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Cuproptosis is the most recently discovered mode of cell death. It could affect

the metabolism of cancer cells and surrounding infiltrating immune cells. In

recent years, many studies have also shown that the tumor microenvironment

(TME) plays a critical role in tumor growth and development. Mounting evidence

suggests that Cuproptosis would bring unique insights into the development of

pharmacological and nonpharmacological therapeutic techniques for cancer

prevention and therapy. However, no study has been done on the combination

of cuproptosis and TME in any cancer. Herein, we investigated the relationship

between cuproptosis-related genes (CRGs), TME, and the prognosis of patients

with Uterine Corpus Endometrial Carcinoma (UCEC). We identified three CRGs

clusters based on 10 CRGs and three CRGs gene clusters based on

600 differentially expressed genes (DEGs) with significant prognostic

differences. Following that, the CRGs score based on DEGs with significant

prognostic differences was established to evaluate the prognosis and

immunotherapeutic efficacy of UCEC patients. The CRGs score was shown

to be useful in predicting clinical outcomes. Patients with a low CRGs score

seemed to have a better prognosis, a better immunotherapeutic response, and

a higher tumor mutation burden (TMB). In conclusion, our study explored the

influence of cuproptosis patterns and TME on the prognosis of cancer patients,

thereby improving their prognosis.
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Introduction

From plants to animals, all biology nearly needs metal ions to induce regulated cell

death through different subroutines for normal health (Zhang et al., 2019). More or fewer

of these metals can also play a role as the central gate-keeper for normal human functions

(Zahn et al., 2021). In 2012, the concept of ferroptosis was discovered and proposed for

the first time (Tang et al., 2021). Numerous investigations have been conducted over the

last decade to investigate the mechanisms and roles of ferroptosis in cancer. (Proneth and

Conrad, 2019; Jiang et al., 2021; Tang et al., 2021). It has great potential for tumor growth,
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drug resistance, and immune surveillance (Chen et al., 2021). In

March 2022, Tsvetkov et al. (Tsvetkov et al., 2022) discovered a

new mechanism of cell death that is copper-dependent, regulates

cell death, differs from known death mechanisms, and relies on

mitochondrial respiration. Additionally, they discovered that

three genes (GLS, MTF1, and CDKN2A) sensitized the cells

to cuproptosis whereas seven genes (LIAS, PDHA1, LIPT1,

FDX1, DLD, DLAT, and PDHB) provided resistance to

cuproptosis (Tsvetkov et al., 2022). Adenosine triphosphate

(ATP) production is not necessary for cuproptosis; rather, it

relies on mitochondrial respiration (Tsvetkov et al., 2022).

Cuproptosis is caused by direct copper binding to lipoylated

components of the tricarboxylic acid (TCA) cycle, lipoylated

protein aggregation, and Fe-S cluster protein loss in

mitochondria, all of which result in proteotoxic stress and

eventually cellular death (Tang et al., 2022). Apoptosis,

necroptosis, pyroptosis, ferroptosis, and other types of cell

death, among others, were all connected to tumor

development, metastasis, and immune treatment, according to

earlier research (Andersen et al., 2005; Dannappel et al., 2014;

Karki and Kanneganti, 2019; Lei et al., 2022).

In China, endometrial cancer is the most common

gynecologic cancer, and its prevalence is increasing (Brooks

et al., 2019). Despite the growing number of tumor treatments,

the prognosis of advanced endometrial cancer has still not

significantly improved (Ventriglia et al., 2017). Among the

numerous cancer treatments, immunotherapy has emerged as

a powerful clinical strategy for the treatment of cancer (Riley

et al., 2019). Immune checkpoints have emerged as a new

treatment strategy in oncology (O’Donnell et al., 2019). Many

patients have resistance to immunotherapy, resulting in only a

small percentage of patients benefiting from it (O’Donnell

et al., 2019). Numerous studies have shown that the efficiency

of immunotherapy is closely related to TME heterogeneity and

metabolic plasticity (Li et al., 2019; Martin et al., 2020;

Goliwas et al., 2021). The TME is comprised of multiple

components, including chemokines, growth factors,

exosomes, cytokines, and other molecules. So, copper can

be a participant in the regulation of physiological and

pathological processes in cancer (Li et al., 2014; Voli et al.,

2020; Liu et al., 2021). Therefore, the investigation of

inhibitors and regulators of copper-related variables as

potential cancer therapeutics has gained increasing interest

in the scientific community (Li et al., 2014; Garber, 2015; Voli

et al., 2020; Liu et al., 2021).

However, there is a research gap on cuproptosis in UCEC.

Therefore, there is an urgent need to comprehensively explore

the prognostic significance of the cuproptosis and its

association with TME infiltrating features in UCEC. Based

on the advances in RNA sequencing, we mainly analyzed

related-data from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) by integrating multi-omics

approaches.

Materials and methods

Data collection and processing

We downloaded the expression data, clinical information, and

immunophenoscores (IPSs) for UCEC directly fromTCGA (https://

cancergenome.nih.gov/), GEO (https://www.ncbi.nlm.nih.gov/geo/

), and the Cancer Immunome Atlas (TCIA) (https://tcia.at/home).

The TCGA database contained information on 552 UCEC patients

and 23 tumor-free individuals, and GSE17025, containing 80 UCEC

samples, was downloaded fromGEO. The TCGA also provided data

on copy number variation (CNV) and somatic mutation data. To

normalize gene expression data, the limma R package was used to

convert fragments per kilobase per million (FPKM) values to

transcripts per kilobase per million (TPM) values. R (R version 4.

1.1) biological conductor packages were used to extract and analyze

expression data and clinical information. Previous research

(Tsvetkov et al., 2022) by Todd R. Golub’s team has identified

10 genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,

MTF1, GLS, and CDKN2A) that are closely related to the

occurrence and development of cuproptosis. Therefore, we

selected these ten genes as CRGs for further research.

Analysis of cuproptosis-related genes
clusters based on 10 cuproptosis-related
genes

The number of clusters and their stability were determined by

consensus clustering. Based on the expression of 10 CRGs, we used

unsupervised cluster analysis to classify all samples into three

cuproptosis patterns with the optimal k value. We analyzed all

samples using the “ConsensClusterPlus”R software package and ran

cycle computation 1,000 to ensure classification stability. Principal

component analysis (PCA) is used to estimate the distribution of

molecular patterns. R package “GSVA” is a non-parametric and

unsupervised method for estimating the gene set variation and

activity change of biological processes in expression dataset

samples (Hänzelmann et al., 2013). We used it to investigate the

biological processes between different CRGs. We downloaded the

gene set of “c2. cp.kegg.v7.5.1. symbols” from the MSigDB database

(https://www.gsea-msigdb.org/gsea/msigdb/) for GSVA analysis. It

was considered statistically significant when the adjusted p-value

was < 0.05. The functions of CRGs were annotated using the

“clusterProfiler” R program, with a critical value of false

discovery rate (FDR) was < 0.05.

Analysis of tumor microenvironment cell
infiltration

We used single-sample gene-set enrichment analysis

(ssGSEA) to quantify the relative abundance of each immune
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cell infiltration in the TME of the UCEC samples to better

understand the degree of immune cell infiltration in the three

CRGs clusters (Charoentong et al., 2017). The relevant gene set

which distinguishes between infiltrating immune cell subtypes in

TME was previously identified (Barbie et al., 2009; Charoentong

et al., 2017). The relative abundance of different immune

infiltrating cells, including activated DCs, activated

CD8 T cells, macrophages, natural killer T cells, and

regulatory T cells, in the TME in each sample was evaluated

using the enrichment scores calculated by ssGSEA analysis.

Analysis of cuproptosis-related genes
clusters based on 600 differentially
expressed genes with independent
prognostic value

DEGs in nontumor tissues and UCEC samples were analyzed by

the limma and ggplot2 packages, and the significance cutoff of DEGs

was |logFC| > 1, p < 0.05 (Ritchie et al., 2015). The R package

“VennDiatram” is used to construct Venn diagrams to identify

common DEGs. Further, univariate Cox regression analysis

identified the common DEGs with significant prognostic

differences. Based on the expression of those DEGs with significant

prognostic differences, the consensus clustering analysis was performed

to determine the number of CRGs gene clusters resulting from

biological variations. The Kaplan-Meier analysis was employed to

perform the survival analysis between CRGs gene clusters.

Construction of the cuproptosis-related
genes score

To quantify the cuproptosis patterns of individual UCEC

patients, we constructed a CRGs score system for UCEC patients.

We selected 600 DEGs with significant prognostic differences to

construct the CRGs score, and the principal components 1 and

2 were chosen as signature scores of cuproptosis patterns. The

CRGs score was calculated as follows:

CRGs score � ∑(PC1i + PC2i)

where i represents the expression of independent prognostic

DEGs. Then, we separated all patients into high-and low-risk

groups according to the CRGs score using the R package

“ggalluvial.”

Correlation between cuproptosis-related
genes scores and immunotherapy

The IPS was extracted based on four categories of

immunogenicity-related genes (MHC molecules, effector cells,

immune modulators, and immunosuppressive cells). The

expression of genes in different cell types is represented by

the IPS score, which ranges from 0 to 10. Meanwhile, the

values of IPS were positively correlated with

immunotherapeutic efficacy by R package “ggpubr.”

Statistical analysis

The correlation coefficients between the expression of

10 CRGs and infiltrating immune cells in TME were

calculated by Spearman’s correlation analysis. The t-test and

the Kruskal-Wallis test were used to compare two groups; one-

way ANOVA and the Kruskal-Wallis test were used to compare

three or more groups; and the Chi-square test and Fisher’s exact

test were used to compare categorical variables. The Kaplan-

Meier analysis with a log-rank test was used to plot the survival

curve for the prognosis analysis. The waterfall diagram shows the

mutation landscape using the maftools package. The p-value <
0.05 was considered statistically significant.

Results

The landscape (copy number variations,
gene expression and mutation) of
10 cuproptosis-related genes in
endometrial cancer

According to previous reports (Ge et al., 2022; Tsvetkov et al.,

2022), a total of 10 CRGs were included for analysis in this study.

Figure 1 summarizes the mutation rates of CNV and somatic

mutations of CRGs. Only 78 (15.06%) of 518 samples caused

mutations of CRGs (Figure 1A), but 10 CRGs were all mutated.

Furthermore, the CNV frequency of 10 CRGs was shown to be

common in UCEC, the majority of which were associated with

copy number amplification (Figure 1B). However, FDX1, PDHB,

and DLAT had a higher incidence of copy number deletion

(Figure 1B). The locations of CNV alterations of 10 CRGs on the

human chromosomes in the UCEC cohort are presented in

Figure 1C. To investigate whether the aberrant expression

were associated with UCEC, we analyzed the mRNA

expression of CRGs in UCEC and normal tissues (Figure 1D).

Most mRNA levels of CRGs differed considerably between

normal and tumor samples (Figure 1D). Meanwhile, the

protein expression (Figure 2) of the six CRGs in the normal

and tumor groups was analyzed in the Human Protein Atlas

(HPA) database (https://www.proteinatlas.org/). Supplementary

Figure S1 revealed the expression of five genes (LIPT1, DLD,

PDHA1, GLS, and CDKN2A) was strongly connected with the

outcome of UCEC patients, and it demonstrated abnormal

expression of CRGs was related to cancer carcinogenesis,

development, and progression.
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Three different cuproptosis patterns are
mediated by 10 cuproptosis-related genes

By carrying out unsupervised clustering analysis

(Supplementary FigureS2), we classified all patients into different

cuproptosis patterns according to the expression of the 10 CRGs.

Finally, we discovered three different cuproptosis patterns named as

CRGs clusters A, B, and C, including 154 cases in CRGs cluster A,

298 cases in CRGs cluster B, and 182 cases in CRGs cluster C

(Figure 3A, Supplementary Table S1). The survival analysis of three

cuproptosis patterns showed that CRGs cluster C had the worst

survival situation (Figure 3B). After combing the TCGA-UCEC and

GEO datasets, the relationship between clinical characteristics and

gene expression of three different cuproptosis patterns was analyzed

and exhibited in Figure 3C.

The GSVA enrichment analysis was used to investigate the

enrichment of biological processes connected with the three

types of cuproptosis patterns (Figures 4A,B). We found CRGs

cluster A were significantly enriched in the pathways related to

metabolism. CRGs cluster C was correlated with cell activity,

including cell cycle, DNA replication and RNA degradation

(Figures 4A,B). The transcriptome profiles of three

cuproptosis patterns were analyzed using principal

component analysis (PCA), which revealed substantial

differences among the three clusters (Figure 4C).

Subsequently, we evaluated the infiltrating immune cells in

three different clusters. The ssGSEA analysis presented that

CRGs cluster C was hardly enriched in the infiltration of

innate immune cells, such as activated CD8+ T cells, activated

CD4+ T cells, macrophages, mast cells, monocytes, natural

killer cells, plasmacytoid dendritic cells, and T helper cells, etc.

(Figure 4D). According to the results of our research, this

might be the reason why patients with CRGs cluster C have the

worst survival situation.

FIGURE 1
Landscape of 10 CRGs in endometrial cancer. (A) Themutation incidence of 10 CRGs in the TCGA-UCEC cohort. (B)CNV frequency of 10 CRGs
in the TCGA-UCEC cohort. The gene deletion is shown by the green circle, the gene amplification is represented by the red circle, and the mutation
frequency is shown by the height of the column. (C) The locations of the CNV of 10 CRGs on 23 human chromosomes. (D) The gene expression of
10 CRGs in normal (blue) and tumor tissues (red). The statistical p-value is shown by the above asterisk. (*p < 0.05, **p < 0.01, ***p < 0.001).
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Functional annotation of cuproptosis
patterns

In order to further explore the potential biological regulatory

pathways in the different cuproptosis patterns, we successfully

identified 2,456 commonDEGs fromTCGA extracted from three

distinct clusters associated with the cuproptosis patterns

(Figure 5A). By univariate Cox regression analysis for OS,

600 DEGs with significant prognostic differences were selected

for further study. The Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) function

enrichment of these genes was analyzed using the

clusterProfiler R package (Supplementary Figure S3). The GO

analysis displayed that the DEGs were enriched in the regulation

of cell cycle (Supplementary Figures S3A,B). The GO analysis of

the biological process (BP) showed that these DEGs were

enriched in autophagy, G1/S transition of mitotic cell cycle,

and regulation of cell cycle phase transition. The cellular

FIGURE 2
Protein expression of six CRGs in the HPA database. Verification of (A) LIAS (B) LIPT1 (C) PDHA1 (D)MTF1 (E)GLS (F)CDKN2A protein expression
in normal and tumor tissue utilizing the Human Protein Atlas (HPA) database.
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component (CC) exhibited that DEGs were abundant in the

chromosomal region, mitochondrial matrix, and spindle.

Molecular function (MF) indicated that DEGs mainly

participated in catalytic activity, helicase activity, and ATPase

activity. The KEGG analysis illustrated a significant enrichment

of the cell cycle, protein processing in endoplasmic reticulum,

autophagy, and ubiquitin mediated proteolysis (Supplementary

Figures S3C,D).

Identification and analysis of cuproptosis-
related genes clusters

To further understand the regulatory mechanism of

cuproptosis, we similarly used the limma package to divide

all patients into distinct genotypes by unsupervised cluster

analysis of the 600 cuproptosis-related DEGs filtered by

univariate Cox regression analysis (Supplementary Table

S2). We eventually identified three distinct CRGs gene

clusters, including 169 cases in gene cluster A, 186 cases in

gene cluster B, and 279 cases in gene cluster C (Figure 5B,

Supplementary Table S3). Supplementary Figure S4 supported

the three distinct CRGs gene clusters, named CRGs gene

cluster A, cluster B, and cluster C, respectively. Figure 5C

explored the clinical features of the three subtypes, and the

three gene clusters were closely associated with CRGs clusters.

In the three CRGs gene clusters, there were substantial

differences in the expression of CRGs (Figure 5D). Once

again, these findings affirmed that three diverse cuproptosis

patterns occurred in UCEC. Furthermore, there was an

observably bad prognosis in gene cluster B, which had a

worse prognosis than CRGs gene clusters A and C (Figure 5E).

Construction of the cuproptosis-related
genes score and its correlation of tumor
microenvironment and clinical prognosis

In view of the various and complex alterations of CRGs in

UCEC patients, we created a model that could quantify and

evaluate cuproptosis patterns, namely the CRGs score. As

shown in Figure 6A, patients with a low CRGs score had a

higher survival rate than those with a high CRGs score. In the

meantime, the high CRGs score group had a greater

proportion of dead patients. According to the CRGs score,

the CRGs score of alive patients was lower than that of dead

patients (Figures 6B,C). To better show the features of the

CRGs score, we evaluated the correlations between the CRGs

score and immune infiltrating cells in TME. Only type

2 T helper cells were positively connected with the CRGs

score, whereas other immune cells were negatively correlated

(Figure 6E). According to the alluvial diagram (Figure 6D), the

majority of the UCEC samples that indicated most patients

with CRGs cluster C were grouped into CRGs gene cluster B,

which obtained a high CRGs score and had lower survival

rates. Furthermore, the Kruskal-Wallis test indicated

significant differences in the CRGs score between the three

CRGs gene clusters and the CRGs clusters (Figures 6F,G). In

both of these studies, the higher CRGs score was found in

CRGs cluster C and CRGs gene cluster B. (Figures 6E–G).

FIGURE 3
Three cuproptosis patterns and their clinical features. (A) Consensus clustering matrix of 10 CRGs for k = 3 using unsupervised clustering
analysis. (B) Kaplan–Meier survival analysis of three cuproptosis patterns in the UCEC. p-value < 0.05 is considered a statistical difference among
three cuproptosis patterns. (C) The heatmap presented the expression of 10 CRGs among three different cuproptosis patterns by unsupervised
clustering in TCGA-UCEC and GSE17025 UCEC patients. The relationship among the CRGs cluster, grade, and age of 10 CRGs were used as
notes. Red represented high expression and green represented low expression.
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Correlation between cuproptosis-related
genes score and tumor mutation burden,
prognosis, immunotherapy

We analyzed and visualized the differences in somatic

mutation distribution profiles of UCEC patients in the high

and low CRGs score groups by using the maftools package

(Figures 7A,B). The low CRGs score group (98.58%)

(Figure 7A) had a slightly higher proportion of somatic

mutations than the high CRGs score group (98.04%)

(Figure 7B). According to the quantitative study of TMB

(Figure 7C), the CRGs score was found to have a negatively

linear correlation with TMB. The TMB was higher in the low

CRGs score group than in the high CRGs score group

(Figure 7D), suggesting that low-risk patients may be more

beneficial to immunotherapy. We next focused on the

prognostic significance of TMB because of its importance. As

seen in the survival plot (Figure 7E), those with high TMB had a

greater prognosis benefit than patients with low TMB.

Interestingly, merging the CRGs score and TMB may be used

as a more comprehensive risk assessment (Figure 7F). In the

meantime, we analyzed the prognosis between the CRGs score

group and patients with age ≤ 60 and > 60 (Figures 7G,H).

Regardless of patients with age ≤ 60 or > 60, the low CRGs score

group has a better prognosis than the high CRGs score group

(Figures 7G,H).

Cuproptosis patterns in the role of
immunotherapy

Figures 8A,B exhibited that patients with a low CRGs score had

much greater PD-1 and CTLA-4 expression, indicating a possible

great response to anti-PD-1 and anti-CTLA-4 immunotherapy.

FIGURE 4
Biological pathways based on three clusters and the infiltrating immune cell component in TME. (A,B) The activation status of biological
pathways in three CRGs clusters as depicted by GSVA enrichment analysis. The heatmap displayed in red represents activated pathways, and green
represents inhibited pathways. (A) KEGG pathways of CRGs expression clusters A vs. B (B) KEGG pathways of CRGs expression clusters A vs. C. (C)
Principal component analysis (PCA) shows significant differences among the three different cuproptosis patterns. (D) The expression
abundance of infiltrating immune cells in three cuproptosis patterns. The boxplot showed the expression differences of 23 kinds of immune cells
among CRGs cluster A, B, and C. The upper and lower ends of each box mean the quartile range of the value, the middle line represents the median
value. The statistical p-value is shown by an asterisk (*p < 0.05, **p < 0.01, ***p < 0.001).
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Simultaneously, we utilized the CRGs score to predict how people

will react to the effectiveness of anti-CTLA-4 and anti-PD-

1 immunotherapy. Patients with low CRGs scores (Figures

8C–F) had considerably better anti-CTLA4 and anti-PD1

treatment responses. In addition, IPS was obviously higher in the

low CRGs score group than in the high CRGs score group for the

combination of anti-PD1 and anti-CTLA-4 (Figure 8C). In general,

these findings consistently show that the low CRGs score group has

better immunotherapeutic effectiveness than the high CRGs score

group. The findings also showed that the cuproptosis pattern is

strongly associated with TMB and PD-1/CTLA-4 immunotherapy.

Discussion

In recent years, a large number of studies (Singh et al., 2020;

Cui et al., 2021; Guo et al., 2021; Ge et al., 2022) have found that

copper plays a crucial role in the occurrence and development of

human tumors. Copper can impact essential cellular processes by

acting as both a negative allosteric regulator and a positive

allosteric regulator of enzyme function (Ge et al., 2022). Cell

proliferation and autophagy pathways are all affected, which

eventually leads to tumor initiation and development (Ge et al.,

2022). Therefore, inhibitors and regulators of cuproptosis-related

genes have been investigated as potential methods of cancer

therapeutics (Skrott et al., 2017; Yang et al., 2022). However,

CRGs have been poorly studied in endometrial cancer and its

association with immune infiltration in TME.

Simultaneously, according to the traditional

histopathological subtypes, PTEN inactivation is a major

driver of endometrioid carcinomas; TP53 inactivation is a

major driver of most serous carcinomas, some high-grade

endometrioid carcinomas, and many uterine carcinosarcomas;

and inactivation of either gene is a major driver of some clear cell

carcinomas (Bell and Ellenson, 2019; Urick and Bell, 2019).

Integrated genomic analysis by TCGA resulted in the

molecular classification of endometrioid and serous

carcinomas into four distinct subgroups: POLE

FIGURE 5
Unsupervised clustering of cuproptosis-related genes according to TCGA-UCEC and GSE17025 cohort. (A) 2,456 cuproptosis-related genes
from TCGA are presented in the Venn diagram. (B)Consensus clustering matrix of cuproptosis-related genes for k = 3 using unsupervised clustering
analysis. (C) The unsupervised clustering analysis of the CRGs gene clusters A, B, and C. CRGs clusters, CRGs gene clusters, grade, and age were
noted. Red represented high expression, and green represented low expression. (D) The histogram illustrated the expression of 10CRGs in three
CRGs gene clusters. The upper and lower ends of each box mean the quartile range of the value, the middle line represents the median value. The
statistical p-value is shown by an asterisk (*p < 0.05, **p < 0.01, ***p < 0.001). (E) Kaplan–Meier survival analysis for the three CRGs gene clusters
(p-value < 0.05).
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(ultramutated), microsatellite instability (hypermutated), copy

number low (endometrioid), and copy number high (serous-like)

(Bell and Ellenson, 2019).

However, these existing classifications based on these

molecules did not better improve the prognosis of UCEC.

Molecular patterns based on molecular pathology can

represent deeper properties of tumors and, as a result,

compensate for the shortcomings of the traditional

histopathological subtypes. The major purpose of our study is

to identify three cuproptosis-related molecular patterns,

construct the CRGs score based on 10 CRGs and investigate

its correlation with the tumor immune microenvironment in

UCEC. Moreover, our research found a connection between the

CRGs score and immunotherapy, especially anti-PD-1/

PDL1 and CTLA-4 immunotherapy.

First, we analyzed transcriptional sequencing data from GEO

and TCGA-UCEC to identify the cuproptosis mode in UCEC. In

our study, we successfully divided all samples into three

cuproptosis-related molecular patterns based on 10 CRGs in

UCEC. The common DEGs among the three molecular patterns

were then discovered, and common DEGs filtered by univariate

Cox regression analysis were then utilized to build the CRGs

score. The KM survival curve illustrated a better OS and better

prognosis associated with a low CRGs score than with a high

CRGs score. The CRGs score might be used to identify different

immunological phenotypes and assess the immunotherapy

effects of UCEC patients.

The TME is associated with regulating cancer as well as a

source of immune therapeutic targets. So, we explored the

compositions of infiltrating cells in TME that were different in

three patterns. Extensive articles (Tan et al., 2018; Hessmann

et al., 2020; Jin and Jin, 2020; Bejarano et al., 2021; Singleton et al.,

2021) reported that the TME plays a significant role in cancer

development and might be a therapeutic target as well as a

regulator of cancer development. We focused on the role of

the CRGs of TME, with the goal of revealing its possible roles and

contributing to a better understanding of the antitumor

immunotherapy effects in UCEC. CD8+ T cells are the major

anti-tumor effector cells (Mami-Chouaib et al., 2018), and T cell-

mediated antitumor immunity is strengthened by tumor-

infiltrating B cells (Mami-Chouaib et al., 2018; Engelhard

et al., 2021). Natural killer (NK) cells can swiftly kill adjacent

FIGURE 6
Characteristics of CRGs score. (A) Kaplan–Meier survival analyses for the OS in high and low CRGs score groups. (B) The percentage of patients
in low and high CRGs score groups with various survival statuses. (C) The variation of CRGs score between the alive and dead group. (D) The alluvial
diagram showed the relationship between CRGs cluster, gene cluster, CRGs score, and survival status. (E) Spearman analysis of the correlations
between CRGs score and infiltrating immune cells. Red means the positive correlation and green means the negative correlation. The asterisk
represents p-value that is meaningful statistically. (F,G) Differential analysis of CRGs score among (F) three CRGs gene clusters and (G) three CRGs
clusters (p < 0.001).
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tumor cells, enhance antibody and T cell response as anticancer

agents (Shimasaki et al., 2020). Expansion and genetic

modification of NK cells can greatly increase their anti-tumor

activity, and NK cells are expected to become essential elements

of multipronged therapeutic strategies for cancer (Myers and

Miller, 2021). Both innate and adaptive immune responses are

mediated by dendritic cells (DCs) that play an important role in

the progression and regulation of both innate and adaptive

immune responses (Wculek et al., 2020). Due to the lower

expression of almost all immune cells in CRGs cluster C, it

might be the reason that the CRGs cluster C showed a lower

survival rate than other clusters.

Besides, copy number variation (CNV) is one of the most

important somatic aberrations in cancer, and it contributes to the

pathogenesis of many disease phenotypes (Martin-Trujillo et al.,

2017). Based on 10 CRGs and UCEC copy-number profiles, we

explored the alteration of CRGs in UCEC. Mutations in the

10 CRGs were relatively uncommon, but CNV amplification and

deletion were common events. Due to the specific function of

PD-1/PD-L1 blockage immunotherapy in the field of cancer

FIGURE 7
The relationship between CRGs score groups and somatic mutation, TMB. The waterfall plot of tumor somatic mutation in low CRGs score (A)
and high CRGs score (B). (C,D) The correlation between the CRGs score and TMB. (E) Survival analysis of CRGs score using Kaplan-Meier curves. (F)
Survival analysis of both TMB and CRGs score using Kaplan-Meier curves. (G,H) Survival analysis of CRGs score in patients with age ≤
60 and >60 using Kaplan-Meier curves.
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therapy, PD-1 expression of immune cells was examined

independently for PD-1 immune treatment, and the IPS was

developed as a marker to distinguish factors in clinical (Kalbasi

and Ribas, 2020). While TMB analysis showed the low CRGs

score group had a higher TMB than the high CRGs score group,

several lines of evidence (Samstein et al., 2019; Marabelle et al.,

2020; Valero et al., 2021) found the high TMB is associated with

better survival for tumor patients receiving immune checkpoint

inhibitors (ICIs). Our CRGs score system revealed that a

combination of CTLA-4 and PD-1 blockers might be

beneficial for the treatment of UCEC. A similar conclusion

was found in some studies (Liu and Zamarin, 2018; Oh and

Chae, 2019; Rotte, 2019; Zhang et al., 2021). The CRGs score can

also be predicted to determine how tumors will respond to

immunotherapy.

Based on the expression of CRGs, we discovered three

molecular patterns connected to cuproptosis in the current

study. In order to forecast patient survival and TME features,

we created the CRGs score for each patient. In the meanwhile,

this study demonstrated how CRGs affect the prognosis of UCEC

patients. The CRGs score performs well in determining biological

state and predicting UCEC survival. However, our research still

has many shortcomings and flaws. First, many experiments have

not yet been performed since cuproptosis was discovered not

long ago. Therefore, there are no more basic experiments to

demonstrate the effect of cuproptosis on the prognosis of

endometrial cancer. Second, the mechanism by which

cuproptosis affects cancer progression has not been revealed.

Therefore, more research by well-designed experiments is

needed.

Conclusion

This study implies that CRGs are involved in the

formation and progression of endometrial cancer. Based on

the expression of 10 CRGs, we classified all samples into three

cuproptosis patterns. According to 600 cuproptosis-related

DEGs filtered by univariate Cox regression analysis, the CRGs

score was constructed. The CRGs score was correlated with

the tumor microenvironment, immunotherapy response, and

prognosis of cancer patients. Through comprehensive analysis

of the relationship between the CRGs score and

clinicopathological features, we found it may help assess

the efficacy of ICIs. In summary, the identification of

cuproptosis patterns and related genes will contribute to

valuable approaches for individualized therapy for UCEC

patients.

FIGURE 8
The association between CRGs score and immunotherapy. (A,B) The different expression of PD-1 and CTLA-4 in low CRGs score and high
CRGs score. (C–F) Relationship between CRGs score and immunotherapeutic response of PD-1 and CTLA-4 expression: (C) positive PD-1 and
CTLA-4. (D) Positive CTLA-4 and negative PD-1. (E) Negative PD-1 and CTLA-4. (F) Negative PD-1 and positive CTLA-4.
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