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Abstract: Creatine monohydrate (CrM) is one of the most widely used nutritional supplements
among active individuals and athletes to improve high-intensity exercise performance and training
adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic
tool in the management of some chronic and traumatic diseases. Creatine supplementation has been
reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective,
anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on
mitochondrion’s survival and health particularly during stressful conditions such as ischemia and
injury. This narrative review discusses current scientific evidence for use or supplemental CrM as
a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this
analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics
in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology
and thereby could provide therapeutic benefit in the management of these conditions. However,
larger clinical trials are needed to explore these potential therapeutic applications before definitive
conclusions can be drawn.

Keywords: mitochondriopathia; cardiac infarction; chronic fatigue syndrome; long COVID; ischemia;
hypoxia; stroke; neurodegenerative diseases; oxidative stress; noncommunicable disease

1. Introduction

Creatine (N-aminoiminomethyl-N-methyl glycine) is a naturally occurring and nitro-
gen containing compound synthesized from the amino acids glycine, methionine that is
classified within the family of guanidine phosphagens [1,2]. About one half the daily need
for creatine is obtained from endogenous synthesis while the remaining is obtained from the
diet, primarily red meat, fish, or dietary supplements [3,4]. Creatine is mainly stored in the
muscle (95%) with the remaining found in the heart, brain, and testes [3–6], with about 2/3
in the form of PCr and the remaining as free creatine [4,5,7]. The metabolic basis of creatine
in health and disease has been recently reviewed in detail by Bonilla and colleagues [1] (see
Figure 1). Briefly, adenosine triphosphate (ATP) serves as the primary source of energy
in most living cells. Enzymatic degradation of ATP into adenosine diphosphate (ADP)
and inorganic phosphate (Pi) liberates free energy to fuel metabolic activity. However,
only a small amount of ATP is stored in the cell. Energy derived from the degradation of
phosphocreatine (PCr) serves to resynthesize ADP and Pi back to ATP to maintain cellular
function until glycolysis in the cytosol and oxidative phosphorylation in the mitochondria
can produce enough ATP to meet metabolic demands. Creatine also plays an important
role in shuttling Pi from the mitochondria into the cytosol to form PCr to help maintain
cellular bioenergetics (i.e., Creatine Phosphate Shuttle) [8]. In this way, PCr can donate its
phosphate to ADP, thereby restoring ATP for cellular needs leaving creatine in the cytosol
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to diffuse back into the mitochondria to shuttle the next phosphate to locations far from its
production site [8]. The ATP stored in the cells is usually sufficient for energy depletion that
lasts less than two seconds. However, another two to seven seconds of muscle contractions
are fueled by depleting available PCr stores [9]. Together, the ATP–PCr energy system
provides energy to fuel short-term explosive exercise. Increasing PCr and creatine in muscle
provides an energy reserve to meet anaerobic energy needs, thereby providing a critical
source of energy particularly during ischemia, injury, and/or in response to impaired
mitochondrial function [8,10].

Nutrients 2022, 14, x FOR PEER REVIEW 2 of 25 
 

 

to help maintain cellular bioenergetics (i.e., Creatine Phosphate Shuttle) [8]. In this way, 

PCr can donate its phosphate to ADP, thereby restoring ATP for cellular needs leaving 

creatine in the cytosol to diffuse back into the mitochondria to shuttle the next phosphate 

to locations far from its production site [8]. The ATP stored in the cells is usually sufficient 

for energy depletion that lasts less than two seconds. However, another two to seven sec-

onds of muscle contractions are fueled by depleting available PCr stores [9]. Together, the 

ATP–PCr energy system provides energy to fuel short-term explosive exercise. Increasing 

PCr and creatine in muscle provides an energy reserve to meet anaerobic energy needs, 

thereby providing a critical source of energy particularly during ischemia, injury, and/or 

in response to impaired mitochondrial function [8,10]. 

 

Figure 1. General overview of the metabolic role of creatine in the creatine kinase/phosphocreatine 

(CK/PCr) system [1]. The diagram depicts connected subcellular energy production and cellular 

mechanics of creatine metabolism. This chemo-mechanical energy transduction network involves 

structural and functional coupling of the mitochondrial reticulum (mitochondrial interactosome 

and oxidative metabolism), phosphagen and glycolytic system (extramitochondrial ATP produc-

tion), the linker of nucleoskeleton and cytoskeleton complex (nesprins interaction with microtu-

bules, actin polymerization, β-tubulins), motor proteins (e.g., myofibrillar ATPase machinery, vesi-

cles transport), and ion pumps (e.g., SERCA, Na+/K+-ATPase). The cardiolipin-rich domain is repre-

sented by parallel black lines. Green sparkled circles represent the subcellular processes where the 

CK/PCr system is important for functionality. Several proteins of the endoplasmic reticulum–mito-

chondria organizing network (ERMIONE), the SERCA complex, the TIM/TOM complex, the MICOS 

complex, the linker of nucleoskeleton and cytoskeleton complex, and the architecture of sarcomere 

and cytoskeleton are not depicted for readability. ANT: adenine nucleotide translocase; CK: creatine 

kinase; Cr: creatine; Crn: creatinine; CRT: Na+/Cl−-dependent creatine transporter; ERMES: endo-

plasmic reticulum-mitochondria encounter structure; ETC: electron transport chain; GLUT-4: glu-

cose transporter type 4; HK: hexokinase; mdm10: mitochondrial distribution and morphology pro-

Figure 1. General overview of the metabolic role of creatine in the creatine kinase/phosphocreatine
(CK/PCr) system [1]. The diagram depicts connected subcellular energy production and cellular
mechanics of creatine metabolism. This chemo-mechanical energy transduction network involves
structural and functional coupling of the mitochondrial reticulum (mitochondrial interactosome and
oxidative metabolism), phosphagen and glycolytic system (extramitochondrial ATP production), the
linker of nucleoskeleton and cytoskeleton complex (nesprins interaction with microtubules, actin
polymerization, β-tubulins), motor proteins (e.g., myofibrillar ATPase machinery, vesicles transport),
and ion pumps (e.g., SERCA, Na+/K+-ATPase). The cardiolipin-rich domain is represented by parallel
black lines. Green sparkled circles represent the subcellular processes where the CK/PCr system is
important for functionality. Several proteins of the endoplasmic reticulum–mitochondria organizing
network (ERMIONE), the SERCA complex, the TIM/TOM complex, the MICOS complex, the linker
of nucleoskeleton and cytoskeleton complex, and the architecture of sarcomere and cytoskeleton are
not depicted for readability. ANT: adenine nucleotide translocase; CK: creatine kinase; Cr: creatine;
Crn: creatinine; CRT: Na+/Cl−-dependent creatine transporter; ERMES: endoplasmic reticulum-
mitochondria encounter structure; ETC: electron transport chain; GLUT-4: glucose transporter type 4;



Nutrients 2022, 14, 529 3 of 24

HK: hexokinase; mdm10: mitochondrial distribution and morphology protein 10; MICOS: mito-
chondrial contact site and cristae organizing system; NDPK: nucleoside-diphosphate kinase; NPC:
nuclear pore complex; PCr: phosphocreatine; SAM: sorting and assembly machinery; SERCA:
Sarco/Endoplasmic Reticulum Ca2+ ATPase; TIM: translocase of the inner membrane complex; TOM:
translocase of the outer membrane complex; UCP: uncoupling protein; VDAC: voltage-dependent
anion channel. Reprinted with permission. See Bonilla et al. [1] for more details about the metabolic
basis of creatine in energy production and disease.

Numerous studies over the last three decades have shown that creatine monohydrate
(CrM) supplementation (e.g., 4 × 5 g/day for 5–7 days or 3–6 g/day for 4–12 weeks)
increases muscle creatine and PCr content by 20–40% [5,11–15] and brain creatine content
by 5–15% [16–21]. Creatine monohydrate supplementation has been reported to safely
improve high-intensity exercise performance by 10–20% leading to greater training adap-
tations in adolescents [22–26], young adults [27–38], and older individuals [21,39–48]. No
clinically significant side effects have been reported other than a desired weight gain [49].
Additionally, there is little to no evidence that CrM causes anecdotal reports of bloating,
gastrointestinal distress, disproportionate increase in water retention, increased stress on
the kidneys, increased susceptibility to injury, etc. [49,50]. In fact, studies directly assessing
whether creatine causes some of those issues found no or opposite effects. As a result,
there has been interest in assessing whether CrM supplementation may benefit a number
of clinical populations including conditions that impair mitochondrial function [6]. The
rationale is that since CrM supplementation can increase high-energy phosphate avail-
ability and also has antioxidant, neuroprotective, anti-lactatic, and calcium-homoeostatic
effects, increasing phosphagen availability may help improve cell survival and/or health
outcomes in conditions in which mitochondrial function is compromised (e.g., ischemia,
injury, and/or non-communicable chronic diseases). The purpose of this review is to exam-
ine the literature related to the role of CrM supplementation in the management of various
conditions characterized by mitochondrial dysfunction and make recommendations about
further work needed in this area.

2. Methods

The methodological basis of this narrative review is a selective literature search in
the PubMed database, supplemented by a free Internet search (German and English). In a
first explorative step, the search terms “creatine supplementation” and/or “mitochondrial
dysfunction” and “creatine” and/or “mitochondrial disease” were used. After a first
analysis of the searched literature identifying 68 articles, a new selective literature search
was performed in the sources described above using the terms mentioned above, adding
relevant cited sources and cross-references. Subsequently, titles, abstracts and finally full-
text articles were examined by the scientific team with regard to the suitability of the articles
in terms of content and, in a subsequent step, in terms of quality. After the qualitative
criteria had been verified, the content exploration was carried out following thematic
questions related to the role of creatine in context: (1) Ergogenic role in mitochondrial
dysfunction; (2) Noncommunicable chronic diseases (NCD); (3) Cardiovascular disease
and ischemic heart failure; (4) Traumatic and ischemic CNS injuries; (5) Neurodegenerative
disorders; (6) Psychological disorders; and (7) Chronic Fatigue Syndrome, Post Viral Fatigue
Syndrome and Long COVID.

3. Creatine’s Ergogenic Role in Mitochondrial Dysfunction

Although there is not clear definition of mitochondrial dysfunction, it generally refers
to conditions that reduce the ability of the mitochondria to contribute to production of
energy in the form of ATP. However, any alteration of normal mitochondrial function could
be called “mitochondrial dysfunction” as well [51]. Mitochondrial dysfunction can be
of primary origin through inheriting pathological altered mitochondrial DNA (mtDNA)
or acquiring secondary dysfunction through aging and exposure to mtDNA damaging
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processes [52,53]. This can be due to traumatic ischemic (blood deficient) or anoxic (oxygen
deficient) as well as chronic conditions. Most common reasons for mitochondrial dys-
function are hypoxia, overexpression of reactive oxygen species (ROS), and an alteration
of the intracellular calcium homoeostasis. Since creatine supplementation increases the
availability of PCr, it may help cells withstand ischemic challenges and/or offset energy
deficits associated with mitochondrial dysfunction

3.1. Acute, Traumatic Mitochondrial Dysfunction

Figure 2 shows the schematic sequence of an acute traumatic mitochondrial dysfunc-
tion with possible subsequent ischemia. The mechanical forces of injury result in an influx
of calcium, potassium, and sodium. A calcium gradient is created, which reduces mitochon-
drial function [54,55]. In addition, an injury can lead to short-term ischemia (hypoxia) due
to swelling, edema formation, development of neuroinflammation, obstruction of vessels,
or hemorrhage [56]. The resulting oxygen deficiency interrupts the respiratory chain in
the mitochondria. In both cases, the cell must switch to the energetic emergency plan
and produce energy glycolytically, thereby increasing lactate production [57–61]. Oxygen
radicals are generated, causing oxidative stress. This leads to cell damage and ultimately to
cell death (apoptosis) [62–64]. If sufficient creatine phosphate reserves are present, the cell
can compensate short-term energy deficits. ATP-dependent calcium transporters can coun-
teract the calcium gradient under consumption of ATP and PCr, maintain the cell milieu,
and thus normalize mitochondrial function [65,66]. Oxygen radicals can be intercepted [67].
Even transient hypoxia of a few seconds can be counteracted by the body in this way [68].
There is evidence that creatine and cyclocreatine inhibit the mitochondrial–creatine kinase–
adenine nucleotide translocator (Mi-Cr-ANT) complex and the mitochondrial permeability
transition that is associated with ischemic injury and apoptosis [69]. Additionally, cre-
atine enhances the ability of Mi-CK to shuttle ADP for oxidative phosphorylation and
PCr formation, thereby decreasing mitochondrial membrane and production of reactive
oxygen species (ROS) [70]. Since impairment in cellular energy production and increased
oxidative stress are common features in several neuromuscular degenerative diseases,
creatine supplementation may provide some therapeutic benefit [69,70]. In support of this
premise, Sakellaris et al. [71,72] reported that oral administered creatine can be used as an
additional supplement in treatment of acute mitochondrial dysfunction after brain injury.
These studies showed clear improvement in clinical outcomes of patients with additional
creatine-supplementation in comparison to no creatine-intake. Table 1 shows the level of
evidence in humans that creatine supplementation may have a positive effect on treatment
outcomes in patients with traumatic brain injury.
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Figure 2. Panel A: Intracellular cascade after injury, infarction or contusion leads to mitochondrial
dysfunction. Panel B: Impact of creatine on mitochondrial dysfunction. Green shows direct in-
crease/stimulation of Cr/PCr, red shows direct decrease/inhibition of Cr/PCr, dotted line represents
indirect impact of Cr/PCr on cellular pathways. ATP is adenosine triphosphate; Cr is creatine; PCr
is phosphocreatine; ROS is reactive oxygen species; mPTP is mitochondrial permeability transition
pore. Adapted from Dean et al. [55].

Table 1. Level of evidence for creatine supplementation in acute traumatic mitochondrial dysfunction.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Sakellaris
et al. [71]

Traumatic
brain injury Human

0.4 g/kg per
day for
6 months

Yes 39

Improved self-care,
cognition, behavior
functions and
communication

Direct
effect on
disease

Sakellaris
et al. [72]

Traumatic
brain injury Human

0.4 g/kg per
day for
6 months

Yes 39 Reduced fatigue,
headache and dizziness

Direct
effect on
disease

3.2. Chronic, Atraumatic Mitochondrial Dysfunction

Many chronic diseases such as cancer and age-related pathological conditions have
been related to an altered mitochondrial function [73–101]. Chronic mitochondrial dysfunc-
tion is usually caused by slow changes in mitochondrial homeostasis eventually leading
to an increase in ROS/NOS, glycolysis, and hyper-acidosis. There are multiple factors
that directly damage mitochondrial function (Figure 3). Hypoxia is a common factor in
conditions such as solid tumor, ischemia, or inflammation that leads to a depletion of
oxygen and eventually through production of ROS to an alteration of intracellular proteins,
lipids and DNA [89]. On the other hand, research was able to prove that malignant cells
tend to create energy under glycolytic conditions although sufficient oxygen is provided.
This pathological mechanism is called “Warburg Effect” [102,103]. This leads to an increase
in cell acidity and an increase in ROS with damaging of DNA. Other factors leading to
chronic mitochondrial dysfunction are toxic metals or reactive nitrogen species (NOS) [104].
An increase in ingested carbohydrates bigger than the individual needs leads to hyperin-
sulinemia. As a chronic condition, this will lead to an increase in receptor for advanced
glycation end products (RAGE). Thus, nitrosative stress increases, manipulating mitochon-
drial function [105–109]. Increasing stress will lead to an intracellular accumulation of
ammonium [110–112], ROS [113], lactate [114], ultimately inhibiting the Krebs cycle and
oxidative metabolism.
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Figure 3. Warburg Effect: glycolysis produces 2 ATP instead of 36 ATP, in pathological tissues even
despite aerobic conditions. Glc is glucose, Oxy is oxygen, ATP is adenosine triphosphate. Adapted
from Vander Heiden et al. [91].

Typical factors that lead to a disturbance in the cellular respiration are hypoxia, in-
flammation, viruses, mutations, oncogenes, age, radiation, and carcinogens [115]. The
ultimate, most common denominators are reactive species which damage mtDNA. As soon
as cellular defense systems such as antioxidants, intracellular energetic buffer, and enzy-
matic reactions are worn down, chronic alteration of cellular organelles begins [116]. As
mentioned above, it is hard to differentiate in chronic mitochondrial dysfunction whether
pathological conditions lead to hypoxia that produces ROS/NOS which eventually harms
mtDNA or whether an altered mtDNA leads to an overexpression of ROS/NOS damaging
itself [117]. It is widely accepted, however, that this chronic status is a vicious circle leading
to a lethal cellular condition harming the host.

Magnetic resonance spectroscopy (MRS) is an analytical tool that detects electromag-
netical signals that are produced by the atomic nuclei within the molecules. Thus, it can
be used to (non-invasively) measure concentrations for specific molecules in tissue. This
technique has extensively been used in neurological research to identify phosphorus and
proton metabolites in tissue in vivo [118–121]. Using this, research was able to prove mito-
chondrial dysfunction in patients with bipolar disorders. These patients also suffered from
an impaired energy production [122], increased levels of lactate (hyperacidotic state) [123]
and PCr concentration [114,124,125]. Therefore, it was assumed that creatine supplementa-
tion could improve clinical outcome in cases of mitochondrial dysfunction. Creatine is able
to buffer lactate accumulation by reducing the need for glycolysis [126], reducing ROS [127]
and restoring calcium homeostasis. Table 2 presents an overview of the level of evidence
for creatine supplementation for chronic, atraumatic mitochondrial dysfunction.
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Table 2. Level of evidence for creatine supplementation for chronic, atraumatic mitochondrial
dysfunction.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Guimarães-
Ferreira et al.
[128]

- Animal/
vitro

5 g/kg per
day for
6 days

no 39 Decrease in ROS in
muscle tissue Anima model

Kato et al.
[124]

Bipolar
disorder Humans None No

25 (disease)
vs. 21
(control)

Abnormal energy
phosphate
metabolism in
bipolar disorder

No intervention,
only descriptive,
observational
findings

4. Noncommunicable Chronic Diseases (NCD)

Modern ways of (unhealthy) living like over nutrition, exposure to toxic substances,
and sedentarism combined with an individual’s genetic background led to the development
of NCD [90]. Four disease clusters are associated with NCD such as cardiovascular diseases,
cancers, chronic pulmonary diseases, and diabetes mellitus [129]. NCD are associated with
low-grade inflammation and an increase in oxidative stress [130]. Through the past decades,
they have become the biggest health threat of modern society [131–133]. Lately, there has
been a link established between NCD and mitochondrial dysfunction. Reduced oxygen
consumption rates have been shown in cardiovascular diseases such as hypertension and
atherosclerosis. Additionally, they suffer from calcium overload due to mitochondrial
calcium mishandling and ROS overproduction [134–137]. Obesity [138–141] as well as
diabetes mellitus [142–149] are associated with an increased mitochondrial fragmentation
rate, impaired ATP production, as well as ROS overproduction and calcium mishandling.
In regards to creatine and its connection to mitochondrial dysfunction, reduced levels
were detected in human myocytes in diabetes mellitus [150], obesity [151], and hyper-
tension [152]. Not surprisingly, NCD are the most common factors contributing to the
development of an acute ischemic heart attack or acute ischemic brain disease (Figure 4).

Nutrients 2022, 14, x FOR PEER REVIEW 7 of 25 
 

 

Table 2. Level of evidence for creatine supplementation for chronic, atraumatic mitochondrial dys-

function. 

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role 

Guimarães

-Ferreira et 

al. [128]  

- 
Ani-

mal/vitro 

5 g/kg per day 

for 6 days  
no 39 

Decrease in ROS in 

muscle tissue 
Anima model 

Kato et al. 

[124] 

Bipolar 

disorder 
Humans None No 

25 (disease) 

vs. 21 (con-

trol) 

Abnormal energy phos-

phate metabolism in bi-

polar disorder 

No intervention, 

only descriptive, ob-

servational findings 

4. Noncommunicable Chronic Diseases (NCD) 

Modern ways of (unhealthy) living like over nutrition, exposure to toxic substances, 

and sedentarism combined with an individual’s genetic background led to the develop-

ment of NCD [90]. Four disease clusters are associated with NCD such as cardiovascular 

diseases, cancers, chronic pulmonary diseases, and diabetes mellitus [129]. NCD are asso-

ciated with low-grade inflammation and an increase in oxidative stress [130]. Through the 

past decades, they have become the biggest health threat of modern society [131–133]. 

Lately, there has been a link established between NCD and mitochondrial dysfunction. 

Reduced oxygen consumption rates have been shown in cardiovascular diseases such as 

hypertension and atherosclerosis. Additionally, they suffer from calcium overload due to 

mitochondrial calcium mishandling and ROS overproduction [134–137]. Obesity [138–

141] as well as diabetes mellitus [142–149] are associated with an increased mitochondrial 

fragmentation rate, impaired ATP production, as well as ROS overproduction and cal-

cium mishandling. In regards to creatine and its connection to mitochondrial dysfunction, 

reduced levels were detected in human myocytes in diabetes mellitus [150], obesity [151], 

and hypertension [152]. Not surprisingly, NCD are the most common factors contributing 

to the development of an acute ischemic heart attack or acute ischemic brain disease (Fig-

ure 4). 

 

Figure 4. Mitochondrial dysfunction and non-communicable diseases. Adapted from Diaz-Vegas et 

al. [90]. 

Figure 4. Mitochondrial dysfunction and non-communicable diseases. Adapted from Diaz-Vegas
et al. [90].



Nutrients 2022, 14, 529 8 of 24

Table 3 shows some of the studies that have been conducted on creatine supplemen-
tation in noncommunicable chronic diseases. Creatine’s benefits in physical activity and
thus counteracting NCD development have been widely explained [20,153–163]. There is,
however, substantial evidence for the beneficial effects of supplementation even without
combining it with sports. The sole intake of creatine has been able to significantly lower
blood lipids such as cholesterol and triglycerides, slow down the development of fatty liver,
and lower the HbA1C in human and animal studies, thus improving the clinical outcome
and progression of the metabolic syndrome [164–166].

Table 3. Level of evidence of creatine’s role in noncommunicable chronic disease.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Rider et al.
[151] Obesity Human None None 64

Deranged cardiac
energetics and diastolic
dysfunction in obesity
group

Observational,
disease related
changes in
metabolism

Scheuermann-
Freestone et al.
[150]

Diabetes
Type 2 Human None None 36

Impaired myocardial and
skeletal muscle
metabolism (reduced
PCR/ATP ratio)

Observational
disease related
changes in
metabolism

Lamb et al.
[152] Hypertension Human None None 24

Altered high-energy
phosphate metabolism in
hypertension. Cardiac
dysfunction correlates
with metabolic alterations

Observational,
disease related
changes in
metabolism

Gualano et al.
[164]

Diabetes
Type 2 Human

5 g creatine for 12
weeks + physical
activity program

Yes 25

Improved glycemic
control in
supplementation group
(by GLUT-4 recruitment)

Direct effect on
disease related
metabolic
effects

Earnest et al.
[165]

Hyper-
cholester-
inaemia

Human

4 × 5 g creatine for
5 days and
afterwards 2 times
per day for 51 days
(orally)

Yes 34

Minor reduction of total
cholesterol during
supplementation.
Reduction of
triacylglycerol’s and very-
low-density-lipoprotein c
4 weeks after finishing
supplementation

Direct effect of
supplementa-
tion on
metabolism.

Deminice et al.
[166] Fatty liver Animal

Control vs. 0.25%
choline diet vs.
0.25% choline + 2%
creatine diet

None 24

Prevention of fat liver
accumulation and hepatic
events in creatine-fed
group

Animal model

5. Cardiovascular Disease and Ischemic Heart Failure

Optimal replenishment of creatine reserves was able (in experimental studies) to
slow down disease progression of the other above mentioned NCD and cardiomyopathy.
Therefore, creatine supplementation has been identified to be of special therapeutic interest
in treatment of cardiovascular diseases and their course [167,168]. The heart has its own
four creatine kinase (CK) isozymes, proving the importance of ensuring filled energy
depots [169]. A gradual reduction of myocardial total creatine content has been shown on
chronic heart failure in human as well as animal studies [170–173]. The ratio of PCr/ATP has
been defined to better judge myocardial creatine metabolism [174]. Low ratios have been
positively correlated with low contractile function, more severe heart failure symptoms,
and a higher risk of mortality [175–177].

Creatine supplementation in patients with chronic heart failure and similar animal
studies have not shown any beneficial effect on clinical outcome, neither on myocardial
creatine concentrations [178–180]. The transmembrane Creatine-Transporter (CrT) seems
to be the limiting factor in this matter [181]. Question remains if other creatine-analogues
that pass intracellular without the need of CrT might prove of better help in cardiovascular
diseases. The energy deficiency resulting from local hypoxia during an ischemic heart attack
leads to mitochondrial dysfunction, which in turn can have arrhythmogenic consequences
and lead to sudden cardiac death [182–184]. Therefore, it is not surprising that creatine
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plays a critical role during a cardiac ischemic event [185,186]. First in vitro studies allow the
hypothesis that saturation of myocardial creatine stores may lead to protection in the event
of a transient ischemic attack [49]. In this context, in animal studies, filled ATP stores have a
positive inotropic, apoptosis-protective effect and counteract a post-ischemic inflammatory
cascade [187].

Intravenous in vivo administration of phosphocreatine was able to confer significant
myocardial protection after bypass surgery [188], resulting in a reduction in the incidence
of ventricular fibrillation and myocardial infarction as well as arrhythmias [189]. The newly
developed special form of creatine, cyclo-creatine, deserves special attention. After an oral
loading phase prior to elective cardiac interventions (PCI, ACVB, HTX), cyclo-creatine
has a similar protective effect against lethal events [183,187,190,191]. However, large-scale
human studies have yet to confirm the initial promising results. Table 4 summarizes the
level of evidence available on the role of creatine in cardiovascular disease and ischemic
heart failure [187–191].

Table 4. Level of evidence for creatine supplementation for chronic, atraumatic mitochondrial
dysfunction.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Elgebaly
et al. [187] - Animal/

vitro
500 mg/kg
BW no 6

Better aortic flow,
coronary flow, cardiac
output, stroke volume,
and stroke work

Animal
model

Cisowski
et al. [188]

Cardiac
surgery Humans

6 g 3 days
pre-surgery,
intra-surgical
and two days
post- surgery
i.v.

yes 40

Reduced arrhythmic
events, reduced need
of ionotropic
medication

Direct effect
on surgical
procedure

Ruda et al.
[189]

Ischemic
myocardial
infarct

human 2 g bolus + 4
g/h over 2 h Yes 60 Reduced arrhythmic

events

Direct effect
on short term
outcome

Chida et al.
[192]

Dilated
Cardio-
myopathy

Human None None 13

Plasma BNP level was
correlated negatively
with the myocardial
phosphocrea-
tine/adenosine
triphosphate

Observational
finding

Roberts
et al. [191]. None Animal Oral creatine-

feeding None Not clear
Higher cellular ATP
during ischemia in
creatine-fed rat hearts

Animal
model

6. Traumatic and Ischemic Central Nervous System Injuries

Mitochondrial function and ATP production are crucial for the neuronal survival and
excitability [193]. At the same time, however, mitochondrial dysfunction leads to the over-
production of ROS and neuronal apoptosis which is closely related to neurodegenerative
diseases and cerebral ischemia [193–197]. Whereas earlier research mainly focused on
mitochondrial bioenergetic roles, new studies have shown the importance of apoptotic
signaling, mitochondrial biogenesis, and mitophagy in the development of cerebrovascular
disease and stroke. Mitochondrial health is therefore essential for neurological survival
and rehabilitation [198,199]. Reperfusion injury is another acute complication feared by
medical doctors involving mitochondria and clinical outcomes [200,201]. Following reper-
fusion of the injured brain tissue, excessive ROS and calcium produced under hypoxic
conditions are washed in the body’s periphery, causing damage on cellular and molecular
level [202]. Intracellular calcium deregulation enhances neuronal cell death after stroke,
giving the stability of the mitochondrial (calcium) permeability transition pore (mPTP) a
special predictive measure [203].
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The acute protective effects of creatine on the central nervous system (CNS) have
long been known. Similar to the effect in the myocardium, energy buffering for short-
term hypoxic conditions can be achieved by saturating intracellular PCr. This may lead
to protection against ischemia and cell death, as well as calcium gradients created by
mechanical stimuli [204–206]. In animal experiments, researchers were able to show that
idiopathically caused brain damage and spinal cord injuries developed to a lesser extent
after creatine oral administration [207,208]. Creatine supplementation also had a positive
effect on infarct sizes after insult in ischemic mouse models [209]. These results suggest
that creatine administration may lead to preventive CNS protection against concussions,
traumatic brain injury, spinal cord injury, and insults [210].

Adding to the above-mentioned protective effects of Creatine during a hypoxic situa-
tion, special advantages of creatine on the CNS have been proven. The term excitotoxicity
describes the destruction of neuronal cells due to pathological activation of its excitatory
receptors [202]. Research was able to show that excitatory amino acids, such as Glutamate,
become more neurotoxic when the cell’s energy levels are reduced by hypoxia [211]. Acti-
vation of the glutamate NMDA receptor correlates with reduced ATP and PCr levels [212].
Creatine was able to protect animal brain tissues from the apoptotic effects of excitatory
amino acids [213,214]. Lastly, it was shown that Creatine stabilizes mPTP in rodent studies,
thus protecting brain tissue from apoptosis and cell death [67]. Table 5 presents a summary
of the level of evidence related to creatine supplementation for traumatic and ischemic
CNS injuries [205–207].

Table 5. Level of evidence for the role of creatine supplementation in individuals with traumatic and
ischemic CNS injuries.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Zhu et al.
[206]

None/induced
ischemia Animal

2% creatine-
supplemented
diet for 4 weeks

None 6 per
group

Reduction in
ischemia induced
infarct size

Animal
model

Turner et al.
[205]

None/induced
hypoxia Human 7-ds oral creatine-

supplementation Yes 15

Less decrease in
cognitive
performance,
attentional
capacity,
corticomotor
excitability for
creatine-group

Human
brain
metabolism

Hausmann
et al. [207]

None/induced
spinal cord
injury

Animal
4 weeks oral
creatine-
supplementation

none 20

Better locomotor
scores after 1 week
for creatine-group.
Less scar tissue for
creatine-group
after 2 weeks

Animal
model

Sullivan
et al. [208]

None/induced
traumatic brain
injury

Animal

Mice: 0.1 mL/10
g/BW creatine
monohydrate
injection for 1, 3
or 5 days

none 40 mice/
24 rats

Reduction of brain
tissue damage size
by 36% mice and
50% rats

Animal
model

Rats: 1% creatine
diet for 4 weeks.

Prass et al.
[209]

None/induced
experimental
stroke

Animal

Creatine-rich
diet (0%, 0.5%,
1%, 2% for 3
weeks

None Unclear

Reduction of
infarct size by 40%
in 2% creatine-fed
group

Animal
model
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7. Neurodegenerative Disorders

Ageing has been defined as a “progressive accumulation of changes with time that
are associated with or responsible for the ever-increasing susceptibility to disease and
death” [215]. Brain tissue is due to its high-energy demands especially vulnerable to
mitochondrial deficits, ROS, hypoxia, and energy depletion [216,217]. Although ROS are
of special need to neurons and brain tissue needed for synaptic plasticity, learning and
memory function, their overproduction is closely related to nitration of proteins, mtDNA
impairment and the development of neurodegenerative diseases, ageing, and cognitive
deficits [218–220]. Insulin resistance and diabetes mellitus deteriorate these conditions
and accelerate cognitive decline as well as incidence of neurogenerative diseases [221–
223]. RAGE and ammonium level up the documented damage to mitochondria, neuronal
cells, and brain tissue [224–226]. Alzheimer’s disease has already been named “type 3
diabetes“ [227]. Pathologically altered mitochondria have been shown to be swollen, have
altered membrane potential, and reductions of ATP levels [228]. Therefore, mitochondrial
protection and reduction of oxidative stress have been suggested to be of high therapeutic
importance for the treatment of neurodegenerative disorders [229]. Anti-inflammatory
nutrition, caloric restriction, as well as the use of supplements have been discussed to
be improve mitochondrial functioning and cognition [230–233]. Various studies have
also shown that creatine supplementation has a positive effect on cognition and brain
function [234,235]. The effect was greater the more the participant was exposed to external
stressors (e.g., hypoxia, sleep deprivation, etc.) [45,205] or the more complex the tasks were
performed [236]. In this context, intake led to a lower need for sleep, earlier wake-up times,
and improved sleep behavior [237].

Neurodegenerative diseases are usually characterized by the destruction or dysfunc-
tion of neurons in a specific brain area. Depending on the affected brain area, course,
and severity, the forms of the disease differ. These include Alzheimer’s disease (MA),
amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Huntington’s disease (MH),
and Parkinson’s disease (MP). Impaired energy balance with mitochondrial dysfunction
and oxidative stress are common to all diseases [238]. Similar findings have been made
with intellectual disability-related diseases [239]. This bioenergetic deficit is thought to lead
to apoptosis and necrosis and ultimately to neuronal degeneration [240]. Therefore, it is
reasonable to assume that an improvement in mitochondrial health could enable a positive
influence on the course of the disease. Table 6 provides a summary of the level of evidence
related to the role of creatine supplementation for neurodegenerative disorders [45,234,236].
Initial studies suggest that creatine supplementation may be neuroprotective. For example,
in 2013, Kley and coworkers [241] conducted a Cochrane review on the role of creatine
monohydrate supplementation for treating muscle disorders. The researchers found sound
evidence from randomized clinical trials that creatine supplementation increased strength
and functional capacity in muscular dystrophy and idiopathic inflammatory myopathy
while having no effect in patients with metabolic-related myopathies and McArdle dis-
ease. More long-term research is needed to evaluate the long-term effects of creatine in
neurodegenerative diseases that impair muscle function.
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Table 6. Level of evidence for the role of creatine supplementation in individuals with neurodegener-
ative disorders.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Hammett
et al. [234] None Human

20 g/d
creatine for 5
days + 5 g/d
for 2-days

Yes 22

Reduction of stress related
blood oxygen level
dependent in fMRI in
creatine-group

Human
metabolic
response

Watanabe
et al. [235] None Human 8 g/d for

5-days Yes 24

Reduction of mental fatigue
and increased brain oxygen
consumption in
creatine-group

Human
metabolic
response

McMorris
et al. [236] None Human 4 × 5 g/d yes 20

Better in central complex
executive tasks with creatine
while sleep deprivation

Human
metabolic
response

McMorris
et al. [45] None Human 4 × 5 g/d Yes 15

random number generation,
forward number and spatial
recall, and long-term
memory

Human
metabolism

8. Psychological Disorders

In the 1980s, a link was established between bioenergetic deficits and depression [190,
242–244], bipolar disorders [114,245,246], and obsessive–compulsive disorders [247,248]. It
is believed that there is an increase in energy demand with depletion of PCr stores at the
onset of disease [124,249]. In clinical trials with depressed patients [250–252], a positive
effect on subjective impairment after adjuvant creatine supplementation could be demon-
strated. The higher the increase in cerebral PCr after creatine supplementation, the lower
the depressive or manic symptoms [253]. The combination of antidepressants and creatine
was more effective than simple pharmacological medication [254]. Creatine administration
was even effective when drug therapy with SSRIs proved to be ineffective [255]. In this
content, creatine has also been discussed as a potential therapeutic agent in the treatment
of drug addiction and its psychic related disorders [256]. Positive effects of creatine supple-
mentation have also been reported in post-traumatic stress disorders [257]. Schizophrenic
and stress patients seem to gain no benefit from creatine intake. There is, however, ongoing
debate on higher dosage for a needed benefit in these sub-groups [258]. Table 7 presents a
summary of the literature related to the effects of creatine supplementation on individuals
with psychological disorders [251,252,255].

Table 7. Level of evidence for the role of creatine supplementation in individuals with psychologi-
cal disorders.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Kondo
et al. [250]

Adolescent
major
depressive
disorder

Human 4 g/d creatine
for 8 weeks None 15

Reduction in
children-depression
symptom scores.
Significant increase in
brain phosphocreatine
level.

Direct effect on
disease (no
RCT)

Roitman
et al. [251]

Treatment
resistant
depression

Human
3–5 g/d
creatine for 4
weeks

None

8 unipolar
depressed
patients and
two bipolar
patients

Development of
hypomania/mania in
bipolar patients.
Improved Hamilton
Depression Rating
Scale, Hamilton
Anxiety Scale, and
Clinical Global
Impression for 7 of 8
unipolar depressed
patients

Direct effect on
disease (no
RCT)
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Table 7. Cont.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Toniolo
et al. [252]

Depressive
episode of
Bipolar Type 1
and Type 2

Human 6 g/d creatine
for 6 weeks Yes 35

No significant
difference in
Montgomery-Åsberg
Depression Rating
Scale by intervention
but higher remission
rate in creatine
supplemented group

Direct effect on
disease

Kondo
et al. [255]

Adolescent
with SSRI
resistant major
depressive
disorder

Human

0 g vs. 2 g vs. 4
g vs. 10 g
creatine sup-
plementation
for 8 weeks

Yes 34

Clinical depression
scores correlated
inversely with brain
phosphocreatine (PCR)
levels. PCR level
improved with higher
dose.

Potential direct
effect on
disease

9. Chronic Fatigue Syndrome, Post Viral Fatigue Syndrome, and Long COVID

Fatigue is the most characteristic symptom of an energy deficit. There does not, how-
ever, exist a proper definition of the fatigue syndrome [259]. Fibromyalgia is a similar
pathological entity closely related to CFS. Initially thought to be purely a psychological
problem, linking fatigue to depression or other psychiatric diseases, newer research has
been able to prove a metabolic dysfunction causing the symptoms [99,260,261]. Linking this
clinical state with mitochondrial dysfunction was first able when lowered mitochondrial
ATP levels were shown using MRS on patients with fatigue syndrome [262]. Later muscle
biopsies and serum biomarkers have been able to show reduced mitochondrial biomark-
ers [263,264]. These markers have been Carnitine and CoQ10 [265]. On a mitochondrial
level fatty acid metabolism was altered, electron transport chain was disrupted, there was
a greater need in glucose concentrations and higher levels of lactate were shown [266].
Higher creatinine excretion via urine was shown to correlate positively with fatigue and
pain severity. Being the end product of creatine, this urine marker could imply a higher
turnover and depletion of the body’s creatine storage [267]. More recent hypotheses state
that these alterations have been caused by an activation of immune–inflammatory pathways
due to viral infections (e.g., Epstein Barr, Q Fever, Ross River Infection) [268].

Long COVID is a persistent fatigue state after Sars-2-CoV-2 infection [269,270]. Inter-
estingly, even asymptomatic patients exhibited raised biomarkers involved in inflammation
and stress response [271]. Long COVID, Chronic Fatigue Syndrome, and Post Viral Fatigue
Syndrome are believed to be the same entity [248,272]. Supplementation of guadinioacteic
acid, a precursor of creatine, was able to attenuate several aspects of fatigue in fibromyalgia
patients [273]. In combination of experimental findings as well as these first promising
clinical outcomes, creatine might be an important key in the rehabilitation process of CFS
and Long COVID patients [274]. Table 8 summarizes the available literature on the effects
of the creatine precursor GAA on chronic fatigue and Post-COVID syndrome [274].

Table 8. Summary of literature on the effects of creatine precursors on chronic fatigue and Post-
COVID syndrome.

Study Disease Subject Treatment Randomized Subjects Efficacy Effect Role

Ostojic et al.
[264]

Chronic
Fatigue
syndrome

Human

2 g, 4 g oral
Guanidi-
noacetic Acid
for 3 months
vs. placebo

Yes 21

Higher muscle
creatine-phosphate
level and better
oxidative capacity.
However, no
significant
improvement of
fatigue symptoms

Direct effect
on disease
related
metabolism
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10. Conclusions

This review summarizes creatine’s impact on mitochondrial function besides restoring
ATP-storage. Creatine monohydrate is one of the best-known nutrient supplements mainly
being used for improvement of athletic performance. However, there is growing evidence
for a broader therapeutic spectrum of this nitrogen–amino-compound. Various health-
promoting effects on cell-metabolism after the intake of creatine have been shown. Its im-
pact on mitochondrial integrity has become of special interest. Mitochondrial dysfunction
has become a central pathological hallmark of non-communicable diseases. The supple-
mentation of creatine monohydrate may have some synergistic effects in the treatment of
CND. This seems to be directly related to its protective effects on mitochondria. Different
from pharmaceutical products, the intake of creatine is safe age- and gender-independent
with nearly no side-effects [49,50]. Although these findings are promising, much of the
available data has been generated with in vitro or animal studies. Therefore, there is a
need to conduct more clinical trials in humans to assess the potential therapeutic effects of
creatine monohydrate supplementation on conditions influencing mitochondrial function.
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