhibition alone. Additionally, AMG510 
treatment led to increased number of total and prolif-
erating CD3+ T cells and total CD8+ T cells, further 
increased with combination therapy; and increased 
infiltration of innate immune system macrophages and 
dendritic cells, including CD103+ cross-presenting den-
dritic cells, which are critical in T cell priming and acti-
vation and are also implicated in T cell recruitment [92]. 
As an additional comparison, AMG510 was also com-
pared with a MEK inhibitor. Both inhibitors regressed 
CT-26 KRASG12C tumors in mice to similar level, but 
unlike AMG510, MEK inhibition did not significantly 
affect the numbers of infiltrating CD8+ T cells.

To study a potential mechanism of action of immune 
system upregulation in the tumor microenvironment, 
transcriptional profiling of tumor RNA post-treatment 
with AMG510 revealed increased interferon signaling, 
chemokine production, antigen processing, cytotoxic and 
natural killer cell activity, and markers of innate immune 
system stimulation. Notably, there was increased expres-
sion of chemokines Cxcl10 and Cxcl11, two key attract-
ants of tumor-suppressive immune cells, that may explain 
the enhanced immunosurveillance after AMG510 treat-
ment [92, 93].

Finally, in contrast to previous data suggesting that 
non-tumor-selective MEK inhibition in combination 
with anti-PD-1 treatment blocked T cell expansion and 
priming in vivo despite anti-tumor activity [94], Canon 
et  al. found that AMG510 increased T cell priming, 
antigen recognition of tumor cells, and led to poten-
tial establishment of long-term tumor-specific T cell 
adaptive immune responses. The authors showed that 
AMG510 increased the expression of MHC class I anti-
gens on tumor cells in  vitro. Furthermore, combina-
tion therapy of AMG510 and anti-PD-1 established a 

Fig. 4  This figure illustrates the chemical structures of the first direct KRASG12C inhibitors in the preclinical and clinical years. Compound 12 was 
the initial lead compound developed by the Shokat lab; it was subsequently optimized to ARS-853, the first direct small molecular inhibitor 
shown to selectively inhibit KRASG12C in cells with potency in the range of a drug candidate. Introduction of a quinazoline core and a fluorophenol 
hydrophobic binding moiety resulted in ARS-1620, the first drug candidate to demonstrate in vivo potency. In May 2021, AMG510 (sotorasib) 
became the first FDA-approved therapy to directly target KRAS-mutated tumors. In June 2021, MRTX849 (adagrasib) received breakthrough therapy 
designation by the FDA, driving MRTX849 nearer to entering the clinic as well
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memory T cell response against tumor cells in vivo. In 
the study, CT-26 KRASG12C mice cured by combination 
treatment of AMG510 and anti-PD-1 were rechallenged 
with CT-26 KRASG12C, parental CT-26 (KRASG12D), 
or 4 T1 (unrelated breast tumor model) tumor cells. 
None of the KRAS-mutant cell lines grew tumors, while 
tumors formed in all non-KRAS-mutant (4 T1) cells. 
There was a ~ three-fold increase in IFNγ secretion, 
a marker of tumor-specific T cell priming and activ-
ity, when splenocytes collected from the cured mice 
were stimulated by the two KRAS-mutant tumor cell 
lines, but no IFNγ induction was observed in the non-
KRAS-mutant cell line. Together, these data suggest 
that AMG510 and anti-PD-1 combination therapy can 
establish an adaptive immune response against shared 
antigens that can recognize and eliminate related but 
non-KRASG12C tumors as well, a clinically relevant out-
come since intratumoral KRAS mutation status can be 
heterogeneous within the same tumor and between pri-
mary and metastatic sites [95–100].

MRTX849
In collaboration with Array BioPharma, Mirati Therapeu-
tics conducted a covalent fragment screen of the Array 
BioPharma collection and identified a series of tetrahy-
dropyridopyrimidines as irreversible covalent inhibitors 
of KRASG12C, which led to the discovery of compound 4 
[101]. Despite originating from an independent fragment 
screen, compound 4 markedly resembled the previously 
reported KRASG12C acrylamide inhibitors ARS-1620 and 
AMG510 [102]. With structure-based design, compound 
4 was further optimized to compound 13 [101]. While 
compound 13 potently inhibited KRASG12C in animal 
models and led to tumor regression via intraperitoneal 
dosage, it suffered from rapid clearance and very low 
oral bioavailability intravenously. Subsequent tests iden-
tified the naphthol and acrylamide groups as the most 
metabolically sensitive positions in the molecule. Con-
sequently, modifications of the groups were made that 
ultimately gave rise to MRTX849, which displayed much 
better stability and bioavailability [103].

Hallin et  al. provided detailed characterization of 
MRTX849 activity, elucidation of response and resist-
ance mechanisms, and identification of effective com-
binations [104]. Conducting cell viability assays using 
KRASG12C-mutant cell lines in vitro, they found IC50 val-
ues ranging between 10 and 973 nmol/L in the 2-D mon-
olayer cultures and between 0.2 and 1042 nmol/L in the 
3-D spheroid cultures, suggesting a differential degree of 
sensitivity to treatment they found to be at least partially 
attributed to KRAS-dependent ERK and S6 signaling. 
In vivo, in a panel of human KRASG12C mutant cell line–
derived xenograft and patient-derived xenograft models, 

MRTX849 demonstrated broadly active tumor regres-
sion exceeding 30% volume reduction from baseline in 17 
of 26 models (65%). In addition, the authors found that 
baseline RNA sequencing, reverse phase protein array 
analysis, nor co-occurring alterations were sufficient 
to predict activity or response variability to therapeu-
tic intervention. To examine mechanisms of therapeutic 
response and resistance and explore possible synergistic 
vulnerabilities for combination therapy, the authors per-
formed CRISPR/Cas9, targeting 400 genes, and phar-
macologic screening on several KRASG12C models. Both 
screens resulted in hits converging on regulators of the 
RAS pathway [(e.g., SHP2/PTPN11, receptor tyrosine 
kinases (RTK)], mTOR pathway, and cell cycle. These data 
were consistent with the more limited prior studies with 
the ARS-1620 KRASG12C inhibitor [105, 106]. In a subse-
quent series of in vivo experiments, combination therapy 
with MRTX849 was examined with afatinib (pan-HER 
inhibitor), palbociclib (CDK4/6 inhibitor), vistusertib 
(ATP-competitive mTOR inhibitor), and RMC-4550 
(SHP2 inhibitor). Overall, results showed augmented 
responses that led to substantial tumor regression in 
multiple tumor models, including those that were refrac-
tory to MRTX849 single therapy.

The clinical years
JNJ‑74699157 (ARS‑3248)
In February 2013, Wellspring Biosciences, a subsidiary 
of Araxes Pharma (both co-founded by Shokat and col-
leagues), entered a drug discovery and development 
agreement with Johnson & Johnson’s Janssen Biotech to 
further develop direct KRASG12C inhibitors for the treat-
ment of cancer. Their collaboration led to the creation 
of ARS-3248, a new generation of KRASG12C inhibitor 
building upon ARS-1620. ARS-3248 is an investigational, 
orally available small molecule designed to potently 
and selectively inhibit KRASG12C. JNJ-74699157 (ARS-
3248) entered clinical trials in July 2019 (ClinicalTrials.
gov  number  NCT04006301, Table  1), and the trial was 
completed in November 2020, with no results currently 
posted (Fig. 5).

AMG510
CodeBreaK100 (phase 1)
In August 2018, sotorasib (AMG510) became the 
first KRASG12C inhibitor both to enter human clini-
cal trials and to demonstrate clinical safety and effi-
cacy (NCT03600883, Table  1) [107, 108]. Hong and 
colleagues reported findings of a phase 1, multicenter, 
open-label trial of sotorasib in patients with heavily 
pretreated advanced (locally advanced or metastatic) 
solid tumors harboring the KRAS p.G12C mutation 
[107]. A total of 129 patients (59 NSCLC patients; 42 
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colorectal cancer [CRC] patients; and 28 patients with 
other tumor types) were enrolled in the dose escalation 
and expansion cohorts. Enrolled patients had received a 
median of 3 (range, 0 to 11) previous lines of anticancer 
therapies for metastatic disease. Sotorasib was adminis-
tered orally once daily with each treatment cycle lasting 
21 days. Because of its highest response, the 960 mg dos-
age administered daily was identified as the dose for the 
expansion cohort.

The primary endpoint was safety that included inci-
dence of dose-limiting toxic effects (defined as sotora-
sib-related toxic effects within the first 21 days after the 
first dose), adverse events during the treatment period, 
and treatment-related adverse events. No dose-limit-
ing toxic effects nor treatment-related adverse events 
resulting in death were observed. A total of 73 patients 
(56.6%) had treatment-related adverse events, and 15 
patients (11.6%) had grade 3 or 4 events. The most com-
mon grade 3 treatment-related adverse events were gas-
trointestinal or hepatic side effects. Adverse events of 
any cause that occurred during treatment were reported 
in 125 patients (96.9%), with the most common events 
being diarrhea (29.5%), fatigue (23.3%), and nausea 
(20.9%). Grade 3 or higher adverse events of any cause 
that occurred during treatment were reported in 68 
patients (52.7%).

Clinical efficacy was investigated as a secondary end 
point. Efficacy was described as objective response 
(complete or partial response), disease control (objec-
tive response or stable disease), duration of objective 
response, duration of stable disease, and progression-free 
survival. Among NSCLC patients, 19 patients (32.2%) 
had a confirmed objective response, and 52 patients 
(88.1%) had disease control. The median progression-free 
survival was 6.3 months. Among CRC patients, 3 patients 
(7.1%) had a confirmed response, and 31 patients (73.8%) 
had disease control. The median progression-free sur-
vival was 4.0 months.

Overall, the authors concluded that sotorasib had a 
relatively tolerable safety profile that consisted mainly 
of low-grade toxic effects and no dose-limiting toxic 
effects. Furthermore, sotorasib showed promising anti-
cancer activity in patients with heavily pre-treated KRAS 
p.G12C mutant solid tumors, particularly NSCLC and 
CRC to a lesser extent.

CodeBreaK100 (phase 2)
In June 2021, Skoulidis et  al. reported the results of 
the multicenter, single-group, open-label, phase 2 trial 
of CodeBreaK100 (NCT03600883, Table  1) [108]. The 
phase 2 trial evaluated the efficacy and safety of soto-
rasib monotherapy in patient with locally advanced or 
metastatic KRAS p.G12C-mutated NSCLC previously 

treated with standard therapies for KRAS-mutated 
NSCLC [108]. Among the 126 enrolled patients, the 
majority (81.0%) had previously received both plati-
num-based chemotherapy and inhibitors of PD-1 or 
PD-L1. Ultimately, 124 patients had measurable disease 
at baseline and were thus evaluated for response.

As the primary endpoint, an objective response was 
observed in 46 patients (37.1%; 95% confidence inter-
val [CI]: 28.6 to 46.2), which exceeded their bench-
mark response of 23% in results previously reported 
in the REVEL trial investigating ramucirumab plus 
docetaxel in this population of patients [109]. Among 
the 46 patients, 4 (3.2%) had a complete response and 
42 (33.9%) had a partial response. Examining second-
ary endpoints, disease control occurred in 100 patients 
(80.6%; 95% CI: 72.6 to 87.2). Additionally, among the 
46 patients with an objective response, the median 
duration of response was 11.1 months (95% CI, 6.9 to 
could not be evaluated). Among the 124 patients, the 
median progression-free survival was 6.8 months (95% 
CI, 5.1 to 8.2), and the median overall survival of the 
entire 126 patient cohort was 12.5 months (95% CI, 
10.0 to could not be evaluated).

Consistent with the safety findings of the phase 1 
study, treatment with sotorasib in the phase 2 trial 
produced mostly grade 1 and 2 side effects, primarily 
low-grade hepatic and gastrointestinal toxic effects. 
Treatment-related adverse events occurred in 88 of 
126 patients (69.8%), including grade 3 events in 25 
patients (19.8%) and a grade 4 event in 1 (0.8%). No 
new safety signals were reported.

Exploratory biomarker analyses were conducted 
to assess associations between response to sotora-
sib therapy, baseline tumor PD-L1 expression level, 
tumor mutational burden, and mutations in STK11, 
KEAP1, and TP53, which are among the most preva-
lent genes with co-occurring mutations in KRAS-
mutated NSCLC [110]. Of note, among all other 
subgroups or all patients that could be evaluated, the 
subgroup with STK11-mutated tumors and wild-type 
KEAP1 represented the highest number of patients 
that responded to sotorasib. The current standard 
care for patients with newly diagnosed KRAS-mutated 
NSCLC commonly involves an immune-checkpoint 
inhibitor (e.g., PD-1/PD-L1 inhibitor) as monother-
apy or in combination with chemotherapy [111–113]. 
Thus, this finding has important clinical implications 
since inactivating genomic alterations in STK11 result 
in primary resistance to PD-1 and PD-L1 blockade 
and docetaxel in patients with KRAS-mutated NSCLC 
[114, 115].

Subsequent clinical trials are currently investigat-
ing sotorasib as monotherapy or in combination with 
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various anticancer agents in patients with advanced or 
metastatic solid tumors, including NSCLC and CRC, 
with the KRAS p.G12C mutation (Table 1).

MRTX849 (adagrasib)
In January 2019, adagrasib (MRTX849) entered the 
KRYSTAL-1 clinical trial, a multi-cohort phase 1/2 
study in patients with advanced or metastatic solid 
tumors harboring a KRAS G12C mutation previously 
treated with chemotherapy and anti-PD-1/PD-L1 ther-
apy (NCT03785249, Table  1). At the 32nd EORTC-
NCI-AACR Symposium in October 2020, Jänne and 
colleagues reported the preliminary safety data for 79 
patients with pretreated NSCLC who were treated with 
adagrasib 600 mg BID (i.e., twice daily) [116]. The most 
commonly reported (> 20%) treatment-related adverse 
events were nausea (54%), diarrhea (48%), vomiting 
(34%), fatigue (28%), and increased ALT (23%). The only 
commonly reported (> 2%) grade 3/4 treatment-related 
serious adverse event was hyponatremia (3%). In addi-
tion, among the 51 patients evaluable for clinical activ-
ity, 23 patients (45%) had an objective response, and 49 
patients (96%) had disease control (i.e., 26/51 patients 
had stable disease). The median time on treatment was 
8.2 months (range:1.4, 13.1+).

At the same conference, Johnson and colleagues 
reported KRYSTAL-1 preliminary safety data on 31 
patients with CRC treated with adagrasib 600 mg BID 
[117]. The most commonly reported (> 20%) treatment-
related adverse events include diarrhea (58%), nausea 
(52%), fatigue (42%), and vomiting (36%). Among the 18 
CRC patients evaluable for clinical activity, 3 patients 
(17%) had a confirmed objective response, while 17 
patients (94%) achieved disease control. Moreover, in 
the other solid tumor cohort with 6 evaluable patients 
for clinical activity, confirmed partial responses were 
observed in a patient with endometrial cancer and 
in another patient with pancreatic cancer. Uncon-
firmed partial responses were observed in two other 
patients with ovarian cancer and cholangiocarcinoma, 
respectively.

More recently, at the European Lung Cancer Virtual 
Congress 2021, Riely et  al. presented updates on the 
NSCLC patients in the KRYSTAL-1 trial [118]. In addi-
tion to the data presented previously by Jänne et al., Riely 
et al. noted promising results in patients with STK-11 co-
mutations who typically have a relatively poor response 
to immune checkpoint inhibition, as discussed earlier. 
Among these patients, 9/14 patients (64%) had an objec-
tive response. Examining the mechanistic action of adag-
rasib, preliminary pharmacodynamic and mechanistic 

biomarker analyses on pre- and post-treatment tumor 
NSCLC biopsies of 3 patients demonstrated downregu-
lation of KRAS/MAPK pathway genes including DUSP6 
and SPRY4. Furthermore, in patients with tumors con-
taining STK11-comutations, there was minimal expres-
sion of immune transcripts such as CD4 and CD8 at 
baseline. However, these immune transcripts were 
increased with adagrasib treatment, which suggests a 
potential immune response after therapy.

Subsequent clinical trials are currently investigating 
adagrasib as monotherapy or in combination with other 
anticancer agents in patients with advanced or metastatic 
solid tumors, including NSCLC and CRC, with the KRAS 
p.G12C mutation (Table 1).

Other direct KRASG12C inhibitors
Additional clinical trials investigating other direct 
KRASG12C inhibitors are currently ongoing and are sum-
marized below and in Table 1.

LY3499446, LY3537982
After the phase 1 clinical trial of LY3499446 was 
terminated due to an unexpected toxicity find-
ing (NCT04165031), Eli Lilly and Company revealed 
LY3537982 at the AACR Annual Meeting 2021 [119]. 
According to Eli Lilly, LY3537982 is a potent, highly 
selective covalent inhibitor of the KRASG12C protein that 
was discovered using structure-based design. In preclini-
cal studies, LY3537982 inhibited KRAS-GTP loading 
in the KRASG12C mutant H358 NSCLC cell line with an 
IC50 value of 3.35 nM, while AMG510 and MRTX849 
had IC50 values of 47.9 nM and 89.9 nM, respectively. 
Moreover, LY3537982 selectively inhibited the growth 
of KRASG12C mutant tumor cells but not KRAS wild-
type or non-G12C mutant cells. In multiple xenograft 
or patient-derived xenograft models with the KRASG12C 
mutation, LY3537982 had a range of anti-tumor activ-
ity ranging from complete regression to significant 
tumor growth inhibition. Furthermore, mechanism-
based combinatory screens identified potential syner-
gistic targeted therapies with LY3537982 that promoted 
enhanced anti-tumor activity in vitro and in vivo, includ-
ing abemaciclib, LY3295668 (selective AurA inhibi-
tor), and cetuximab. A phase 1 clinical trial evaluating 
the candidate LY3537982 is currently registered but not 
yet recruiting (NCT04956640). The trial is investigating 
LY3537982 alone and in combination with various ther-
apies, including the aforementioned studied agents, in 
patients with KRASG12C mutant solid tumors.
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GDC‑6036
Created by Genentech, GDC-6036 is being investigated 
in a phase 1 clinical trial as monotherapy and in combi-
nation with other anti-cancer therapies in patients with 
advanced/metastatic solid tumors, including NSCLC and 
CRC, with a KRASG12C mutation (NCT04449874).

D‑1553
Designed by InvestisBio, D-1553 was presented at the 
AACR Annual Meeting 2021 [120, 121]. According to the 
authors, D-1553 is an orally bioavailable, covalent small 
molecule compound that specifically inhibits KRASG12C 
in vitro (e.g., lung, pancreatic, colorectal cancer cell lines) 
and in  vivo (e.g., cell line-derived and patient-derived 
xenograft tumor models). In both cell line-derived (CDX) 
and patient-derived xenograft (PDX) tumor models 
with KRASG12C mutation, D-1553 expressed anti-cancer 
activity as monotherapy and enhanced tumor growth 
inhibition or regression in combination with other tar-
geted therapies (e.g., MEK inhibitor, SHP2 inhibitor) or 
chemotherapy. Specifically, in lung cancer PDX models, 
D-1553 exhibited tumor growth inhibition (TGI) ranging 
from 43.6 to 124.3%, with 4/8 models resulting in tumor 
regression. In colorectal cancer PDX models, TGI ranged 
from 60.9 to 105.7%, with 3/9 models showing tumor 
regression. An ongoing phase 1/2 clinical trial is evaluat-
ing D-1553 alone and in combination with other standard 
agents (not specified) in patients with advanced/meta-
static solid tumors, including NSCLC and CRC, with the 
KRASG12C mutation (NCT04585035).

JDQ443
Created by Novartis Pharmaceuticals, JDQ443 is being 
examined in a phase 1/2 clinical trial as monotherapy 
and in combination with TNO155 (SHP2 inhibitor) and/
or spartalizumab (anti-PD1 antibody) in patients with 
advanced or metastatic solid tumors with the KRASG12C 
mutation (NCT04699188).

BI 1823911
Designed by Boehringer Ingelheim, BI 1823911 is the lat-
est small molecule KRASG12C inhibitor to enter clinical 
trials in July 2021 (NCT04973163). Initially presented at 
the AACR Annual Meeting 2021, BI 1823911 was found 
to have selective and potent anti-proliferative activity in 
a panel of KRASG12C mutant cancer cell lines with higher 
or similar potency compared to AMG510 and MRTX849 
[64]. In a panel of KRASG12C NSCLC cell lines, treatment 
with BI 1823911 resulted in downregulation of MAPK 
pathway-responsive genes, such as DUSP6 and CCND1. 
In addition, at the protein level, strong and sustained 
inactivation of the MAPK pathway was observed using 

p-ERK as a pharmacodynamic biomarker. Furthermore, 
in a panel of NSCLC or CRC CDX or PDX mouse models, 
a daily oral dose of 60 mg/kg BI 1823911 showed in vivo 
efficacy comparable to 100 mg/kg AMG510 and 100 mg/
kg MRTX849, respectively. Finally, to examine poten-
tial synergistic anti-proliferative activity, the authors 
tested a large set of compounds in combination with BI 
1823911 in a panel of selected KRASG12C mutant cancer 
cell lines. Among other MAPK and PI3K pathway inhibi-
tors, the SOS1::KRAS inhibitor BI 1701963 was shown 
by the authors to be a promising combinatorial partner. 
BI 1701963 is a first-in-class, small molecule, pan-KRAS 
inhibitor that binds to and prevents SOS1 from associat-
ing with KRAS. Together, in vitro and in vivo combina-
tion studies with BI 1823911 and BI 1701963 in NSCLC 
and CRC tumor models showed increased, sustained 
pharmacodynamic modulation and stronger anti-tumor 
activity. A phase 1 clinical trial is underway investigating 
BI 1823911 alone and in combination with BI 1701963 
in patients with advanced/metastatic solid tumors (e.g., 
NSCLC, CRC, pancreatic cancer, cholangiocarcinoma), 
with the KRASG12C mutation.

Clinical mechanisms of adaptive resistance 
to direct KRASG12C inhibitors
Although mechanisms of resistance to direct KRASG12C 
inhibition have been explored in depth using preclini-
cal models [96, 122–126], the clinical mechanisms of 
resistance remain to be elucidated. Awad et  al. have 
begun to characterize the clinical mechanisms of resist-
ance to adagrasib with results from the KRYSTAL-1 
trial (NCT03785249) [95]. In the study, the authors 
included patients with KRASG12C mutant cancers who 
had disease progression while receiving adagrasib mono-
therapy. They defined acquired resistance to therapy as 
stable disease for at least 12 weeks or a partial or com-
plete response followed by disease progression accord-
ing to the Response Evaluation Criteria in Solid Tumors 
(RECIST), version 1.1. A total of 38 patients (27 NSCLC, 
10 CRC, and 1 appendiceal cancer patients) were sub-
sequently included in the study. Ultimately, putative 
mechanisms of resistance to adagrasib were detected in 
17 patients (45%), of which 7 patients had multiple coin-
cident mechanisms.

The authors categorized these putative resistance 
mechanisms into three main categories. First, second-
ary mutations or amplifications in KRAS were observed 
in patients. Specifically, acquired KRAS mutations were 
most notably found at codons 12, 13, 61, 68, 95, and 
96; which included G12D/R/V/W, G13D, Q61H, R68S, 
H95D/Q/R, and Y96C. Codon 12 mutations prevented 
adagrasib binding, while the other secondary muta-
tions occurred in the switch II drug-binding pocket. 
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Secondly, another resistance mechanism is alterna-
tive oncogenic alterations that activate the RTK–RAS 
signaling pathway but do not directly alter KRAS 
itself. These acquired bypass mechanisms of resistance 
included MET amplification; activating mutations in 
NRAS, BRAF, MAP  2 K1, and RET; oncogenic fusions 
involving ALK, RET, BRAF, RAF1, and FGFR3; and 
loss-of-function mutations in NF1 and PTEN. Thirdly, 
histologic transformation from lung adenocarcinoma 
to squamous-cell carcinoma was observed without 
identification of any other resistance mechanisms. Col-
lectively, these data suggest that adagrasib treatments 
resulted in the evolution of a diverse set of adaptive 
mechanisms in KRASG12C mutant cancers, instead of 
dominant adaptive mechanisms seen with other tar-
geted therapies.

Conclusions
Thanks to the efforts of the Shokat lab in discovering the 
KRASG12C switch II pocket in 2013, it appears that we are 
currently in a golden era of developing targeted therapy 
that can directly inhibit the KRASG12C-driven human 
cancers. As of early August 2021, twenty registered clini-
cal trials have been implemented to investigate nine dif-
ferent direct KRASG12C inhibitors, which began with 

the first-in-human trial with sotorasib three years ago 
(Table  1). In addition to sotorasib (Lumakras™) becom-
ing the first FDA-approved drug to directly target tumors 
with any KRAS mutation in May 2021, adagrasib received 
breakthrough therapy designation from the FDA in June 
2021, thus making adagrasib one step closer to receiving 
FDA approval as well.

However, as with other clinical trials involving targeted 
therapies, such as the MEK inhibitors in KRAS-mutant 
NSCLC patients [127–133] and the BRAF inhibitors in 
BRAFV600E mutant colorectal cancer patients [134–136], 
adaptive resistance to single-agent therapy with adagra-
sib and sotorasib eventually occurred in most patients. 
In the CodeBreaK100 phase 2 clinical trial with soto-
rasib, among the 126 patients with previously treated 
KRAS p.G12C-mutated NSCLC, 83 patients (65.9%) 
had discontinued treatment due to disease progression 
[108]. Analyzing results from the KRYSTAL-1 trial with 
adagrasib, Awad et  al. initially characterized the clinical 
mechanisms of resistance to the direct KRASG12C inhibi-
tors [95]. Their study supports the advent of novel KRAS 
inhibitors with different modes of binding and allelic spe-
cificities to counter the diversity of on-target and off-tar-
get adaptive resistance mechanisms. Moreover, effective 
combination therapy appears to be necessary to over-
come these adaptive mechanisms of resistance to direct 

Fig. 5  The diagram illustrates the nine small molecular inhibitors in registered clinical trials that directly target the KRASG12C mutant by binding to 
the switch II pocket (S-IIP). These inhibitors preferentially bind and stabilize RAS in the GDP-bound state, ultimately resulting in decreased signal 
transduction, especially by the RAF-MEK-ERK/MAP pathway, and thus preventing tumor progression
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Table 1  Direct KRASG12C Inhibitors in Clinical Trials

Agent Company Identifier Phase Status Details

JNJ-74699157 (ARS-3248) Janssen Research & Development, 
LLC

NCT04006301 1 Completed Non-randomized, open-label study 
examining monotherapy in patients 
with advanced solid tumors (e.g., 
NSCLC, CRC) harboring the KRASG12C 
mutation. Results unavailable.

AMG510 (sotorasib) Amgen NCT03600883 1/2 Recruiting CodeBreaK100. Randomized, open-
label study examining AMG510 alone 
and in combination with anti (PD-1/L1) 
in patients with advanced solid tumors 
with KRAS p.G12C mutation, and 
AMG510 alone in patients with naïve 
(i.e., previously untreated) advanced 
NSCLC with KRAS p.G12C mutation.

NCT04185883 1b/2 Recruiting CodeBreaK101. Non-randomized, 
open-label study assessing AMG510 
alone and in combination with other 
anti-cancer therapies in patients with 
advanced solid tumors with KRAS 
p.G12C mutation. Treatment arms 
include monotherapy in patients with 
advanced NSCLC with brain metasta-
ses; in combination with trametinib 
(MEK1/2 inhibitor), AMG 404 (PD-1 
inhibitor), RMC-4630 (SHP2 inhibitor), 
palbociclib (CDK4/6 inhibitor), or 
everolimus (mTOR inhibitor) in patients 
with advanced solid tumors; in combi-
nation with afatinib (pan-ErbB inhibi-
tor), pembrolizumab (PD-1 inhibitor), 
AMG 404 (PD-1 inhibitor), atezolizumab 
(PD-L1 inhibitor), or chemotherapy (car-
boplatin, pemetraxed, and docetaxel) 
in patients with advanced NSCLC; in 
combination with panitumumab (EGFR 
inhibitor) +/− chemotherapy (FOLFIRI), 
trametinib and panitumumab, or 
bevacizumab-awwb and chemo-
therapy (FOLFIRI or FOLFOX) in patients 
with advanced CRC.

NCT04380753 1 Recruiting CodeBreaK105. Open-label study 
assessing monotherapy in patients of 
Chinese ancestry with advanced/meta-
static solid tumors with KRAS p.G12C 
mutation.

NCT04303780 3 Active, not recruiting CodeBreaK200. Randomized, open-
label study comparing monotherapy 
vs. docetaxel in patients with previously 
treated advanced/metastatic NSCLC 
with KRAS p.G12C mutation.

NCT04933695 2 Not yet recruiting CodeBreaK201. Randomized, open-
label study investigating monotherapy 
in patients with Stage IV NSCLC with 
KRASG12C mutation and PD-L1 TPS < 1%, 
stratified by STK11 co-mutation.

NCT04625647 2 Not yet recruiting Lung-MAP Treatment Trial sub-study 
(S1900E). Open-label study evaluating 
monotherapy in patients with stage IV 
or recurrent non-squamous NSCLC with 
KRASG12C mutation.

NCT04667234 Expanded access (Available) Study provides expanded access to 
and characterize the safety profile of 
AMG 510 in patients with previously 
treated locally advanced/unresectable/
metastatic NSCLC with KRAS p.G12C 
mutation in a real-world setting.
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Table 1  (continued)

Agent Company Identifier Phase Status Details

MRTX849 (adagrasib) Mirati Therapeutics Inc. NCT03785249 1/2 Recruiting KRYSTAL-1. Non-randomized, open-
label clinical trial evaluating MRTX849 
alone in patients with advanced/
metastatic solid tumors with KRASG12C 
mutation, in combination with 
pembrolizumab or afatinib in patients 
with NSCLC with KRASG12C mutation, 
or in combination with cetuximab 
in patients with CRC with KRASG12C 
mutation.

NCT04330664 1/2 Recruiting KRYSTAL 2. Non-randomized, open-
label study investigating MRTX849 
in combination with TNO155 (SHP2 
inhibitor) in patients with advanced 
solid tumors (NSCLC or CRC) with 
KRASG12C mutation.

NCT04613596 2 Recruiting KRYSTAL-7. Open-label study examin-
ing MRTX849 in combination with 
pembrolizumab (anti-PD1 antibody) 
in patients with advanced NSCLC with 
KRASG12C mutation.

NCT04793958 3 Recruiting KRYSTAL-10. Randomized, open-
label study comparing combination 
therapy MRTX849 and cetuximab 
(anti-EGFR antibody) vs. chemotherapy 
(mFOLFOX6 or FOLFIRI) in patients 
with advanced/metastatic CRC with 
KRASG12C mutation.

NCT04685135 3 Recruiting KRYSTAL-12. Randomized, open-label 
study comparing monotherapy with 
docetaxel (taxane) in patients with 
advanced/metastatic NSCLC with 
KRASG12C mutation.

NCT04975256 1/1b Recruiting KRYSTAL 14. Non-randomized, open-
label study assessing MRTX849 in 
combination with BI 1701963 (SOS1 
pan-KRAS inhibitor) in patients with 
advanced/metastatic solid malignan-
cies (NSCLC or CRC) with KRASG12C 
mutation.

LY3499446 Eli Lilly and Company NCT04165031 1/2 Terminated Randomized, open label study compar-
ing LY3499446 alone and in combina-
tion with abemaciclib, cetuximab, or 
erlotinib vs. docetaxel in patients with 
advanced/metastatic solid tumors 
with KRASG12C mutation. Study was 
terminated due to unexpected toxicity 
finding.

LY3537982 Eli Lilly and Company NCT04956640 1 Not yet recruiting Non-randomized, open-label study 
investigating LY3537982 alone and 
in combination with abemaciclib, 
erlotinib, sintilimab, temuterkib, 
LY3295668 (aurora A kinase inhibitor), 
or cetuximab in patients with KRASG12C 
mutant solid tumors.

GDC-6036 Genentech, Inc. NCT04449874 1 Recruiting Non-randomized, open-label study 
investigating GDC-6036 alone and 
in combination with atezolizumab, 
cetuximab, bevacizumab, erlotinib, or 
GDC-1971 (SHP2 inhibitor) in patients 
with advanced/metastatic solid tumors 
with KRASG12C mutation.
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KRASG12C inhibitors. Clinical trials investigating various 
combination therapy modalities are currently undergoing 
(Table 1).

With the rapid and promising research and develop-
ment of direct KRAS inhibitors, particularly against 
the KRASG12C mutant, there is further hope on the 
horizon for treating patients with cancers containing 
KRAS mutations.
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Table 1  (continued)

Agent Company Identifier Phase Status Details

D-1553 InventisBio Inc. NCT04585035 1/2 Recruiting Non-randomized, open-label study 
evaluating D-1553 alone and in 
combination with other drugs used in 
standard treatment of solid tumors (not 
specified) in patients with advanced/
metastatic solid tumors, including 
NSCLC and CRC, with KRASG12C muta-
tion.

JDQ443 Novartis Pharmaceuticals NCT04699188 1b/2 Recruiting Non-randomized, open-label study 
assessing monotherapy and in com-
bination with TNO155 (SHP2 inhibitor) 
and/or spartalizumab (anti-PD1 
antibody) in patients with advanced 
(metastatic or unresectable) KRASG12C 
mutant solid tumors.

BI 1823911 Boehringer Ingelheim NCT04973163 1a/1b Not yet recruiting Non-randomized, open-label study 
investigating BI 1823911 alone and 
in combination with BI 1701963 
(SOS1::KRAS pan-KRAS inhibitor) in 
patients with advanced/metastatic 
solid tumors (e.g., NSCLC, CRC, pancre-
atic cancer, or cholangiocarcinoma) 
with KRASG12C mutation.

Abbreviations: NSCLC non-small cell lung cancer, CRC​ colorectal cancer
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