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Technological advances promise unprecedented opportunities for whole exome sequencing and proteomic analyses of pop-

ulations. Currently, data from genome and exome sequencing or proteomic studies are searched against reference genome

annotations. This provides the foundation for research and clinical screening for genetic causes of pathologies. However,

current genome annotations substantially underestimate the proteomic information encoded within a gene. Numerous

studies have now demonstrated the expression and function of alternative (mainly small, sometimes overlapping) ORFs

within mature gene transcripts. This has important consequences for the correlation of phenotypes and genotypes.

Most alternative ORFs are not yet annotated because of a lack of evidence, and this absence from databases precludes their

detection by standard proteomic methods, such as mass spectrometry. Here, we demonstrate how current approaches tend

to overlook alternativeORFs, hindering the discovery of new genetic drivers and fundamental research.We discuss available

tools and techniques to improve identification of proteins from alternative ORFs and finally suggest a novel annotation sys-

tem to permit a more complete representation of the transcriptomic and proteomic information contained within a gene.

Given the crucial challenge of distinguishing functional ORFs from random ones, the suggested pipeline emphasizes both

experimental data and conservation signatures. The addition of alternative ORFs in databases will render identification less

serendipitous and advance the pace of research and genomic knowledge. This review highlights the urgent medical and re-

search need to incorporate alternative ORFs in current genome annotations and thus permit their inclusion in hypotheses

and models, which relate phenotypes and genotypes.

The now irrefutable existence of “alternative” proteins

Recent work has revealed that genomes harbor many non-
annotated open reading frames (ORFs) (Vanderperre et al. 2011;
Bergeron et al. 2013; Anderson et al. 2015; Mouilleron et al.
2016; D’Lima et al. 2017; Plaza et al. 2017). Although two decades
have passed since the first eukaryotic genome was sequenced,
assigning translated ORFs to genetic loci remains a daunting task
(Basrai et al. 1997; Claverie et al. 1997; Ladoukakis et al. 2011).
Indeed, current genome annotations rely partly onORF prediction
algorithms that are only reliable for sequences beyond a certain
length. Consequently, three main criteria are implemented to
distinguish “true” ORFs from random events: the use of an ATG
start codon, a minimum length of 100 codons, and a limit of a sin-
gle ORF per transcript (Cheng et al. 2011; Andrews and Rothnagel
2014; Saghatelian andCouso 2015; Plaza et al. 2017). These criteria
result in an important underestimation of translated ORFs in the
genome (Andrews and Rothnagel 2014; Saghatelian and Couso
2015; Couso and Patraquim 2017; Plaza et al. 2017). With func-
tional evidence for previously unannotated ORFs in bacteria

(Wadler and Vanderpool 2007; Hemm et al. 2008, 2010; Storz
et al. 2014; Lluch-Senar et al. 2015; Baek et al. 2017), Drosophila
(Galindo et al. 2007; Kondo et al. 2007; Reinhardt et al. 2013;
Aspden et al. 2014; Albuquerque et al. 2015; Li et al. 2016a;
Pueyo et al. 2016a), plants (Hanada et al. 2013; Juntawong et al.
2014; Hsu et al. 2016; Hsu and Benfey 2017), and other eukaryotes
(Oyama et al. 2007; Ingolia et al. 2011; Vanderperre et al. 2013;
Ma et al. 2014), genome annotations will need to be revised.

These “hidden” ORFs are found in multiple places within
RNA: within long noncoding RNAs (lncRNAs), within 5′ and 3′

“untranslated” regions (UTRs) of mRNAs, or overlapping cano-
nical coding sequences (CDSs) in an alternative reading frame
(Slavoff et al. 2013; Mouilleron et al. 2016). They are, in general,
notably smaller than annotated CDSs, but they are not limited to
small ORFs (smORFs—ORFs smaller than 100 codons) (Samandi
et al. 2017). Here, we define alternative ORFs as any coding se-
quence with an ATG start codon encoded within any reading
frame of either lncRNAs or known coding mRNAs (either in
UTRs or overlapping the CDS). Such a definition of ORFs allows
for a more exhaustive yet more complex view of the genomic
landscape. As shown in Figure 1A, a gene inherently carries tran-
scriptomic complexity (RNA splicing events leading to multiple
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transcripts and thus to a suite of isoforms) andproteomic complex-
ity (more than one protein per transcript). Even though the tran-
scriptomic complexity is now widely accepted, consideration of
proteomic complexity is usually restricted to one protein (and its
splicing-derived isoforms) per gene. Protein complexity can arise
from multiple sources, such as RNA splicing and editing, post-

translational modifications, alternative initiation (internal ribo-
some entry site), stop codon read-through, or non-AUG initiation
(Dunn et al. 2013; Venne et al. 2014; Ingolia 2016; Nishikura 2016;
Blencowe 2017; Li et al. 2018). Notwithstanding, this review will
focus on the proteomic complexity resulting from proteins encod-
ed in alternative ORFs.

A

B

Figure 1. Schema of the transcriptomic and proteomic complexity inherent to a gene. (A) Genomic complexity representation. A gene is represented
with a promoter (P) and introns (i) and exons (E). Splicing events lead to a suite of transcripts with frameshifted exons (darker blue shade), skipped exons, or
retained introns. Then, proteomic complexity comes from each transcript with ORFs from any reading frames. However, now only one CDS is annotated
per transcript, leaving an entire hidden proteome (unannotated CDSs). (B) Alternative ORFs databases. The OpenProt database predicts every ORF longer
than 30 codons and reports experimental detection evidence for each of them. Five hundred ninety-two alternative ORFs were detected by both ribosome
profiling (RP) and mass spectrometry (MS). The SmProt database reports smORFs (<100 codons) in different data sets (mass spectrometry, ribosome pro-
filing, literature mining, and databases).
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Recently, the development of new techniques or the opti-
mizationof existing oneshas allowed for large-scale detectionof al-
ternative proteins and a more in-depth view of a cell proteomic
landscape (Boekhorst et al. 2011; Aspden et al. 2014; Calviello
et al. 2016; Hellens et al. 2016; Ma et al. 2016; Pueyo et al. 2016a;
Delcourt et al. 2017; Hsu and Benfey 2017; Willems et al. 2017).
Three detection methods—ribosome profiling, proteogenomics,
and conservation signatures—have been used to identify likely
translated and functional alternativeORFs, as further discussed lat-
er in this review. Suchexperimental datahavebeencompiled in the
sORFs repository, SmProt, and OpenProt databases (Olexiouk et al.
2016; Hao et al. 2017; openprot.org). The SmProt database reports
167,785 small proteins (mostly from lncRNAs) in the human ge-
nome, including 106,201 identified via mass spectrometry data
and 26,374 via ribosome profiling (Fig. 1B; Hao et al. 2017).
Comparatively, theOpenProt database currently reports 28,007 al-
ternative proteins with experimental evidence, including 20,919
detected by mass spectrometry and 7680 by ribosome profiling;
592 alternative proteins were detected in both mass spectrometry
and ribosome profiling experiments (Fig. 1B; openprot.org).

The number of reported alternative proteins varies between
the databases, as they uphold different definitions of alternative
ORFs (start codon other than ATG, length threshold, number of
studies analyzed, and pipeline stringency). Indeed, the start codon
use (restricted to ATG or not) and length threshold (<100 codons,
or >30 codons) implemented will significantly alter the number of
predicted alternative proteins. Subsequently, this will affect the
sensitivity and specificity of detection methods, especially if the
mass spectrometry identification pipeline is not adapted to an
increase in the search space (Guthals et al. 2015). The various da-
tabases enforce different identification pipelines and stringencies
on re-analysis of published data sets. This would inevitably lead
to discrepancies in numbers of detected alternative ORFs. Here,
we advocate for a cautious interpretation of the data, encouraging
identifications made with different techniques and across several
studies (identifications from mass spectrometry and ribosome
profiling) (Fig. 1B).

These detection methods—ribosome profiling, proteoge-
nomics, and conservation signatures—are revealing this hidden
proteome, a novel repertoire for biomarkers and therapeutic strat-
egies (Couso and Patraquim 2017; Karginov et al. 2017; Plaza et al.
2017). Here, we briefly review functional evidence for the bio-
logical roles of alternative proteins.

SmORFs: mRNA or lncRNA ORFs smaller than 100 codons

The field of smORFs is rapidly expanding. With the implementa-
tion of large-scale proteogenomics and ribosome profiling studies
for smORF detection, their discovery is becoming less serendipi-
tous (Ma et al. 2016; Delcourt et al. 2017; Willems et al. 2017).
One of the first and most striking examples is that of the apelin
(APELA smORF), 58 amino acids (aa), shown to bind apelin recep-
tors (Pauli et al. 2014). Since then, even smaller apelin variants
have been discovered (Huang et al. 2017). All isoforms originate
from a 77-aa precursor, pre-proapelin (Fig. 2A; Lee et al. 2005;
Castan-laurell et al. 2012). Apelin stimulates several metabolic
pathways, such as glucose uptake, mitochondrial biogenesis, and
fatty acid oxidation, while inhibiting lipolysis and insulin secre-
tion (Boucher et al. 2005; Dray et al. 2008; O’Carroll et al. 2013;
Alfarano et al. 2015; Bertrand et al. 2015). Rapidly, apelin went
from an overlooked ORF in a lncRNA to a promising biomarker
and therapeutic target in cardiovascular diseases, diabetes, and di-

abetic complications (Castan-Laurell et al. 2011, 2012; O’Carroll
et al. 2013; Hu et al. 2016; Huang et al. 2018). Elevated apelinemia
was found in obese patients across several studies, which was
suggested to be a compensatory mechanism prior to insulin resis-
tance (Boucher et al. 2005; Heinonen et al. 2005, 2009; Li et al.
2006; Castan-Laurell et al. 2008; Dray et al. 2008, 2010; Erdem
et al. 2008; Soriguer et al. 2009; Telejko et al. 2010). Both short-
and long-term apelin treatments in insulin-resistant obese mice
were proven to improve insulin sensitivity (Dray et al. 2008;
Castan-Laurell et al. 2011; Hu et al. 2016). APELA annotation has
now changed from lncRNA (GRCh37) to mRNA (GRCh38), high-
lighting the dynamic nature of genome annotations (Delcourt
et al. 2017). Other biological roles attributed to smORFs include
sarcoendoplasmic reticulum calcium transport ATPase (SERCA)
machinery regulation, regulation of ribosome-protein complexes,
prevention of cell death, and regulation of transcription
(Hashimoto et al. 2001; Galindo et al. 2007; Kondo et al. 2007;
Hanyu-Nakamura et al. 2008; Escobar et al. 2010; Magny et al.
2013; Anderson et al. 2015; Pueyo et al. 2016b; D’Lima et al.
2017; Matsumoto et al. 2017a, b). Moreover, smORFs have been
detected within the mitochondrial genome, encoding short circu-
lating peptides acting in a hormone-like manner (Yen et al. 2013;
Lee et al. 2016; Kim et al. 2017; Okada et al. 2017).

Thesemultiple reports of smORFs, often encoded in lncRNAs,
highlight the previously hidden coding potential of lncRNAs
(Niazi and Valadkhan 2012; Slavoff et al. 2013; Ruiz-Orera et al.
2014; Ji et al. 2015). Admittedly, not all lncRNAs aremisannotated,
and evidence that these transcripts act as functional RNAs rather
than protein coding RNAs is not to be dismissed (Guttman
et al. 2013).

Upstream ORFs: ORFs encoded in the 5′ UTR of mRNAs

Advances in large-scale ribosome profiling led to the discovery of
widespread translation events outside of annotated CDS (Ingolia
2014, 2016). A large portion of these events were observed up-
stream of annotated CDS, in the 5′ UTR (Ingolia et al. 2009).
Translation of these upstream ORFs (uORFs) was first described as
a regulatory mechanism for the translation machinery. Indeed,
several examples show that mutations creating or suppressing an
uORF led to a decrease or increase in the downstream canonical
protein expression (Cabrera-Quio et al. 2016). One of the best stud-
ied examples of protein expression regulation by uORF translation
is that of theGCN4 protein (Natarajan et al. 2001). TheGCN4 tran-
script contains four uORFs that ensure a tightly regulated expres-
sion of the CDS, a transcription factor. GCN4 protein targets
most genes required for amino acid biosynthesis (Natarajan et al.
2001). Upon starvation, translation re-initiation at the multiple
uORFs is down-regulated and the GCN4 protein expression level
thus rises (Hinnebusch 2005; Gunišová et al. 2016). Multiple ex-
amples of uORF-mediated regulation of protein levels have been
published; however, numerous studies also highlight the biologi-
cal role of uORF-encoded peptides (Lee et al. 2014; Cabrera-Quio
et al. 2016; Plaza et al. 2017). In 2004, a proteomics study detected
54novelmicroproteinsmapped back to uORFs (Oyama et al. 2004)
and 40% of identified smORF-encoded peptides (SEPs) were from
uORFs in Slavoff et al. (2013). At least two of these uORF peptides
were shown to be functional proteins (on SLC35A4 and MIEF1
transcripts), and several others are conserved and likely to be of bi-
ological importance (Vanderperre et al. 2013; Andreev et al. 2015;
Ebina et al. 2015; Young and Wek 2016). The SLC35A4 transcript
was shown to be resistant to stress (sodium arsenite), and uORF-
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encoded alt-SLC35A4 was shown to positively regulate SLC35A4
protein translation in the context of the integrative stress response
(Fig. 2B). Alt-SLC35A4 expression levels remained unchanged fol-
lowing sodium arsenite treatment (Andreev et al. 2015; Ma
et al. 2016).

Downstream ORFs: ORFs encoded in the 3′ UTR of mRNAs

Targeted proteomics for small peptides has also increased the
detection of proteins mapped back to 3′ UTR ORFs, downstream
from an annotated CDS (dORFs). Sixteen percent of the identified

A

B C

D

Figure 2. Examples of biologically important alternative ORFs. (A) Apelin, from overlooked to metabolic regulator. Apelin is encoded in an mRNA
(GRCh38), previously annotated lncRNA (GRCh37), and subsequently secreted. Upon binding with APLNR (also known as APJ) receptor at a nanomolar
range, it stimulates different metabolic pathways (glucose uptake, fatty acid oxidation, and mitochondrial biogenesis) and inhibits others (lipolysis and
insulin secretion). These pathways are also involved in diabetic complications (cardiomyopathy, nephropathy, and retinopathy). Blue arrows represent in-
hibitory relationships, pathways involved in diabetic complications are highlighted in green. FAO: fatty acid oxidation; PM: plasma membrane; lncRNA:
long non-coding RNA; Mito: mitochondrial. (B) SLC35A4 and its uORF-encoded protein, alt-SLC35A4. The SLC35A4 mRNA encodes two ORFs. Under
physiological conditions, the canonical ORF, SLC35A4, is weakly expressed. The uORF-encoded protein alt-SLC35A4 is suspected to be the major protein
product. Under cellular stress, both proteins are expressed. The alt-SLC35A4 expression level remains unchanged but positively regulates expression of
SLC35A4. Both proteins are thought to be involved in the integrated stress response. ISR: integrated stress response. (C) RPP14 and its dORF-encoded
protein, HTD2. The RPP14 mRNA encodes two ORFs. The canonical ORF encodes a member of the ribonuclease P (RNase P) complex (RPP14) involved
in tRNAs maturation. In the 3′ UTR, a second ORF encodes a mitochondrial dehydroxylase, HTD2. HTD2 is involved in mitochondria fatty acid synthesis.
(D) ATXN1 is a dual coding gene. ATXN1 mRNA encodes two proteins, ataxin and alt-ataxin. Upon entry into the nucleus, ataxin binds the transcription
factor capicua (CIC) and associates with DNA at transcription sites. Ataxin nuclear localization and transcription are necessary for alt-ataxin nuclear import
and its interaction with ataxin in nuclear inclusions. Ataxin is thought to shuttle between CIC complexes and RNA-binding RBM17 complexes.
Polyglutamine extensions in ataxin are responsible for spinocerebellar ataxia type 1 (SCA1) and alter the dynamics of ataxin localization, thereby altering
gene expression.
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SEPs in Slavoff’s study were from dORFs (Slavoff et al. 2013). To
the best of our knowledge, only one 3′ UTR encoded protein has
been functionally characterized thus far (Autio et al. 2008).
HTD2 (hydroxyacyl-thioester dehydratase type 2) is localized on
RPP14 mRNA, downstream from the canonical sequence (Fig.
2C). RPP14 is a component of the ribonuclease P (RNase P) com-
plex necessary for tRNA maturation, while HTD2 is a mitochon-
drial protein involved in mitochondrial fatty acid biosynthesis
(Autio et al. 2008). Evolutionary analysis of RPP14 and HTD2
sequences highlight a conserved bicistronic relationship over
400 million years and thus suggest a functional link between
RNA processing and mitochondrial fatty acid synthesis (Autio
et al. 2008). Numerous ribosome profiling and mass spectrometry
studies highlight translation events in the 3′ UTR and dORF-
encoded peptide detection (Slavoff et al. 2013; Ingolia 2016). For
example, the OpenProt database reports 5180 predicted dORFs
detected by mass spectrometry and 535 by ribosome profiling,
including 41 detected by both techniques (openprot.org). The
SmProt database reports no dORFs in their mass spectrometry
data set but 2389 in their ribosome profiling data set (Hao et al.
2017). The small ORFs repository (sORFs.org) reports 44,163
dORFs detected by ribosome profiling (Olexiouk et al. 2016).

Polycistronic regions: overlapping ORFs on one mRNA

Finally, hundreds of unannotated ORFs overlapping a canonical
CDS have been described as well (Vanderperre et al. 2011, 2013;
Bergeron et al. 2013; Slavoff et al. 2013). These ORFs are at the
same locus as an annotated CDS but encoded in an alternative
reading frame and can either partially overlap the CDS or be
completely nested within it. Several mammalian polycistronic
mRNAs have been reported over the past decade (for review, see
Karginov et al. 2017). These overlappingORFsmight bemore com-
mon than previously thought, given that 30% of peptides from
Slavoff’s study were mapped back to overlapping ORFs (Slavoff
et al. 2013). The OpenProt database reports 4916 alternative pro-
teins from overlapping ORFs detected by mass spectrometry and
3756 by ribosome profiling, including 268 detected by both tech-
niques (openprot.org). For example, the ATXN1 gene, involved in
spinocerebellar ataxia type 1, was identified as a dual coding gene
(Fig. 2D). The canonical gene product, ataxin, is a chromatin-
binding factor and is thought to have a role in RNA metabolism
(Yue et al. 2001). The alternative protein product, alt-ataxin,
directly interacts with ataxin and poly(A)+RNAs (Bergeron et al.
2013). Polyglutamine extensions in ataxin are responsible for spi-
nocerebellar ataxia type 1 (SCA1). Normally, upon entry into the
nucleus, ataxin binds the transcription factor capicua (CIC).
Ataxin-CIC complexes then associate with DNA at transcription
sites (Lim et al. 2008). Alt-ataxin is diffusely localized in the nucle-
us in the absence of ataxin, but in the presence of ataxin it readily
colocalizes in nuclear inclusions (Bergeron et al. 2013). Ataxin is
thought to equilibrate between CIC complexes and RNA-binding
RBM17 complexes, which regulates transcription and RNA pro-
cessing, notably splicing. In the case of SCA1, the polyQ exten-
sions favor ataxin-RBM17 complexes over those with CIC,
thereby competing with CIC containing complexes and altering
gene transcription (Lim et al. 2008; Paulson et al. 2017).

As illustrated by this last example, proteins encoded within
the same mRNA often share a functional link. Most fall into three
categories: (1) a direct protein interaction, either in a complex or as
a chaperone (Quelle et al. 1995; Bergeron et al. 2013); (2) a positive
functional interaction (involved in the same pathway but at dis-

tinct points and expression levels) (Abramowitz et al. 2004); and
(3) a negative functional interaction (two proteins involved in
the same pathway, with opposite roles) (Lee et al. 2014).

The clinical and research need for a better

annotation system

This growing bodyof evidence for functional alternativeORFs calls
attention to the need for a novel genome annotation (Yen et al.
2013; Pauli et al. 2014; Anderson et al. 2015; Lee et al. 2016;
D’Lima et al. 2017; Huang et al. 2017). Indeed, the current overly
restrictive definition of a gene inhibits research and clinical
advances. The field is facing a vicious cycle phenomenon: Most
alternative ORFs are not identified as new genetic drivers or path-
ological causes since they are not annotated. Yet, genome anno-
tations, faced with the challenge of distinguishing functional
ORFs from random events, do not include alternative ORFs. That
is because of a lack of clinical importance and/or experimental ev-
idence for alternativeORFs (Couso and Patraquim2017). However,
this paucity of evidence is largely due to their absence from current
annotations (Cheng et al. 2011; Ladoukakis et al. 2011; Andrews
and Rothnagel 2014; Saghatelian and Couso 2015; Couso and
Patraquim 2017).

Genome annotations are the linchpin to today’s research and
clinical screening, and the practical impact of their incomplete-
ness is thus substantial. With the development of time-efficient,
reproducible, and cost effective Next Generation Sequencing
(NGS), the amount of genome and exome sequencing data is no
longer a major limit for today’s clinical screening and research
(Boycott et al. 2013; Goodwin et al. 2016). Indeed, an increasing
number of genes have been related to pathological germline and
somatic mutations since the use of NGS (Vogelstein et al. 2013;
Amberger et al. 2015). Yet, only about 35% of exome sequencing
tests result in the identification of a likely pathological mutation
(Ku et al. 2016). This is partly due to the current recommendations
from the American College of Medical Genetics and Genomics
(ACMG), which considers likely pathological mutations from a
uni-coding dogma point of view (Richards et al. 2015). The uni-
coding dogma establishes that one gene encodes one protein
and its splicing-derived isoforms. Thus, single nucleotide variants
(SNVs) resulting in missense mutations are considered, but those
resulting in synonymous mutations are often ignored unless
they alter a splicing site or have a known functional consequence
(Richards et al. 2015). Admittedly, a challenge coming with such a
wealth of data is to distinguish single nucleotide polymorphisms
(SNPs), or passenger mutations in cancer, from pathological
SNVs (Makrythanasis and Antonarakis 2013; Vogelstein et al.
2013; Tokheim et al. 2016). So far, the response to this dilemma
has been to use more stringent criteria for linking SNPs to pathol-
ogies, and synonymous mutations are often discarded and regard-
ed as silent mutations under a uni-coding dogma (Nielsen et al.
2011, 2012; Olson et al. 2015). However, a synonymous mutation
in one reading frame may be a missense in another and could
thereby represent a pathological alteration for an alternative ORF
(Fig. 3). In fact, synonymous mutations have been described in
several pathologies, from cancer to neurological disorders (Sauna
and Kimchi-Sarfaty 2011; Supek et al. 2014; Fahraeus et al. 2016;
Li et al. 2016b; Waters et al. 2016; Austin et al. 2017; Batista
et al. 2017; Soussi et al. 2017). The mechanisms put forward to ex-
plain a pathological outcome from a silent mutation mostly re-
volve around the stability of the mRNA, its splicing, or the
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protein folding (Fahraeus et al. 2016). Yet, even thesemechanisms
only explain about a third of pathological synonymous SNVs
(Supek et al. 2014).

Here, we suggest that alternative proteinsmight explain these
additional pathological SNVs (Fig. 3). A silent mutation in an an-
notated protein might alter a second protein encoded in an alter-
native ORF in the same mRNA. The underlying pathological
cause could thus be an amino acid change in that second protein,
previously “hidden” because it is not annotated in genome data-
bases. As an example, we explored Supek’s study from 2014
(Table 1; Supek et al. 2014). In that study, synonymous mutations
were identified as drivers in human cancers. For each gene found
enriched in synonymous mutations in Supek’s study, we gathered
synonymousmutations coordinates from the TheCancerGenome

Atlas (TCGA) database (The Cancer Genome Atlas Research
Network 2013, 2016; Supek et al. 2014; Favazza et al. 2017). In
the first data set, 25 oncogenes were found enriched in synony-
mous mutations in a tissue-specific manner. Synonymous SNVs
coordinates from the TCGA database for each specific tissue were
checked against genomic coordinates of predicted alternative
ORFs (Table 1; openprot.org). Sixty-four percent of genes displayed
at least one “synonymous” SNV altering the amino acid sequence
of at least one predicted alternative protein. We consider here any
type of alterations, be it missense, nonsense, frameshift, or point
mutations. Of all listed synonymous SNVs within these 25 genes,
in the specific tissues, 29.6% fell within a predicted alternative
protein. Out of these, 7%have been detected in ribosome profiling
and reanalysis of large-scale mass spectrometry studies (openprot.

Figure 3. Graphical representation of ways a genetic mutation might cause pathology. Mutations from a single nucleotide variation (SNV) can result
either in a missense mutation (red X) or in a synonymous mutation (purple star). Missense mutations are the most studied, as they lead to an amino
acid change in the gene’s annotated protein sequence. Synonymous mutations are studied mostly for their likelihood to alter splicing sites (about 30%
of cases). However, a synonymous mutation in a gene’s annotated protein sequence (in blue) might cause an amino acid change in a protein encoded
in an alternative open reading frame (altORF/altProt—in yellow). These altered proteins might be a yet unexplored mechanism by which a SNV is
pathological.

Table 1. Overview of alternative ORFs altered by synonymous SNVs in TCGA database for genes of interest

Data set
Genes
(#)

Predicted
alternative
ORFs (#)

Genes with at least one SNV affecting
one alternative ORF

% of SNV affecting
an alternative ORF

(any type of
mutation)

Median length
of alternative
ORFs (aa)

Expected
by chance

Supek’s data
set

25 159 16
(NTRK3; MSI2; TCF7L2; AKT2; SMO; KIT; BCL6;
ERBB2; FGFR2; RUNX1; MLLT6; RET; JAK1;
XPO1; PTPN11; PIK3CA)

29.6% 48 13.4%

Census
genes
data set

20 329 20
(KMT2C; FAT4; NCOR2; MYH11; KMT2D;
PTPRB; SPEN; TRRAP; RNF213; POLE; FAT1;
CAMTA; FLT4; ATP2B3; ZFHX3; ALK; ZNF521;
KMT2A; GRIN2A; SETBP1)

31.6% 44 24.25%

3′ UTR
clustered
data set

14 141 6
(ETV6; PPM1D; CCND2; AR; BCL11B; BCL11A)

36.4% 40 20.8%
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org). The majority of these predicted alternative proteins are small
proteins with a median length of 48 aa.

In the second data set, we gathered the top 20 Census genes
harboring the most synonymous SNVs in the TCGA database
and repeated the analysis (Futreal et al. 2004). All genes displayed
at least one synonymous SNV altering at least one predicted alter-
native protein. About 30% of all listed synonymous SNVs within
these 20 Census genes fell within a predicted alternative protein
(Table 1). Out of these, 7.3% have been detected in re-analysis of
large-scalemass spectrometry studies (openprot.org). Themajority
of these predicted alternative proteins are small proteins with a
median length of 44 aa.

Finally, at the end of their publication, Supek et al. (2014) pro-
vided a list of clustered SNVs in the 3′ UTR of 14 different genes
associated with human cancers. We checked this list of SNVs coor-
dinates against that of alternative proteins within these genes. Of
these mutations, 31.6% fell within a predicted alternative protein
(Table 1). Again, the majority of these predicted alternative pro-
teins are small proteins with a median length of 40 aa.

All of these percentages were higher than expected by chance
(Table 1).

The absence of most of the alternative ORFs from genome
annotations prevents us from identifying novel genetic drivers.
As of today, only about 62% of Mendelian phenotypes have a
known molecular basis, consistent with the hypothesis that at
least some of these phenotypes result from defective alternative
proteins (Amberger et al. 2015). A striking example is provided
by one of the first discovered smORFs, apelin. Since its change in
annotation from lncRNA tomRNA following its incidental discov-
ery and functional characterization, genomic studies have identi-
fied polymorphisms linked to cardiovascular diseases and obesity
risks (Zhao et al. 2010; Liao et al. 2011; Jin et al. 2012; Sentinelli
et al. 2016). Finally, many published studies may need to be re-in-
terpreted in light of the existence of more than one CDS per
mRNA, and future overexpression and knockdown experiments
will become technically more complex. For example, transfection
of a CDS might actually result in the overexpression of two pro-
teins, which are often functionally related (Klemke et al. 2001;
Bergeron et al. 2013; Delcourt et al. 2017). This also means that
the knockdown or knockout of genes could result in the absence
of two or more proteins rather than one.

Proposition of a novel annotation framework

It is difficult to come upwith a genome annotation pipeline that is
both accurate and exhaustive, yet the need is evident. Different
strategies have been adopted over the past years, which essentially
regroup two goals: (1) to identify transcript structure (e.g., intron
vs. exon); and (2) to identify the functional potential (e.g., con-
tains a CDS) (Pruitt et al. 2009; Harrow et al. 2012; Aken et al.
2016; Mudge and Harrow 2016). These pipelines, however, invoke
a uni-coding presumption. ORF-prediction algorithms apply the
criteria of a single CDS per transcript, and a minimum length of
100 codons, unless the sequence bears high similarity to known
proteins or domains (Furuno et al. 2003; Pruitt et al. 2012; Aken
et al. 2016). As a result, the foreseen increase in smORF count in
Swiss-Prot falls short, with an increase from 3.1% in 2009 to
3.3% in 2017 (Southan 2017). This means that despite the large
number of smORF and alternative ORF discoveries, only a limited
number make it through to genome annotation (Southan 2017).
The current genome annotation system has been blamed for
simplifying a transcript’s definition, not taking into account

their potential to hold multiple functional features (for review,
see Mudge and Harrow 2016).

Here, we propose a framework for the incorporation of alter-
native ORFs into current genome annotations. With minimal
modifications to the existing annotation pipelines (GENCODE,
Ensembl, or NCBI for the human genome), alternative ORFs could
be included (Harrow et al. 2012; Pruitt et al. 2012; Aken et al.
2016). As shown in Figure 4, most pipelines annotate ORFs and
subsequent protein products from ab initio ORF prediction or
sequence alignment with known proteins (from the UniProt or
RefSeq databases) (Keller et al. 2011; The UniProt Consortium
2014). ORF prediction mostly relies on ORF size, codon usage,
and the nonsynonymous to synonymous mutation ratio (Pruitt
et al. 2009; Keller et al. 2011; Mudge and Harrow 2016). This
means that current genome annotations are shaped by evolu-
tion-, prior knowledge-, and hypothesis-driven data. As proposed
in Wright et al. (2016) for the emerging field of proteogenomics,
protein sequences from alternative ORFs, reported in databases
such as OpenProt (openprot.org), sORFs (Olexiouk et al. 2016),
or SmProt (Hao et al. 2017), with detection evidence by ribo-
some profiling or mass spectrometry, could be downloaded for ge-
nome annotation (Fig. 4). Such an annotation pipeline would
prevent some of today’s pitfalls, abolishing the unique CDS pre-
sumption and empowering experimental data as well as conserva-
tion signatures (Mudge and Harrow 2016; Southan 2017). This
would add a layer of experiment-driven data to genome annota-
tion pipelines.

One of the biggest challenges for genome annotation will be
to distinguish random ORFs from functional ones. Random ORFs
are ORFs that could arise through evolutionary noise, e.g., a mu-
tation causing a start codon to appear randomly within a tran-
script. Random ORFs could potentially be translated and thus
be a source of translational noise but would not usually yield a
functional detectable peptide (Brar and Weissman 2015).
Purifying selection is expected to weed out detrimental random
ORFs relatively quickly for dominant traits but more slowly for
neutral random ORFs. It is not known what percentage of alterna-
tive ORFs predicted based on transcript sequences are random.
Obviously, we would like to exclude random ORFs from annota-
tions. However, the better we exclude random ORFs, the more
functional ORFs will also be excluded, analogous to problems of
true and false positives in medical diagnostics. The short length
of alternative ORF sequences means that, for statistical reasons, ei-
ther the false positive or false negative rate will be higher than for
longer sequences.

While we believe that current annotationmethods are too re-
strictive, there is also a real interest in avoiding false positives. The
relative balance between inclusivity and exclusivity (sensitivity
and specificity) will depend strongly on the experimental context
and the questions being asked. To deal with these complexities, we
propose a solution where annotations include filters that allow re-
searchers to adjust the levels and types of evidence for annotated
proteins. Evidence can be inferred from large-scale detection
methods, either at the DNA (conservation signatures), the transla-
tion (ribosome profiling), or the protein level (mass spectrometry).
And even though there is no perfect detection method for alter-
native proteins, one should be cognizant of each technique’s
strengths and pitfalls and strive to use and adapt them to better
detect the entire proteomic landscape of a cell or tissue
(Boekhorst et al. 2011; Aspden et al. 2014; Calviello et al. 2016;
Hellens et al. 2016; Ma et al. 2016; Pueyo et al. 2016a; Delcourt
et al. 2017; Hsu and Benfey 2017; Willems et al. 2017).
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Evidence at the genomic level

An indirect but potentially powerful piece of evidence of a
protein’s expression is its conservation signature. Conservation
signatures are already used to distinguish functional ORFs in cur-
rent ORF prediction algorithms (Mudge and Harrow 2016).
Functional proteins are expected to be under purifying selection
and the ratio of nonsynonymous to synonymousmutations high-
lights protein-coding sequences (Hughes 1999; Pál et al. 2006).
The first and second nucleotide of a codon experience stronger se-
lection than the third because of the genetic code’s redundancy
(Pollard et al. 2010; Samandi et al. 2017). This selection periodicity
can allow for detection of conservation signatures in each of the
reading frames (Fig. 5A). The phyloP score (a measure of probabil-
ity to be under purifying selection) can be computed for every
third base giving a triplet signal (three graphs corresponding,
respectively, to the first, second, and third nucleotide for each
codon) (Cooper et al. 2005; Samandi et al. 2017). After noise reduc-
tion, we can detect independent purifying selection signals in
each of the reading frames, e.g., for the dual coding MIEF1 gene
(Fig. 5A). This method allows for annotation of genetic loci under
purifying selection, but it relies on a good signal-to-noise ratio
(and id facto on genome annotations for other species).
However, this ratio may be biased by the phyloP score itself.
Indeed, the phyloP score first evaluates the rate of neutral evolu-
tion for one locus based on empirical values of substitution rates,
but these have been defined under a uni-coding gene presumption
(Cooper et al. 2005). Moreover, some alternative ORFs could be

the result of amore recent evolution and still be in a phase of adap-
tive selection (Ruiz-Pesini et al. 2004; Evans et al. 2014;McLysaght
and Hurst 2016). Other measures of phylogenetic evolution can
be used, such as PhyloCSF or CPC (Coding Potential Calculator),
and Bazzini et al. combined evolutionary methods (PhyloCSF)
to ribosome profiling (Kong et al. 2007; Lin et al. 2011; Bazzini
et al. 2014). PhyloCSF uses the widely implemented phylogenetic
analyses by maximum likelihood (Yang 1994, 2007), but it still re-
lies on previously empirically determinedmatrices of codons’ tran-
sition rates (ECMs; Empirical Codon Models). These ECMs were
defined under a uni-coding gene presumption and could thereby
bias the PhyloCSF score (Kosiol and Goldman 2005; Kosiol et al.
2007; Lin et al. 2011). The CPC score is designed to measure the
coding potential of a transcript and uses machine-learning algo-
rithms. However, the true nature (coding or noncoding) of the
transcripts used in the training data set would be a critical element
to the CPC’s performance (Kong et al. 2007; Halevy et al. 2009).
Conservation signatures may improve in the near future as new
algorithms take into account the multicoding potential of mature
mRNAs.

Evidence at the translational level

Ribosome profiling is a technique that measures ribosomal occu-
pancy and initiation in vivo using deep sequencing of ribosome-
protectedmRNA fragments. First described by Steitz, ribosomepro-
filing was recently adapted by Ingolia to make use of NGS

Figure 4. Proposed novel genome annotation framework. Current genome annotations’ pipelines have four main steps: Preparation, Prediction, Quality
Control, and Annotation. The Prediction step aims to annotate transcripts (exons, introns) and CDSs (with flanking UTRs). It mostly relies on threemethods:
a search by homology (different species known proteins are aligned to the genome assembly), a search by prior knowledge (same species known proteins
are aligned to the genome assembly), and a search ab initio (prediction of ORFs by algorithms). Here, we suggest adding an experiment-driven search and
including alternative ORFs with experimental detection. The output could also be flexible to fit different experimental purposes. The pipeline steps high-
lighted in red correspond to the suggested implementation.
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techniques and isnowawidelyused tech-
nique to describe the full coding poten-
tial of a genome (Steitz 1969; Ingolia
et al. 2009, 2012; Ingolia 2014). In brief,
the idea is to sequence ribosomal foot-
prints, given that each ribosome encloses
about 30 nucleotides when translating
and thus protects them from nuclease
digestion (Fig. 5B). These footprints can
be amplified, sequenced, and mapped
on the genome, thus identifying in vivo
translation events (Ingolia et al. 2012).
Ribosome profiling techniques have also
been adapted to specifically isolate initi-
ating ribosomes. Using drugs that stall
the first step of elongation (harringto-
nine, lactimidomycin with puromycin),
all initiation sites can be mapped on the
genome (Ingolia et al. 2011; Ingolia
2016). However, the accuracy of ribo-
some profiling depends on fragment
mapping on the genome, and since frag-
ments are short, this creates a risk ofmul-
timapping (multiple match) and a bias
against repetitive regions.There is alsoev-
idence that some genuine ribosome pro-
filing identifications do not lead to the
translation of functional proteins but
rather are regulatory ribosome-RNA inter-
actions (Ingolia 2016; Raj et al. 2016).
Nonetheless, ribosome profiling offers a
translation overview of the genome that
is evolution-free, meaning that noncon-
served or de novo translated ORFs would
still be identified. There is also a dogma
that function implies conservation, and

A

B

C Figure 5. Large-scale detection methods
for alternative proteins detection. (A)
Conservation signatures of proteins encoded
in different reading frame from the same
mRNA. PhyloP scores can be computed
from the UCSC Genome Browser, and noise
filtration (by Haar direct wavelet) allows for
the identification of distinct purifying selec-
tion signals in each reading frames. Here,
the example of the dual coding MIEF1 gene
is represented and corroborates data from
mass spectrometry and ribosome profiling
with the detection of an alternative ORF up-
stream of the canonical CDS (reference
ORF). (B) Schematic representation of the ri-
bosome profiling technique. This technique
allows for detection of ribosomal footprints,
and subsequent mapping on the genome
yields a map of translation events through-
out. Translation initiation at alternative
ORFs can then be detected. (C) Schematic
representation of the mass spectrometry
technique. The search space bears crucial
consequences on peptide identification.
Here, we represent the strategy used by the
OpenProt database that re-analyzed pub-
lished mass spectrometry studies adding
their predicted alternative ORFs to the scope
of possibilities.
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accordingly, the possibility to identify nonconserved yet function-
al proteins arouses strong opinions (The ENCODE Project
Consortium2012; Graur et al. 2013; Han et al. 2014). Available on-
line tools for visualization of ribosome profiling data are listed in
Table 2.

Evidence at the protein level

Mass spectrometry (MS)-based proteomics has emerged as the gold
standard technique to assess the protein landscape of a cell or
tissue and thus can offer additional evidence beyond ribosome
profiling (Aebersold and Mann 2003, 2016; Vogel and Marcotte
2012; Huttlin et al. 2015). Cells or tissue lysates are digested to
peptides, subsequently identified by mass spectrometry (Fig.
5C). However, the scope of the search space has a substantial im-
pact on the proportion of peptide identification (Aebersold and
Mann 2003, 2016). Peptide identification relies on matching
mass spectra to predicted peptides from CDS (e.g., from UniProt
database). If the database does not contain the relevant peptide,
the associated protein will never be identified since it is not in-
cluded in the scope of possibilities (Samandi et al. 2017). As of to-
day, <50% of all MS/MS spectra from a proteomics experiment are
matched with high confidence (Heo et al. 2010; Chick et al. 2015).
These unassigned peptides can correspond to peptide modifica-
tions or to proteins not in the database (Heo et al. 2010). In
the recently developed proteogenomics approaches, addition of
more inclusive databases to the search space allows for the dis-
covery of novel proteins thus far undetected (Oyama et al. 2007;

Saghatelian and Couso 2015; Samandi et al. 2017; openprot.
org). Yet, not all proteins produce peptides detectable by mass
spectrometry, owing to their subcellular localization, chemistry,
and/or size. This is partly why false-discovery rates in proteomics
experiments can be difficult to evaluate (Nesvizhskii 2014).
Alternative ORFs are smaller than canonical CDS, with a median
length of 45 aa (Samandi et al. 2017), and mass spectrometry
detection of small and low-abundance proteins is challenging
(Nesvizhskii 2014; Aebersold and Mann 2016). Identification of
any protein by mass spectrometry relies heavily on good quality
spectra, but this is particularly true for alternative proteins, as
most smaller proteins will produce fewer peptides upon enzymatic
digestion (Ma et al. 2016). There could also be cases where a pro-
tein might not produce any peptides from trypsin digestion
(most used enzyme) or might produce highly hydrophilic pep-
tides, rendering its identification by proteomics challenging
(Young et al. 2017). Nonetheless, specific proteomics protocols
to better detect small proteins are emerging and raise hopes for
the future of proteogenomics in genome annotation (Ma et al.
2016). Table 2 contains a list of online tools available for alterna-
tive ORF mass spectrometry identification.

Available online resources

Several online tools either allow for raw data enquiry or provide
a list of all alternative ORFs with corresponding evidence of
expression for several species (see Table 2). Moreover, some tools
also predict the translation of alternative ORFs, such as SPECtre,

Table 2. Online tools for alternative ORFs search within a gene of interest

Tool Description Comments Reference

Ribosome
profiling

GWIPS-viz Ribosome profiling data Footprint and mRNA-seq genome browser (Michel et al. 2014)
RPFdb Ribosome profiling data Footprint genome browser and expression

measurements
(Xie et al. 2016)

TISdb Ribosome profiling data Translation initiation sites (Wan and Qian 2014)
sORFs.org Ribosome profiling data Short ORF annotations (Olexiouk et al. 2016)

Mass
spectrometry

MaxQB database MS data repository Referenced proteins only (UniProt db) (Schaab et al. 2012)
PRIDE MS data repository Downloadable raw data (Martens et al. 2005)
Global Proteome

Machine Database
MS data repository Downloadable raw data (Beavis 2006)

PeptideAtlas MS data repository Downloadable raw data (Desiere et al. 2006)
NIST libraries

(peptide.nist.org)
MS data repository Downloadable raw data (Wallace et al. 2017)

Conservation UCSC Genome Browser Conservation signal browser phyloP and PhastCons tracks (Cheng et al. 2014;
Miller et al. 2007)

ECR Browser Conservation signal browser Identify evolutionary conserved regions (ECRs) (Ovcharenko et al. 2004)
GTB SNV intolerance browser Identify regions likely intolerant for mutations (Shihab et al. 2017)
GERP scores Available on Ensembl

genome browser
Genomic Evolutionary Rate Profiling identifies

constraint element in multiple alignments
(Cooper et al. 2005;

Davydov et al. 2010)
Databases OpenProt Database of alternative ORFs

and reference ORFs
All ORFs (>30 codons), 13 species, with

ribosome profiling or MS evidence
openprot.org

sORFs.org Repository of small ORFs
detected by ribosome
profiling

All ORFs (≤100 codons) detected by ribosome
profiling

(Olexiouk et al. 2016)

N/A Identification of conserved
small ORFs

All predicted conserved small ORFs (>27
codons) in Supplementary Tables for five
species

(Mackowiak et al. 2015)

tsORFdb Theoretical short ORF
database

Systematic six-frame translation, using ATG
and non-ATG initiation codons

(Heo et al. 2010)

smORFdb Database of small ORFs Small ORFs (<100 codons), several species,
protein, transcript or prediction evidence
level

immunet.cn/smorf

smProt Database of small proteins Small proteins (<100 codons) with various
evidence level (literature, MS, ribosome
profiling)

(Hao et al. 2017)
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RiboTaper, ORF-RATER and PROTEOFORMER (Crappé et al. 2015;
Fields et al. 2015; Calviello et al. 2016; Chun et al. 2016), based
on integration of ribosome profiling data. PROTEOFORMER and
RiboTaper combine ribosome profiling data with an implemented
construction of protein sequences from thus detected ORFs.
Thereby, they build a database that can be used for proteomics
without leading to a large increase in the proteomic search space
(Jeong et al. 2012; Crappé et al. 2015; Guthals et al. 2015). Some
databases of alternative ORFs also offer a freely downloadable
FASTA file for proteomics experiments (openprot.org).

On the importance of filtration and curation

There is an undeniable close relationship between the quality of a
genome annotation and experimental and clinical results. That is
why all genome annotation pipelines include a step of database
filtration and curation (Pruitt et al. 2012; The UniProt Consortium
2014; Aken et al. 2016; Tatusova et al. 2016). Often, the first
step (Prediction on Fig. 4) emphasizes sensitivity over specificity.
However, because false positives could burden variant-calling
workflows, putative functional annotations are removed at the fil-
tration and curation steps (Quality Control on Fig. 4; Koonin and
Galperin 2003; Mudge and Harrow 2016). However, as discussed
earlier, genome specificity needs might differ based on the exper-
imental purpose (variant calling, novel protein identification,
etc.). The RefSeq database offers somemore putative functional an-
notation (XM_, XP_ annotations), and Ensembl reports to some
extent less supported transcripts’ annotations (Pruitt et al. 2012;
Aken et al. 2016). Yet, these still rely on overly restrictive criteria
(one CDS per transcript, longer than 100 codons) (Chung et al.
2007; Galindo et al. 2007; Saghatelian and Couso 2015; Pueyo
et al. 2016a; Couso and Patraquim 2017). While adapting the
framework of genome annotations to consider alternative ORFs
will more likely yield significant advances, the need for a more
flexible annotation for various purposes could be addressed (Fig.
4). The different levels of confidence suggested in Figure 4 are
based on evidence levels discussed earlier: conservation, ribosome
profiling, mass spectrometry, or none of the aforementioned.

The complexity behind the data sets

In the suggested annotation pipeline, we emphasize experiment-
driven annotations. In that aspect, the pipeline would rely on
the data quality of the databases used (OpenProt, sORF, SmProt,
etc.) (Fig. 4). It is important to note that although implementation
of identifications from these databases would be straightforward,
the quality control of the data might not be. Indeed, as mentioned
earlier, the various databases present discrepancies in numbers of
identifications. They uphold different definitions of alternative
ORFs, but they also enforce different identification pipelines.
All methods suggested here—ribosome profiling, proteogenomics,
and conservation signatures—are noisy and require adequate fil-
tering and thresholding to minimize the risk of false positives
(Guthals et al. 2015; Aebersold and Mann 2016; Ingolia 2016;
Calviello and Ohler 2017; Wallace et al. 2017). We would recom-
mend databases using raw data and an adequate pipeline of iden-
tification. For example, a two-stage FDR pipeline could be used for
mass spectrometry, in order to minimize the impact of the in-
creased search space (Woo et al. 2014, 2015; Pauli et al. 2015).
The use of additional algorithms in order to control for misidenti-
fication of post-translational modifications would be encouraged
(Kong et al. 2017). In ribosome profiling, multimapping should

be filtered out, keeping only unique mappings, with an appropri-
ate sequencing depth threshold (Calviello and Ohler 2017).
Moreover, elongating reads and RNA-seq data will strengthen the
observations (Calviello and Ohler 2017).

Is ORF length an appropriate filter?

The rationale behind the minimum ORF length of 100 codons is
to avoid polluting annotations with random events (Pruitt et al.
2009). Yet, it is clear it also leads to numerous false negatives,
i.e., functional ORFs shorter than 100 codons excluded fromanno-
tations (Andrews and Rothnagel 2014; Ma et al. 2014; Pauli et al.
2014; Couso and Patraquim 2017). Notwithstanding, we could
also question the arbitrary cut-off taken by groups studying alter-
native ORFs. For instance, the smORF community only reports
ORFs shorter than 100 codons, but theywould thenmiss all longer
alternative ORFs (Cabrera-Quio et al. 2016; Hellens et al. 2016).
TheOpenProt teamdoes not limit itself to alternativeORFs shorter
than 100 codons, but it still uses an arbitraryminimal cut-off of 30
codons (openprot.org). This 30-codon cut-off allows for prediction
ofmultiple alternativeORFs (361,173 unique alternativeORFs pre-
dicted in the human genome) without overcrowding the search
space for proteomics experiments (Jeong et al. 2012; Nesvizhskii
2014; Guthals et al. 2015). However, examples of smORFs shorter
than 30 codons have been published, and it questions the adequa-
cy of an ORF length threshold (Yosten et al. 2016). The aforemen-
tioned genome annotation framework would still rely on some
arbitrary ORF length cut-offs. Users should be aware of it and,
because accumulation of random events with a lower cut-off is a
statistical reality, we would recommend using the “Null Level”
data set only for bioinformatics studies (Fig. 4).

Accumulation of clinical reports as an evidence level?

The causal link from the quality of genome annotations to variant-
calling misinterpretation is evident; hence, most putative anno-
tations are removed to limit clinical false positives. Thinking about
it backward, pathological family-specific variants clustered on
genetic loci are a valuable yet overlooked resource. For example,
in the case where no “likely pathological” variant is determined
(about 65% of cases), a new variant-calling file could be generated
using a less stringently filtered data set (for example, using the
“Protein Level,” “Translation level,” or “Conservation level”)
(Fig. 4). Thereby, mutations altering alternative proteins could be
retrieved. This could generate a positive feedback loop instead of
the current vicious cycle phenomenon. Likely pathological muta-
tions, especially in the case of severe or pediatric Mendelian
phenotypes, could represent a source of functional evidence
(same loci, several individuals, and same family). Alternative
ORFs with clinical evidence could then be annotated in the next
genome annotation release.

Foreseen consequences of implementing alternative

ORFs in genome annotations

In Supek’s study on cancer-driver silent mutations (Table 1), genes
containing potential alternative proteins affected by so-called
“silent” mutations were identified earlier (Supek et al. 2014).
Considering three genes (the top mutated for each of the three
data sets), all of thempresent at least one alternative protein affect-
ed by such “silent”mutation or clustered mutations in the 3′ UTR
(Fig. 6). These alternative proteins from the NTRK3 and KMT2C
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genes were predicted in the OpenProt database and subsequently
detected in at least one published mass spectrometry experiment
re-analyzed with the OpenProt pipeline (openprot.org; Hein
et al. 2015; Hurwitz et al. 2016). Thus, here are three new potential
genetic drivers of human cancer.

These examples show how our current genome annotation
approaches may have hidden functional proteins with pathologi-
cal importance. The examples from Supek’s study echo reports of
human pathologies from disrupted or inserted uORFs, and studies
of cellular consequences of smORF-encoded peptide disruption
(Barbosa et al. 2013; Supek et al. 2014; Couso and Patraquim
2017; Plaza et al. 2017). The current body of evidence for function-
al alternativeORFs is but a small peek at the potential for future dis-
coveries when their implementation in genome annotation will
render identification less serendipitous. Identification of alterna-
tive ORFs will then increase, and with it, the pace of research in
physiological and pathological pathways. As for the clinical side,
the APELA gene annotation example highlights the foreseen
gain. AlternativeORFs are an as-yet unexplored reservoir of genetic
drivers, pathological causes, therapeutic targets, and/or biomark-
ers. The cooperation between fundamental and clinical research
to implement and improve alternative ORFs annotation in the ge-
nome is pivotal, and it could well advance the pace of research and
genomic knowledge.

Eventually, perhaps the best argument for incorporating al-
ternative ORFs into genome annotation is to look at what might
happen if wemaintain the status quo. As of today, there is a dichot-
omy between genome annotations and experimental evidence.
This gap will deepen, pulling apart genomics and proteomics.
Currently, the emphasis is put on conservation signatures above
all, and experimental evidence of a novel protein will not be con-
sidered if it is not followed up by a functional characterization.
Thismeans that current genome annotations provide a conceptual
framework for research and medicine that is incomplete. One
could question providing only partial information to the scientific
community and ultimately to patients when a more exhaustive
framework could be implemented. It would certainly be question-
able to pollute it with random ORFs annotations. That is why
we have proposed a strategy to annotate specific ORFs, with

experimental evidence, rather than
opening the floodgates to all alternative
ORFs. Annotation censoring of alterna-
tive ORFs would likely hamper progress
in alternative proteome investigations
(detection, structure, and function) but
also in understanding the relationship
between genotype and phenotype.

Conclusions

Current genome annotations are the
linchpin to and profoundlymold today’s
research and genetic medicine. However,
by assuming one mature RNA encodes
only one protein, these annotations are
incomplete. The number of functional
alternative ORFs within an mRNA or
a lncRNA is rapidly increasing, yet a
systemic incorporation of these novel
proteins into genome annotations is
awaited. Hence, we need a better annota-
tion system that can regroup the whole

of transcriptomic and proteomic information contained within a
gene, as suggested in Figure 4.We foresee that the implementation
of such a framework would help bring attention to alternative
ORFs and their potential involvement in cellular functions, path-
ways, and/or pathological phenotypes. Although this review fo-
cused on human genome annotations, the observations are valid
for all species. Claude Bernard wrote, “It is what we know already
that often prevents us from learning.” The evidence for alternative
ORF translation and function is accumulating.Weneed to unlearn
our misconception of the gene, accepting its polycistronic nature,
to strive for a better understanding of the genomic complexity un-
derlying physiological and pathological mechanisms.

Acknowledgments

This research was supported by Canadian Institutes of Health
Research (CIHR) grants MOP-137056 and MOP-136962, and by a
Canada Research Chair in Functional Proteomics and Discovery
of Novel Proteins to X.R. A.A.C., D.J.H., and X.R. are members of
the Fonds de Recherche du Québec Santé (FRQS)-supported
Centre de Recherche du Centre Hospitalier Universitaire de
Sherbrooke, and A.A.C. is also a member of the FRQS-supported
Centre de recherche sur le vieillissement and is supported by a
New Investigator fellowship from the CIHR.

References

Abramowitz J, Grenet D, Birnbaumer M, Torres HN, Birnbaumer L. 2004.
XLαs, the extra-long form of the α-subunit of the Gs G protein, is signif-
icantly longer than suspected, and so is its companion Alex. Proc Natl
Acad Sci 101: 8366–8371.

Aebersold R, Mann M. 2003. Mass spectrometry-based proteomics. Nature
422: 198–207.

Aebersold R, Mann M. 2016. Mass-spectrometric exploration of proteome
structure and function. Nature 537: 347–355.

Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet
J, Billis K, García Girón C, Hourlier T, et al. 2016. The Ensembl gene an-
notation system. Database 2016: baw093.

Albuquerque JP, Tobias-Santos V, Rodrigues AC, Mury FB, da Fonseca RN.
2015. small ORFs: a new class of essential genes for development.
Genet Mol Biol 38: 278–283.

Alfarano C, Foussal C, Lairez O, Calise D, Attané C, Anesia R, Daviaud D,
Wanecq E, Parini A, Valet P, et al. 2015. Transition from metabolic

Figure 6. Graphical representation of alternative ORFs affected by “silent” and clustered 3′ UTR SNVs
in NTRK3, KMT2C, and BCL11A genes. Length proportions between the full mRNA, the canonical CDS,
and the alternative ORF are respected. The SNV position is represented by a red dotted line. The
RefSeq transcript accession number (NM_) and the alternative ORF OpenProt accession number (IP_)
are indicated.

Brunet et al.

620 Genome Research
www.genome.org



adaptation to maladaptation of the heart in obesity: role of apelin. Int J
Obes 39: 312–320.

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. 2015.
OMIM.org: Online Mendelian Inheritance inMan (OMIM®), an online
catalog of human genes and genetic disorders. Nucleic Acids Res 43:
D789–D798.

Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR,
McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, et al.
2015. A micropeptide encoded by a putative long noncoding RNA
regulates muscle performance. Cell 160: 595–606.

Andreev DE, O’Connor PBF, Fahey C, Kenny EM, Terenin IM, Dmitriev SE,
Cormican P,Morris DW, Shatsky IN, Baranov PV. 2015. Translation of 5′

leaders is pervasive in genes resistant to eIF2 repression. eLife 4: e03971.
Andrews SJ, Rothnagel JA. 2014. Emerging evidence for functional peptides

encoded by short open reading frames. Nat Rev Genet 15: 193–204.
Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MAS, Brocard M,

Couso J-P. 2014. Extensive translation of small open reading frames
revealed by Poly-Ribo-Seq. eLife 3: e03528.

Austin F, Oyarbide U, Massey G, Grimes M, Corey SJ. 2017. Synonymous
mutation in TP53 results in a cryptic splice site affecting its DNA-bind-
ing site in an adolescent with two primary sarcomas. Pediatr Blood Cancer
64: e26584.

Autio KJ, Kastaniotis AJ, Pospiech H, Miinalainen IJ, Schonauer MS,
DieckmannCL, Hiltunen JK. 2008. An ancient genetic link between ver-
tebrate mitochondrial fatty acid synthesis and RNA processing. FASEB J
22: 569–578.

Baek J, Lee J, YoonK, LeeH. 2017. Identification of unannotated small genes
in Salmonella. G3 (Bethesda) 7: 983–989.

Barbosa C, Peixeiro I, Romão L. 2013. Gene expression regulation by up-
stream open reading frames and human disease. PLoS Genet 9:
e1003529.

Basrai MA, Hieter P, Boeke JD. 1997. Small open reading frames: beautiful
needles in the haystack. Genome Res 7: 768–771.

Batista RL, di Santi Rodrigues A, Nishi MY, Gomes NLRA, Faria JAD, de
Moraes DR, Carvalho LR, Frade EMC, Domenice S, de Mendonca BB.
2017. A recurrent synonymousmutation in the human androgen recep-
tor gene causing complete androgen insensitivity syndrome. J Steroid
Biochem Mol Biol 174: 14–16.

Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B,
Fleming ES, Vejnar CE, Lee MT, Rajewsky N, Walther TC, et al. 2014.
Identification of small ORFs in vertebrates using ribosome footprinting
and evolutionary conservation. EMBO J 33: 981–993.

Beavis RC. 2006. Using the global proteomemachine for protein identifica-
tion. Methods Mol Biol 328: 217–228.

Bergeron D, Lapointe C, Bissonnette C, Tremblay G, Motard J, Roucou X.
2013. An out-of-frame overlapping reading frame in the ataxin-1 coding
sequence encodes a novel ataxin-1 interacting protein. J Biol Chem 288:
21824–21835.

Bertrand C, Valet P, Castan-Laurell I. 2015. Apelin and energy metabolism.
Front Physiol 6: 115.

Blencowe BJ. 2017. The relationship between alternative splicing and prote-
omic complexity. Trends Biochem Sci 42: 407–408.

Boekhorst J, Wilson G, Siezen RJ. 2011. Searching in microbial genomes for
encoded small proteins. Microb Biotechnol 4: 308–313.

Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, Castan-
Laurell I, Tack I, Knibiehler B, Carpéné C, et al. 2005. Apelin, a newly
identified adipokine up-regulated by insulin and obesity.
Endocrinology 146: 1764–1771.

Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. 2013. Rare-disease
genetics in the era of next-generation sequencing: discovery to transla-
tion. Nat Rev Genet 14: 681–691.

Brar GA, Weissman JS. 2015. Ribosome profiling reveals the what, when,
where and how of protein synthesis. Nat Rev Mol Cell Biol 16: rm4069.

Cabrera-Quio LE, Herberg S, Pauli A. 2016. Decoding sORF translation –

from small proteins to gene regulation. RNA Biol 13: 1051–1059.
Calviello L, Ohler U. 2017. Beyond read-counts: Ribo-seq data analysis

to understand the functions of the transcriptome. Trends Genet 33:
728–744.

Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M,
Landthaler M, Obermayer B, Ohler U. 2016. Detecting actively translat-
ed open reading frames in ribosome profiling data. Nat Methods 13:
165–170.

The Cancer Genome Atlas Research Network. 2013. Comprehensive molec-
ular characterization of clear cell renal cell carcinoma. Nature 499:
43–49.

The Cancer Genome Atlas Research Network. 2016. Comprehensive molec-
ular characterization of papillary renal-cell carcinoma.N Engl J Med 374:
135–145.

Castan-Laurell I, VítkovaM, Daviaud D, DrayC, KovácikováM, Kovacova Z,
Hejnova J, Stich V, Valet P. 2008. Effect of hypocaloric diet-induced

weight loss in obese women on plasma apelin and adipose tissue expres-
sion of apelin and APJ. Eur J Endocrinol 158: 905–910.

Castan-Laurell I, DrayC, Attané C, Duparc T, Knauf C, Valet P. 2011. Apelin,
diabetes, and obesity. Endocrine 40: 1.

Castan-Laurell I, Dray C, Knauf C, Kunduzova O, Valet P. 2012. Apelin, a
promising target for type 2 diabetes treatment? Trends Endocrinol
Metab 23: 234–241.

Cheng H, ChanWS, Li Z, Wang D, Liu S, Zhou Y. 2011. Small open reading
frames: current prediction techniques and future prospect. Curr Protein
Pept Sci 12: 503–507.

Cheng Y, Ma Z, Kim B-H, WuW, Cayting P, Boyle AP, Sundaram V, Xing X,
DoganN, Li J, et al. 2014. Principles of regulatory information conserva-
tion between mouse and human. Nature 515: 371–375.

Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, Gygi SP.
2015. A mass-tolerant database search identifies a large proportion of
unassigned spectra in shotgun proteomics as modified peptides. Nat
Biotechnol 33: 743–749.

Chun SY, Rodriguez CM, Todd PK,Mills RE. 2016. SPECtre: a spectral coher-
ence–based classifier of actively translated transcripts from ribosome
profiling sequence data. BMC Bioinformatics 17: 482.

Chung W-Y, Wadhawan S, Szklarczyk R, Pond SK, Nekrutenko A. 2007. A
first look at ARFome: dual-coding genes in mammalian genomes. PLoS
Comput Biol 3: e91.

Claverie JM, Poirot O, Lopez F. 1997. The difficulty of identifying genes in
anonymous vertebrate sequences. Comput Chem 21: 203–214.

Cooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing
Program, Green ED, Batzoglou S, SidowA. 2005. Distribution and inten-
sity of constraint in mammalian genomic sequence. Genome Res 15:
901–913.

Couso J-P, Patraquim P. 2017. Classification and function of small open
reading frames. Nat Rev Mol Cell Biol 18: 575–589.

Crappé J, Ndah E, Koch A, Steyaert S, GawronD, De Keulenaer S, DeMeester
E, De Meyer T, Van Criekinge W, Van Damme P, et al. 2015.
PROTEOFORMER: deep proteome coverage through ribosome profiling
and MS integration. Nucleic Acids Res 43: e29.

Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010.
Identifying a high fraction of the human genome to be under selective
constraint using GERP++. PLoS Comput Biol 6: e1001025.

Delcourt V, Staskevicius A, Salzet M, Fournier I, Roucou X. 2017. Small pro-
teins encoded by unannotated ORFs are rising stars of the proteome,
confirming shortcomings in genome annotations and current vision
of an mRNA. Proteomics doi: 10.1002/pmic.201700058.

Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S,
Eddes J, Loevenich SN, Aebersold R. 2006. The PeptideAtlas project.
Nucleic Acids Res 34: D655–D658.

D’LimaNG,Ma J,Winkler L, ChuQ, Loh KH, Corpuz EO, Budnik BA, Lykke-
Andersen J, Saghatelian A, Slavoff SA. 2017. A human microprotein
that interacts with the mRNA decapping complex. Nat Chem Biol 13:
174–180.

Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buléon M, Cani PD,
Attané C, Guigné C, Carpéné C, et al. 2008. Apelin stimulates glucose
utilization in normal and obese insulin-resistant mice. Cell Metab 8:
437–445.

Dray C, Debard C, Jager J, Disse E, DaviaudD,Martin P, Attané C,Wanecq E,
Guigné C, Bost F, et al. 2010. Apelin and APJ regulation in adipose tissue
and skeletal muscle of type 2 diabetic mice and humans. Am J Physiol
Endocrinol Metab 298: E1161–E1169.

Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS. 2013. Ribosome
profiling reveals pervasive and regulated stop codon readthrough in
Drosophila melanogaster. eLife 2: e01179.

Ebina I, Takemoto-Tsutsumi M, Watanabe S, Koyama H, Endo Y, Kimata K,
Igarashi T, Murakami K, Kudo R, Ohsumi A, et al. 2015. Identification of
novel Arabidopsis thaliana upstream open reading frames that control
expression of the main coding sequences in a peptide sequence-depen-
dent manner. Nucleic Acids Res 43: 1562–1576.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of
DNA elements in the human genome. Nature 489: 57–74.

ErdemG, Dogru T, Tasci I, Sonmez A, Tapan S. 2008. Low plasma apelin lev-
els in newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol
Diabetes 116: 289–292.

Escobar B, de Cárcer G, Fernández-Miranda G, Cascón A, Bravo-Cordero JJ,
Montoya MC, Robledo M, Cañamero M, Malumbres M. 2010. Brick1
is an essential regulator of actin cytoskeleton required for embryonic de-
velopment and cell transformation. Cancer Res 70: 9349–9359.

Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W,
Brunner AM, Schackwitz W, Gunter L, Chen J-G, et al. 2014.
Population genomics of Populus trichocarpa identifies signatures of selec-
tion and adaptive trait associations. Nat Genet 46: 1089–1096.

Fahraeus R, Marin M, Olivares-Illana V. 2016. Whisper mutations: cryptic
messages within the genetic code. Oncogene 35: 3753–3760.

Human genes are multicoding

Genome Research 621
www.genome.org



Favazza L, Chitale DA, Barod R, Rogers CG, Kalyana-Sundaram S,
Palanisamy N, Gupta NS, Williamson SR. 2017. Renal cell tumors with
clear cell histology and intact VHL and chromosome 3p: a histological
review of tumors from the Cancer Genome Atlas database. Mod Pathol
30: 1603–1612.

Fields AP, Rodriguez EH, JovanovicM, Stern-Ginossar N, Haas BJ, Mertins P,
Raychowdhury R, Hacohen N, Carr SA, Ingolia NT, et al. 2015. A regres-
sion-based analysis of ribosome-profiling data reveals a conserved com-
plexity to mammalian translation. Mol Cell 60: 816–827.

FurunoM, Kasukawa T, Saito R, Adachi J, Suzuki H, Baldarelli R, Hayashizaki
Y, Okazaki Y. 2003. CDS annotation in full-length cDNA sequence.
Genome Res 13: 1478–1487.

Futreal PA, Coin L, Marshall M, Down T, Hubbard T,Wooster R, Rahman N,
Stratton MR. 2004. A census of human cancer genes. Nat Rev Cancer 4:
177–183.

Galindo MI, Pueyo JI, Fouix S, Bishop SA, Couso JP. 2007. Peptides encoded
by short ORFs control development and define a new eukaryotic gene
family. PLoS Biol 5: e106.

Goodwin S, McPherson JD, McCombieWR. 2016. Coming of age: ten years
of next-generation sequencing technologies.Nat RevGenet17: 333–351.

Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. 2013. On the
immortality of television sets: “function” in the human genome accord-
ing to the evolution-free gospel of ENCODE. Genome Biol Evol 5:
578–590.

Gunišová S, Beznosková P, Mohammad MP, Vlčková V, Valášek LS. 2016.
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