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Abstract

Motivation: Optical mapping data is used in many core genomics applications, including structural variation detec-
tion, scaffolding assembled contigs and mis-assembly detection. However, the pervasiveness of spurious and
deleted cut sites in the raw data, which are called Rmaps, make assembly and alignment of them challenging.
Although there exists another method to error correct Rmap data, named cOMet, it is unable to scale to even moder-
ately large sized genomes. The challenge faced in error correction is in determining pairs of Rmaps that originate
from the same region of the same genome.

Results: We create an efficient method for determining pairs of Rmaps that contain significant overlaps between
them. Our method relies on the novel and nontrivial adaption and application of spaced seeds in the context of optic-
al mapping, which allows for spurious and deleted cut sites to be accounted for. We apply our method to detecting
and correcting these errors. The resulting error correction method, referred to as ELMERI, improves upon the results
of state-of-the-art correction methods but in a fraction of the time. More specifically, cOMet required 9.9 CPU days to
error correct Rmap data generated from the human genome, whereas ELMERI required less than 15 CPU hours and
improved the quality of the Rmaps by more than four times compared to cOMet.

Availability and implementation: ELMERI is publicly available under GNU Affero General Public License at https://
github.com/LeenaSalmela/Elmeri.

Contact: leena.salmela@cs.helsinki.fi or cboucher@cise.ufl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Optical mapping is a process in which DNA is first isolated, denatu-
rated and fragmented, restriction enzymes are then applied to the frag-
mented DNA to further cut it at prescribed restriction sites, before
finally the resulting DNA is imaged to capture the relative order and
size of the fragments between the cut sites (Dimalanta et al., 2004;
Samad et al., 1995). The ordered lists of fragment sizes are the result of
this process and are referred to as Rmaps. Rmaps are analogous to se-
quence reads in the context of genome sequencing, and, as with gen-
ome sequencing, the optical mapping process is repeated for all DNA
molecules in a single sample. This leads to there being overlap between
pairs of Rmaps, which are then used to error correct or assemble the
set of Rmaps produced by a single experiment. Rmap data spans gen-
omic regions that are significantly longer than short read sequence
data—200 kbp versus 250 bp—but cheaper than long read data, mak-
ing it a viable option to reference-based assembly (Lin et al., 1999),

identification of mis-assembled regions in draft genomes (Muggli et al.,
2015), structural variation detection (Teague et al., 2010) and de novo
assembly of large genomes (Beier et al., 2017; Daccord et al., 2017;
Dong et al., 2013; Ganapathy et al., 2014; Jarvis et al., 2017; Vij et al.,
2016).

Due to the fragile nature of the DNA and the inexactness of re-
striction enzymes, Rmaps are prone to having added or deleted cut
sites. When Rmaps are viewed as a sequence of fragment sizes,
added and deleted cut sites merge or split fragments and thus appear
as insertions and deletions. In addition, the measurement of the frag-
ment is error prone and likely to differ from the true length of the
DNA fragment. These errors make finding pairs of overlapping
Rmaps challenging.

Previous approaches, such as our earlier Rmap error correction
method cOMet (Mukherjee et al., 2018), use k-mers as seeds to de-
tect whether two Rmaps have significant overlap. More specifically,
as Rmaps are sequences of fragment lengths, k-mers are defined as k
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consecutive fragment lengths observed in an Rmap. Thus, these
tools compare all k-length subsequences of one Rmap with every
other Rmap to find those that have a significant number in common;
those that do are deemed to have significant alignments. Due to the
presence of errors in the Rmaps, k has to be very small (less than 5
where the average Rmap length is 20 fragments long), resulting in a
method that has high sensitivity but low specificity. Extra filtering
has to be done in order to increase the specificity at the expense of
running time.

In this paper, we view Rmaps as line segments, where cut sites
are points on that line. In this representation added and deleted cut
sites behave like mismatches as the cut site is either present or not
on the line segment. Furthermore, this representation offers another
natural way of extending the notion of k-mers to optical mapping.
Instead of using k consecutive fragments as a seed, we can use a
fixed length subsegment of the line as a seed. Here, we call these
seeds ‘-mers. We further extend this definition to (‘, k)-mers which
require the seeds to have at least k fragments and spaced (‘, k)-mers,
which allow for gaps in the seeds that account for the mismatches
caused by added and deleted cut sites.

The concept of spaced (‘, k)-mers is used for error correction of
Rmap data. Our previous method, referred to as cOMet (Mukherjee
et al., 2018), is currently the only available method for error correc-
tion of Rmap data. It can correct a large number of added and
deleted cut sites but requires almost 10 CPU days to error correct
Rmap data from the human genome. Thus, for even moderately
large sized genomes, high performance computing resources are
needed. In this paper, we give an error correction algorithm that is
based on spaced (‘, k)-mers. We refer to our method as ELMERI, and
demonstrate that it is 16 times faster than cOMet (Mukherjee et al.,
2018) on the human data. In addition, ELMERI gives better quality
results. We aligned the original (uncorrected) data, the data cor-
rected by cOMet and the data corrected by ELMERI to the error-free
reference genome wide optical map and found that the mean im-
provement on alignment scores of Rmaps corrected by ELMERI is
more than four times that of cOMet.

Lastly, we mention that the concept of spaced (‘, k)-mers may be of
interest in other applications of optical mapping data such as alignment
of Rmaps and assembly of Rmaps into genome wide optical maps
where similar Rmaps need to be found. Our experiments show that
spaced (‘, k)-mers can have more than double recall with a similar pre-
cision as compared to k-mers in identifying similar Rmaps.

2 Related work

2.1 Algorithms for optical maps
Several methods have been developed to analyze optical mapping
data—either alone or in conjunction with sequence data. The most
closely related work to the one presented in this paper is our previous
method for error correction of Rmap data (Mukherjee et al., 2018),
which we discussed in the introduction. AGORA (Lin et al., 2012) and
misSEQuel (Muggli et al., 2015) aim at using optical mapping data to
help in determining or preventing mis-assembled contigs. AGORA per-
forms sequence assembly guided by optical maps by comparing in sil-
ico digested contigs (which correspond to a path in the de Bruijn
graph) to the optical map. If the paths do not agree then the path is dis-
carded as incorrect. misSEQuel (Muggli et al., 2015) assembles se-
quence data, aligns in silico digested contigs to optical maps using
Twin (Muggli et al., 2014) and then deciphers which contigs are misas-
sembled based on the alignment. Most-recently Pan et al. (2019) pre-
sented OMGS, which is an optical mapping based genome scaffolder.

Both Valouev et al. (2006a) and Nagarajan et al. (2008) use dy-
namic programming to compute the best alignment between pairs of
optical mapping sequences, where these sequences can be Rmaps
and/or genome wide optical maps. Valouev et al. computes the best
alignment using a dynamic programming based scoring scheme simi-
lar to the Needleman–Wunsch algorithm (Needleman and Wunsch,
1970). Their scoring function is defined as a log likelihood ratio test
that takes into account the various errors prevalent in the optical
map data. SOMA (Nagarajan et al., 2008) aligns assembled contigs

to a genome-wide optical map using a dynamic programming algo-
rithm that is optimized by using a different scoring function that
imposes a fixed cost penalty on added and deleted cut sites, and a
chi-squared function to penalize for sizing errors.

In the past several years, new data structures and algorithms
have been applied to optical map alignment to create Twin (Muggli
et al., 2015), OMBlast (Leung et al., 2017), Maligner (Mendelowitz
et al., 2016) and Kohdista (Muggli et al., 2018). OMBlast modifies
the seed-and-extend approach used in BLAST (Altschul et al., 1990)
for finding alignments in optical mapping data. Maligner provides
two modes of alignment: an efficient, sensitive dynamic program-
ming implementation that scales to large eukaryotic genomes, and a
faster index based implementation for finding alignments with un-
matched sites in the reference but not the query. Twin (Muggli
et al., 2014) uses an FM-index for aligning contigs to a genome-
wide optical map. The FM-index search is modified to allow sizing
errors but Twin is unable to account for added and deleted cut sites.
Kohdista (Muggli et al., 2018) formulates the alignment problem as
automaton path searching and thus tolerates both sizing errors and
added and deleted cut sites.

2.2 Seeds and spaced seeds
Homology search algorithms, such as BLAST (Altschul et al., 1990)
pervade bioinformatics. Initially, determining whether two sequen-
ces were homologous or not was based on pairwise alignment of the
two sequences using dynamic programming algorithms with quad-
ratic time complexity. Yet, computing the alignment between pairs
of sequences is infeasible with large sequence sets as the number of
sequence pairs also increases quadratically. Computing and compar-
ing a set of seeds remedied this problem. The main idea is that hom-
ologous sequences have well-conserved regions which are very
similar in all sequences and thus, identical seeds can be found in
these regions. For example BLAST (Altschul et al., 1990) uses exact
matches of k-length sequences as ‘seeds’ and extends the seed
matches to longer alignments containing them.

The introduction and application of spaced seeds represented an-
other major advance in homology search (Burkhardt and Kärkkäinen,
2003; Choi et al., 2004; Ilie and Ilie, 2007; Ma et al., 2002). Spaced
seeds extend the idea of an exact seed: a spaced seed is k discontinu-
ous nucleotide matches, where there exists a preset number of wild-
card positions that match any nucleotide (Keich et al., 2004).
PatternHunter (Ma et al., 2002) introduced the concept of optimized
spaced seed, where the relative positions of the k nucleotides are opti-
mized in advance. This extension allowed PatternHunter to signifi-
cantly increase its sensitivity over BLAST. Independently, Buhler et al.
(2005), Ma et al. (2002) and Brejová et al. (2003) noticed that
increasing the number of spaced seeds will increase sensitivity. In
practice, this concept of comparing seeds has been shown to have
high sensitivity and specificity for homology search even when the
spaced seeds are not optimized (Li et al., 2004; Ma et al., 2002).

Spaced seeds are not confounded by mismatches and thus, are ef-
fective when there exist regions that are well-conserved and uninter-
rupted by insertions or deletions (indels). However, when the
frequency of indels increases, the length of the seed or the number of
common seeds becomes low enough that it is no longer effective for
sensitive and specific detection of alignment, which has been wit-
nessed in long read alignment (Chaisson and Tesler, 2012).

3 Background and definitions

3.1 Rmaps and optical mapping
From a computational perspective, optical mapping takes in a DNA
sequence and a restriction enzyme that cuts the DNA at a unique re-
striction site, and returns a sequence (or array) of fragment sizes R,
i.e. where R½i� is the number of nucleotides between the ði� 1Þth and
ith cut site. Analogous to short read sequencing, the method is com-
monly applied to multiple DNA molecules from the same individual.
The result is millions of fragmented DNA molecules that overlap. The
raw data resulting from the process is referred to as Rmaps—whose
analogue are sequence reads in the context of genome sequencing.
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We denote an Rmap R as ½r1; r2; . . . ; rn�. We refer to the size of R
as the number of fragments, i.e. n is the size of R, and the length of
R as jRj ¼

Pn
i¼1 ri. For example, given a DNA sequence CGCGTCGC

GAATATCGCGTTAATAATAACGCGACGCG and a restriction site se-
quence CGCG, the corresponding Rmap is R ¼ ½5;9;14;5� assum-
ing that the restriction enzyme cuts between the center G and C in
the restriction site.

Equivalently R can be viewed as a sequence of cut site locations
in the DNA. More formally, optical mapping takes in a DNA se-
quence A½1::a] and a restriction sequence B½1::b�, and produces an
array (string) of integers C ¼ ½c1; c2; . . . ; cnþ1�, such that ci ¼ j� 1
if and only if the substring A½j::jþ b� 1� ¼ B is the ith occurrence
of B in A. Without loss of generality we assume that c1 ¼ 0 i.e. the
first cut site occurs at A½1 . . .b�. This definition of Rmaps allows us
to visualize an Rmap as a line segment from 0 to jRj where each
cut site ci is a point on the line. We note that ri ¼ ciþ1 � ci and

ci ¼
Pi�1

j¼1 ri. It will be more natural to describe some of further def-

initions using this cut site representation rather than the former
fragment size representation. For our running example
R ¼ ½5; 9;14; 5�, the corresponding cut site representation is
C ¼ ½0; 5;14; 28; 33�. Figure 1 illustrates the two representations.
We will prompt the reader when we use the cut site representation;
otherwise, it can be assumed that we will use the fragment size
representation.

Here, for simplicity, we have used small examples and integer
values for the fragment sizes. In practice fragment sizes are given in
1000 bp (1 kbp) and real numbers. For example, on the real human
Bionano dataset (Shi et al., 2016) cut sites occur once every 10 kbp
and the average Rmap covers 200 kbp. Also, we note that in practice
high-throughput optical mapping technologies (e.g. Bionano) use
enzymes that nick the DNA rather than cutting it to decrease the
error rate of the resulting data.

Nonetheless, Rmaps are highly error prone— the majority of
errors are characterized as one of the following three types: (i) siz-
ing error, (ii) deleted cut sites and (iii) added cut sites. Sizing error
occurs from inability of estimating the size of the fragments exact-
ly. For example, if 10 bp exists between two cut sites, the optical
mapping process may output the size to be 12 bp, resulting in a
2 bp error in the size of the fragment. Secondly, restriction enzymes
can end up deleting a cut site, which results in the two neighboring
fragments being merged into one. In the above example, if the en-
zyme misses the second cut site, the resulting Rmap would be
½14;14; 5�. Lastly, due to the fragile nature of DNA, the DNA mol-
ecule can break spontaneously at a location where a restriction site
is not present. This causes a fragment to be split into two. For ex-
ample, the third fragment in our example could be split into two
fragments, 8 and 6, resulting in the Rmap ½5;9; 6; 8;5�.

3.2 k-mers, ‘-mers and spaced (‘, k)-mers
A k-mer of an Rmap R is a k-length subsequence of fragment sizes
of R. For example, given an Rmap R ¼ ½4;28; 10; 6;9; 3� and k¼4,
three k-mers, ½4; 28; 10; 6�; ½28; 10; 6; 9� and ½10;6; 9; 3�, can be
extracted from R as shown in Figure 2a.

For simplicity of explanation, we consider the cut site represen-
tation of an Rmap in this subsection. We define an ‘-mer as a se-
quence of all cut sites of C contained within an interval
½p;pþ ‘� 1� for some 0 � p � cnþ1 � ‘þ 1. From a more intui-
tive perspective, if we illustrate an Rmap as a line segment starting
at 0 and ending at position cnþ1 ¼ jRj where the cut sites are points
on that line segment, then an ‘-mer corresponds to any consecutive
sequence of elements of C such that they can be fully contained
within an ‘-length subsegment and all cut sites within the ‘-length
subsegment are included. This is illustrated in Figure 2b. In our
method we use the fragment size representation of ‘-mers: If the

cut site representation of an ‘-mer is ½ci; . . . ; ciþx� then the corre-
sponding fragment size representation is ½ri; . . . ; riþx�1�, where
rj ¼ cjþ1 � cj.

To extract all different ‘-mers from an Rmap, we start by posi-
tioning the line subsegment at the leftmost position. The next pos-
ition for the line subsegment is obtained by moving it to the right
until either the leftmost cut site currently within the line subsegment
drops outside the line subsegment or the next cut site on the right
enters the line subsegment. Figure 2b illustrates this process for
Rmap R ¼ ½4; 28; 10; 6; 9; 3� when ‘ ¼ 40.

Some ‘-mers can have very few fragments, which is problematic
in practice since these are usually not unique in the genome. To cor-
rect for this, we define an (‘, k)-mer of Rmap R by computing all ‘-
mers of R and inserting fragments from the right until there exists at
least k fragments. Going back to our line segment illustration, this
corresponds to extending the ‘-length line subsegment to the right
until at least k fragments are fully contained in it. We note that there
can be more than k fragments if the ‘-mer contains more than k frag-
ments. Figure 2c illustrates the extraction of (‘, k)-mers for ‘ ¼ 40
and k¼3. (‘, k)-mers are a generalization of k-mers and ‘-mers:
ð0;kÞ-mers are equivalent to k-mers and ð‘;0Þ-mers are equivalent
to ‘-mers.

We now extend the definition of (‘, k)-mers to spaced (‘, k)-
mers. Spaced (‘, k)-mers are defined by ‘, k and a spacing pattern S
of length ‘. A spacing pattern is a sequence of 0 and 1 s, where 0 s
denote gaps, and 1 s denote solid parts. Again we consider the cut
site representation of an Rmap. We align the spacing pattern to an ‘-
mer corresponding to the interval ½p; pþ ‘� 1� for some
0 � p � jRj � ‘þ 1. Then we construct a modified Rmap C0 ¼
½c01; . . . ; c0n0þ1� in cut site representation by removing any cut site
from C that falls within a gap in the spacing pattern. The

(a)

(c)

(d)

(b)

Fig. 2. Extraction of (a) k-mers for k¼ 4, (b) ‘-mers for ‘ ¼ 40, (c) (‘, k)-mers for

‘ ¼ 40 and k¼ 3 and (d) spaced (‘, k)-mers for ‘ ¼ 40, k¼ 3 and spacing pattern

S¼1111110000111111111111111000111100111111 from the Rmap

½4; 28; 10; 6; 9; 3�. For (‘, k)-mers and spaced (‘, k)-mers we use dotted lines to show

the extension beyond ‘ positions to include at least k fragments. For spaced (‘, k)-

mers missing line segments denote spaces in the spacing pattern. The extracted

k-mers, ‘-mers, (‘, k)-mers and spaced (‘, k)-mers are shown on the right. To extract

all k-mers from an Rmap, we first extract the k-mer containing the k leftmost frag-

ments. To get the next k-mer, the leftmost fragment is dropped and the next frag-

ment on the right is added. To extract all ‘-mers and (spaced) (‘, k)-mers we first

consider the ‘-length subsegment of the line positioned at the leftmost position. To

get the next ‘-mer or (spaced) (‘, k)-mer, the subsegment is shifted to the right until

a cut site enters or exits (the solid part of) the subsegment

Fig. 1. The cut site representation (above) and the fragment length representation

(below)
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corresponding modified Rmap R0 ¼ ½r01; . . . ; r0n0 � in fragment size rep-
resentation can now be constructed by setting r0i ¼ c0iþ1 � c0i. The
spaced (‘, k)-mer is then defined as the (‘, k)-mer extracted from R0

at position p. Going back to our line segment illustration, all spaced
(‘, k)-mers can be extracted from an Rmap by first aligning the spac-
ing pattern to the leftmost position of the line segment and extract-
ing the first spaced (‘, k)-mer. The spacing pattern is then shifted to
the right until a cut site exits or enters the solid part of the spacing
pattern and the next spaced (‘, k)-mer is extracted. We repeat the
shifting of the spacing pattern until its end is shifted beyond the line
segment. Figure 2d illustrates this process for ‘ ¼ 40, k¼3 and
S¼1111110000111111111111111000111100111111.

As mentioned earlier, in practice fragment sizes are in thousands
of base pairs and so typical values of ‘ are in tens of thousands of
base pairs. Thus it is impractical to have a spacing pattern of length
‘. Instead in practice each bit of the spacing pattern spans ‘=jSj
base pairs.

4 Methods

The input to our method is a set (Actually, the input is a multi-set
since we allow repetition.) of Rmaps R ¼ fR1; . . . ;Rmg. First, we
create a spaced (‘, k)-mer index that maps spaced (‘, k)-mers to the
Rmaps in which they occur in. The index is further refined by
merging entries for similar spaced (‘, k)-mers. Then, we use this
index to find a sets of Rmaps that share spaced (‘, k)-mers for a
given Rmap Ri and thus, are likely to originate from the same gen-
omic area. We repeat this for all Rmaps which results in a set of
Rmaps for each Ri. Next, we filter each set by aligning each Rmap
pairwise to Ri and keeping only those that align well enough.
Lastly, we create a multiple alignment of each set of Rmaps and
correct them towards the consensus of the multiple alignment. The
overview of our method is shown in Figure 3. Each of the steps of
our method is discussed in detail in the following subsections.
Further, we present a method for optimizing the spacing pattern
used in the spaced (‘, k)-mer index.

4.1 Finding sets of related Rmaps
First, we quantize the fragment lengths in each Rmap to account for
the sizing error. We use bins of fixed length b for the quantization
(by default b¼1000), i.e. if the original fragment length is x then
the quantized length is bx=bc.

Next, we extract spaced (‘, k)-mers from each Rmap, and use a
hash table to map each spaced (‘, k)-mer to the Rmaps that contain
it. Given a spaced (‘, k)-mer M, we denote the corresponding set of
Rmaps asRðMÞ, i.e.RðMÞ ¼ fRi 2 RjM occurs in Rig.

Most fragments originating from the same region of the genome
are quantized to the same value. However, when the correct frag-
ment length is close to the boundary of two quantization bins, the
estimated fragment lengths can fall into either bin. Therefore, to
find related Rmaps more effectively, we merge the sets of Rmaps
corresponding to similar spaced (‘, k)-mers.

Given two spaced (‘, k)-mers M1 and M2 with the same number
of fragments, we define their distance as follows:

distðM1;M2Þ ¼
XjM1 j

i¼1

jM1½i� �M2½i�j:

We then set a similarity threshold tsim and extend the set of
Rmaps corresponding to a spaced (‘, k)-mer:

R0ðMÞ ¼
[

M0 jdistðM;M0 Þ � tsim

RðM0Þ:

In practice the above procedure is inefficient with respect to
memory usage because many Rmaps are replicated several times
with small variations. Thus, we implemented a heuristic merging
procedure for the Rmap sets as follows. For each set R0ðMÞ we keep
a counter iM initialized to 1 indicating how many spaced (‘, k)-mers
have been merged to it. We iterate through all spaced (‘, k)-mers in
the index twice. For each spaced (‘, k)-mer M, we find the spaced
(‘, k)-mers M0 for which distðM;M0Þ ¼ 1. If iM þ iM0 � 1 � tsim then
we set both R0ðMÞ and R0ðM0Þ to R0ðMÞ [ R0ðM0Þ and both iM and
iM0 equal to iM þ iM0 . This process guarantees that the Rmap sets for
two spaced (‘, k)-mers with distance higher than the similarity
threshold are never merged. However, Rmap sets for some spaced
(‘, k)-mers that are similar enough might not get merged if they have
been previously merged with other sets.

To find sets of related Rmaps, we iterate through the set
fR1; . . . ;Rmg. Let Ri be the current Rmap. We extract all spaced
(‘, k)-mers from Ri, query the spaced (‘, k)-mer index for each
spaced (‘, k)-mer and count the number of spaced (‘, k)-mers each
Rmap shares with Ri. Using these counts, we select the N Rmaps
that share the greatest number of spaced (‘, k)-mers with Ri to be
the set of related Rmaps for Ri. We denote this set of related Rmaps
of Ri as Ri. Lastly, we note that N should be roughly equal to the
coverage of the Rmap set, and set the default value of N to be 64.

As our experiments in Section 5.2 show, the spaced (‘, k)-mer
index sometimes return related Rmaps that do not originate from the
same genomic area as the current Rmap Ri. Therefore, we filter out
unrelated Rmaps from Ri using the following procedure. First, we
transform Rmaps into binary strings by using the cut site representa-
tion and considering each Rmap as a line segment where each cut site
defines a point on the line. We divide each line segment into blocks of
size B (by default 2000), and transform them into binary strings as fol-
lows: if a block contains one or more cut sites then we add as many 1 s
as there are cut sites; otherwise, we add a 0. See Figure 4 for an ex-
ample. We note that this representation is ambiguous with regard to
the block boundaries. However, we are concerned with determining
which cut sites originate from the same cut site in the genome and thus
block boundaries need not be unambiguous.

Next, we align each (transformed) Rmap in Ri pairwise against
Ri using a variant of the Needleman-Wunsch algorithm (Needleman
and Wunsch, 1970). When aligning the binary strings, we consider
the 0 and 1 s to be normal characters. If the alignment contains a
gap, this is denoted by a separate gap character, ‘-’. We allow free
gaps in the beginning and end of the alignment for both Rmaps
allowing us to find prefix-suffix overlaps between them. The binary
strings are sparse with only a few 1 s. With uniform edit costs, the al-
gorithm tends not to align the 1 s (i.e. cut sites) because the much
more abundant 0 s are easily aligned with each other. Since aligning
the cut sites is crucial in our application, we set the alignment costs
so that any error involving a cut site costs ðc0 þ c1Þ=c1, where c0 (c1)
is the number of 0 s (1 s) in all binary strings participating in the
alignment, and all other errors have a cost of 1. We assume that
Rmaps should not have more than 40% added and missing cut sites
and thus, an alignment of two Rmaps should not have more than

Fig. 3. Overview of the error correction process in Elmeri

Fig. 4. Transforming the Rmap ½4; 28; 10; 6; 9; 3� to a binary string. The block size in

this example is 5
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80% added and added cut sites taking into account errors in both
Rmaps. This is a conservative assumption as Li et al. (2016) estimate
the average digestion rate of an Rmap fragment to be 0.8. Therefore,
if the number of edits exceeds 0.8 times the number of cut sites in the
Rmap having less cut sites, the related Rmap is removed from Ri.

4.2 Multiple alignment based correction of Rmaps
Next, we construct a multiple alignment for Ri and the filtered Ri.
We use the same transformation of Rmaps to binary strings as above
and then proceed to compute a heuristic multiple alignment for the
binary strings. Ri is set as the initial consensus of the alignment. The
related Rmaps are then aligned against the consensus consecutively
using the same algorithm as for the pairwise alignments above. After
each pairwise alignment, the consensus is updated accordingly. If
there is a deletion in the newly aligned binary string, a gap symbol is
added to that sequence. If there is an insertion in the newly aligned
binary string, we add a new column to the multiple alignment at
that position and update those binary strings that are already
aligned to include the gap. Then we compute for each column in the
multiple alignment the most prevalent symbol or gap which then
becomes the consensus at that position.

Lastly, we determine if there exists any Rmaps in the multiple
alignment that contain a substantial amount of added and/or deleted
cut sites as compared to the consensus—indicating that they do not ori-
ginate from the same genomic region. Hence, we remove any Rmaps
that have more than 3 extra cut sites or more than 40% deleted cut
sites as compared to the consensus. After this filtering step, we recom-
pute the multiple alignment for all the remaining Rmaps.

Once the multiple alignment for an Rmap Ri and its related
Rmaps has been computed, we are ready to correct the Rmaps in the
alignment. We require that at least five Rmaps participate in the
alignment to proceed to the correction phase.

To get an accurate estimate of the fragment lengths in the con-
sensus we retrieve the original unquantized Rmaps and compute the
average of the fragment lengths for all Rmaps that have the frag-
ment in question (i.e. both flanking cut sites have to be present in
the Rmap). The aligned Rmaps can then be corrected by extracting
from the consensus Rmap the part where that Rmap aligns to.

For high coverage datasets, the above method builds multiple
alignments for the same genomic region excessively many times.
Since all Rmaps in the alignment are corrected, many Rmaps are
corrected more times than is necessary. Therefore, we count how
many times each Rmap has already been corrected, and when iterat-
ing over the multiset of Rmaps, we skip an Rmap if it has already
been corrected many times. In practice, we found a threshold of five
corrections to be sufficient for a good overall correction result.

4.3 Optimizing the spacing pattern
The accuracy of the spaced (‘, k)-mer index depends on the choice of
the spacing pattern. In our experiments we mostly use ‘ ¼ 80 kbp and
quantization constant b¼1 kbp. The spacing pattern had 80 bits and
thus, each bit represents a 1 kbp region. For evaluating the perform-
ance of the spaced (‘, k)-mer index using a given spacing pattern we
use a small dataset with 2000 Rmaps simulated from the E.coli gen-
ome. We evaluate the precision and recall of the index on this dataset
as detailed in Section 5.2 and use F-score, which is the harmonic
mean of precision and recall, to evaluate the fitness of the spacing pat-
terns. Exhaustive enumeration of all 80 bit spacing patterns is infeas-
ible and thus we use a simulated annealing algorithm to optimize the
spacing pattern. We initialize the algorithm with a random spacing
pattern where the probability of both 0 and 1 is 0.5. In each round
we then choose a random bit and flip it. If the new spacing pattern is
better than the previous one, it always becomes the current spacing
pattern. If the new spacing pattern is worse than the previous one, we
still accept it with a probability depending on the current temperature
as in a simulated annealing algorithm.

5 Experimental results

In this section, we first compare indexing schemes which use k-mers,
‘-mers, (‘, k)-mers and spaced (‘, k)-mers to show the advantage of

the spaced (‘, k)-mers. Then, we compare the performance of ELMERI

to that of cOMet (Mukherjee et al., 2018).

5.1 Data
We performed experiments on both simulated and real Bionano
datasets. We used the simulated Bionano Rmap datasets from
Mukherjee et al. (2018), which are generated from the E.coli K-12
substr. MG1655 genome with OMSim (Miclotte et al., 2017).
Default parameters with enzyme BspQI were used with varying rates
at which additional and missing cut sites were introduced. The num-
ber of additional cut sites was varied from 0.5 to 5 per 100 kbp and
the percentage of missing cut sites was varied from 5 to 25%. In
total eight different datasets were produced that have a varying
number of Rmaps, e.g. between 123 251 and 157 743 Rmaps. We
collectively refer to these eight datasets as Ecoli1.

In addition, we used the simulated Rmap E.coli data from
Mukherjee et al. (2018) which was generated by first constructing
error free Rmaps from the E.coli K-12 substr. MG1655 genome and
then introducing added and missing cut sites and sizing error accord-
ing to the error model by Li et al. (2016). The resulting dataset con-
sists of 2504 error-free Rmaps and 2504 Rmaps, which contain
7485 missing cut sites and 554 additional cut sites. We refer to this
dataset as Ecoli2.

Lastly, we performed experiments using the human Bionano
Rmap dataset produced by Shi et al. (2016), which consists of 793
199 Rmaps and Anabas testudineus (climbing perch) genome gener-
ated for the Vertebrate Genome Project, which consists of 3 121 480
Rmaps. Table 1 summarizes the datasets used in the experiments.

5.2 Comparison of the indexing schemes
For evaluating the indexing schemes, we used a subset of 2000
Rmaps with at least 10 fragments from the Ecoli1 dataset which
contains 1.0 additional cut site per 100 kbp and 15% missing cut
sites. We used a small subset instead of the full dataset, to quickly
explore a large parameter space of the proposed method. Because
the Rmaps are simulated, we know their genomic positions. We
classified two Rmaps as related if their genomic positions overlap by
at least 100 kbp and by at least 7 fragments. For a predicted set of
related Rmaps we can now compute following statistics: (i) true pos-
itives (TP), i.e. number of Rmap pairs which are predicted to be
related and are also actually related, (ii) false positives (FP), i.e.
number of Rmap pairs which are predicted to be related but are ac-
tually not and (iii) false negatives (FN), i.e. number of Rmap pairs
which are predicted not to be related but are actually related.
Based on these we computed precision and recall: Precision ¼
TP=ðTPþ FPÞ; Recall ¼ TP=ðTPþ FNÞ.

We compared the following indexing schemes:

• k-mers
• k-mers with merging of similar k-mers
• ‘-mers with merging of similar ‘-mers
• ð‘; 5Þ-mers with merging of similar ð‘;5Þ-mers
• Spaced ‘-mers with merging of similar spaced ‘-mers
• Spaced ð‘;5Þ-mers
• Spaced ð‘;5Þ-mers with merging of similar spaced ð‘; 5Þ-mers

Table 1. Datasets used in the experiments

Dataset Genome Genome size Number of Rmaps

Ecoli1 E.coli K-12 MG 1655 4.6 Mbp 123 251–157 743

Ecoli2 E.coli K-12 MG 1655 4.6 Mbp 2504

Human Chinese individual (HX1) 3.2 Gbp 793 199

AnaTes Anabas testudineus 0.66 Gbp 3 121 480

Note: The Ecoli1 dataset contains eight simulated E.coli datasets with

varying error rates and thus also the number of Rmaps varies. The genome

size of A.testudineus is an estimate since there exists no reference genome.
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All indexes using spaced (‘, k)-mers used the spacing pattern
11111111110001110110010010011101001110001010010100001
010011000010111100000001100. In all cases two Rmaps are con-
sidered related if they share at least two k-mers/‘-mers/ð‘; 5Þ-mers.
To obtain various precision-recall measurements, we varied the
value of k or ‘ for each scheme. Thus, k was varied from 3 to 8 and
‘ from 40 to 100 kbp. We note that in the error correction method
we filter related Rmaps returned by the index based on the pairwise
alignment. This additional filtering was not used in these experi-
ments because it could confound the effect that the seeding methods
have on precision and recall.

All experiments in this section were run on Intel Xeon E 5540
CPUs operating at 2.53 GHz, equipped with 32 GB of memory and
running Linux 4.10. The running time and memory usage was
recorded with the Linux/Unix time command. We report the elapsed
(wall-clock) time. None of the indexing implementations take ad-
vantage of parallelism.

The left hand side of Figure 5 shows the precision and recall for
the different indexing schemes and the right hand side shows the
trade-off between running time and memory. The k-mer index is the
most efficient with respect to both memory and time but its recall is
unsatisfactory. Merging similar k-mers improves the recall but sig-
nificantly lowers the precision. Figure 5 (left) also illustrates that ‘-
mers are not selective. The spaced ‘-mer index returns most Rmap
pairs as related reflected by a low precision and a recall score of al-
most one. However, the (‘, k)-mers increase the precision substan-
tively. For example, the spaced ð‘; 5Þ-mer index using merging has
superior precision-recall trade-off but is less efficient with respect to
memory and time than the k-mer index. Further, merging signifi-
cantly improves the recall of the spaced (‘, k)-mer index with a small
decrease in precision but it also increases the running time.

In light of these results, we ran experiments for various values of
k for the spaced (‘, k)-mer index with merging of similar spaced (‘,
k)-mers. Supplementary Figure S1 shows that k¼5 gives the best
trade-off and thus it was used in all other experiments.

Supplementary Figure S2 shows how the performance of the
spaced (‘, k)-mer index is affected by the choice of the spacing pat-
tern. The optimized spacing patterns perform better than the ran-
dom ones although the difference is not large. Spacing patterns that
have more weight in the beginning generally performed better. We
also noticed that best spacing patterns can have 0s in the end. This is
likely due to us adding fragments to the (‘, k)-mers until at least k
fragments are used.

5.3 Performance of error correction
We compare the performance of our method ELMERI to our previous
method, cOMet (Mukherjee et al., 2018), on the full human and
Ecoli1 datasets. Here, we performed all experiments on Intel

E5-2698v3 processors with 192 GB of RAM running 64-bit Linux,
and used the default parameters for cOMet. cOMet was parallelized
to use five processes. Based on the experiments of the previous sec-
tion, we set the spaced (‘, k)-mer index parameters for ELMERI as fol-
lows: ‘ ¼ 80 kbp, k¼5, S ¼ 1111111111000111011001001001110
1001110001010010100001010011000010111100000001100. The
performance of the index with these default parameters is shown in
Figure 5 with a black rectangle. ELMERI was run on a single node
using eight threads for the error correction phase.

ELMERI obtained superior results on the human dataset when
k¼6, which is likely due to the increased size of the genome. Since
the human genome is significant longer than E.coli, a larger value of
k is likely needed to ensure most spaced (‘, k)-mers are unique in the
genome. Further, since the human dataset has significantly lower
coverage than each of the eight Ecoli1 datasets, we only consider the
top 32 related Rmaps for each Rmap in the error correction algo-
rithm instead of the default 64.

To evaluate the accuracy of correction, we aligned the uncorrect-
ed and the corrected Rmaps against an in silico digested reference
genome using the alignment tool by Valouev et al. (2006a). As previ-
ously mentioned, the method of Valouev et al. (2006a) uses dynamic
programming to find the optimal alignment for any pair of Rmaps
by optimizing a scoring function that accounts for added and miss-
ing cut-sites, which is called the S-score. We then counted the num-
ber of Rmaps whose S-score had improved, and computed the mean
increase in the S-score.

Table 2 shows the results on the Ecoli1 datasets. In all but one
case, the percentage of Rmaps with improved S-score is higher for
ELMERI than for cOMet. Furthermore, the mean increase in S-score
is almost double for ELMERI as compared to cOMet, and ELMERI is
significantly faster than cOMet. ELMERI uses more memory, how-
ever, all datasets were able to be ran with less than 21 GB of
memory.

Table 3 shows the error correction results on the real human and
A.testudineus Bionano data. A higher percentage of cOMet cor-
rected Rmaps have an improved S-score but the mean S-score im-
provement of the ELMERI corrected Rmaps is more than 4 times that
of cOMet on the human data and almost twice that of cOMet on
the A.testudineus data. On the human data ELMERI is 16 times faster
than cOMet but uses 5 times more memory, whereas on the
A.testudineus data ELMERI is 34 times faster but uses 10 times more
memory.

To demonstrate the effect of error correction on assembling
Rmap data, we corrected the Ecoli2 dataset with ELMERI and
cOMet, then assembled the corrected Rmaps using the assembler of
Valouev et al. (2006b). We aligned the assembled maps to the
genome-wide optical map using the alignment method of Valouev
et al. (2006a) and calculated the fraction of the genome covered by
the assembled maps and the number of missing and added cut sites

Fig. 5. Comparison of the performance of the different indexing schemes. The precision and recall of the different indexing schemes when k or ‘ is varied is shown on the left

and the runtime and memory usage of the different indexing schemes on the right. The performance of the spaced (‘, k)-mer index with the default parameters is shown with a

black rectangle
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in the assembled map. Table 4 compares these assembled maps dir-
ectly to the results presented by Mukherjee et al. (2018). The Rmaps
corrected by ELMERI were assembled to a single map, whereas
Rmaps corrected by cOMet assembled into two maps. The
assembled maps from data corrected by ELMERI cover a larger frac-
tion of the genome than assembled maps from cOMet corrected
data and the number of missing and added cut sites in assembled
maps produced from ELMERI corrected data is also less than third of
those assembled from cOMet corrected Rmaps.

6 Conclusion

Finding similar Rmaps is a fundamental step in many problems on
optical mapping data such as finding pairwise alignments between
Rmaps, aligning Rmaps against a reference and correcting errors in
Rmaps. We have extended the notion of spaced seeds to optical
mapping data by defining spaced (‘, k)-mers. We show that indexing
spaced (‘, k)-mers more than doubles the recall for retrieving related
Rmaps as compared to the previously introduced k-mer indexing.

We have also presented a simulated annealing based method for
optimizing the spacing pattern. Further work in this direction includes
studying the use of multiple spacing patterns as well as seed design in
general. Many optimization techniques developed for spaced seeds in
homology search, such as overlap complexity (Ilie and Ilie, 2007) and

quadratic residual seeds (Egidi and Manzini, 2013), are likely applic-
able also in our setting. We apply spaced (‘, k)-mer based retrieval of
related Rmaps to correcting Rmaps. We give results demonstrating
that on a human dataset ELMERI is 16 times faster than cOMet, the
only previous method for correcting Rmap data. We also show the
alignment scores of Rmaps corrected by ELMERI improve more than
four times on the scores for Rmaps corrected by cOMet. We note that
ELMERI uses more memory than cOMet and suggest that the index
structures used by ELMERI could be optimized to reduce the memory
footprint. Lastly, we suggest that another direction for future work is
to apply spaced (‘, k)-mers to other analysis problems that use optical
mapping data, namely, Rmap alignment problems.
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