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Background: Lung cancer, especially lung squamous cell carcinoma (LUSC), is one of the most common 
malignant tumors worldwide. Currently, radiosensitization research is a vital direction for the improvement 
of LUSC therapy. Long non-coding RNAs (lncRNAs) can be novel biomarkers due to their multiple 
functions in cancers. However, the function and mechanism of lncRNA KCNQ1OT1 in the radioresistance 
of LUSC remain to be elucidated.
Methods: The clonogenic assay was employed to determine the radioresistance of SK-MES-1R and 
NCI-H226R cells. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were 
conducted for the detection of gene expression. Cell proliferation was determined by the methyl thiazolyl 
tetrazolium (MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) staining, and cell 
apoptosis was assessed by flow cytometry. The relationships between genes were also evaluated by applying 
the luciferase reporter and radioimmunoprecipitation (RIP) assays.
Results: Radioresistant LUSC cells (SK-MES-1R and NCI-H226R) had strong resistance to X-ray 
irradiation, and lncRNA KCNQ1OT1 was highly expressed in SK-MES-1R and NCI-H226R cells. 
Moreover, knockdown of lncRNA KCNQ1OT1 prominently suppressed proliferation, attenuated 
radioresistance, and accelerated the apoptosis of SK-MES-1R and NCI-H226R cells. More importantly, 
we verified that miR-491-5p was a regulatory target of lncRNA KCNQ1OT1, and Xenopus kinesin-like 
protein 2 (TPX2) and RING finger protein 2 (RNF2) were the target genes of miR-491-5p. The rescue 
experiment results also demonstrated that miR-491-5p was involved in the inhibition of cell proliferation and 
the downregulation of TPX2 and RNF2 expression mediated by lncRNA KCNQ1OT1 knockdown in SK-
MES-1R and NCI-H226R cells.
Conclusions: LncRNA KCNQ1OT1 was associated with the radioresistance of radioresistant LUSC 
cells, and the lncRNA KCNQ1OT1/miR-491-5p/TPX2-RNF2 axis might be used as a therapeutic target to 
enhance the radiosensitivity of radioresistant LUSC cells.
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Introduction

Lung cancer is still a common malignant tumor worldwide, 
with high morbidity and mortality (1). Non-small cell lung 
cancer (NSCLC) accounts for 80–85% of lung cancer  
cases (2). According to histopathological classification, 
NSCLC can be further divided into lung adenocarcinoma, 
lung squamous cell carcinoma (LUSC), and large cell 
carcinoma (3). Currently, more than half of newly diagnosed 
cancer patients require radiation therapy, which can be 
combined with surgery, chemotherapy, or molecular targeted 
therapies (4). Radiation therapy has played a vital role in the 
treatment of patients with metastatic disease (5). It has been 
proven that the biological basis of radiation therapy is the 
effect of ionizing radiation on biological cells (6). Radiation-
sensitive patients means that when radiation doses are 
limited to levels that maximize therapeutic effects, reduce 
normal tissue cell death, prevent excessive inflammation, and 
preserve stem cell populations, the irradiated normal tissues 
of patients can resist permanent damage and do not exhibit 
clinically relevant adverse effects (7). However, according 
to statistics, 60–70% of NSCLC patients have received 
radiotherapy, while the radiotherapy effect and prognosis 
of NSCLC are still poor due to the constraints of radiation 
resistance and other factors (8). It is worth noting that the 
exact mechanism of LUSC cell radioresistance has not been 
elucidated. Therefore, how to improve the radioresistance 
of LUSC cells has become a new approach and strategy for 
LUSC treatment.

Long non-coding RNAs (lncRNAs) are a class of linear 
RNA molecules that have no transcriptional function or 
protein coding potential, and are mainly produced by RNA 
polymerase II/I (9). LncRNAs have been confirmed to regulate 
gene expression through genomic imprinting, transcriptional 
regulation, and chromatin modification (10,11). Studies 
have also demonstrated that lncRNAs can be involved in cell 
proliferation, apoptosis, differentiation, chromatin remodeling, 
migration, and invasion, among other processes (12,13). At 
present, lncRNAs have been proven to be crucial in almost all 
diseases, such as tumors (12), nervous system disorders (14), 
and cardiovascular system diseases (15). Therefore, lncRNAs 
can be applied as potential diagnostic markers and new drug 
targets for diseases. Recent research revealed that lncRNA 
KCNQ1OT1 was closely associated with the processes 
of multiple diseases including cancers (16-18), ischemia 
reperfusion (19), and diabetic nephropathy (20), among others. 
Interestingly, It was discovered that lncRNA KCNQ1OT1 
was upregulated in lung cancer compared with the normal 

tissues and the upregulation of lncRNA KCNQ1OT1 reduced 
the survival rate of NSCLC patients (18). Besides, lncRNA 
KCNQ1OT1 has also been revealed to regulate the cisplatin 
resistance of cancer (21). However, the role and mechanism of 
lncRNA KCNQ1OT1 in radiation therapy for LUSC remain 
unclear.

MicroRNAs (miRNAs) are a class of small non-
coding RNAs that can mediate mRNA transcription 
and degradation through binding to the complementary 
3'-untranslated region (3'-UTR) (22,23). Research has 
shown that miRNAs are involved in cell proliferation, cell 
cycle, apoptosis, oncogenesis, and differentiation (24,25). 
In cancer tissues, miRNAs play the roles of oncogenes 
or tumor suppressor genes (26). In the diagnosis and 
therapy of clinical tumors, miRNAs can be used as early 
diagnostic indicators, effective prognostic indicators, and 
new treatment targets for lung cancer (27,28). Recent 
research has demonstrated that lncRNAs can competitively 
bind miRNAs with the targeted regulatory genes to induce 
cancer cell progression (29). However, the potential 
miRNAs and target genes of lncRNA KCNQ1OT1 have 
not been explored in radiation therapy for LUSC.

In this study, we generated radioresistant cells (SK-MES-
1R and NCI-H226R cells) through X-ray irradiation, and 
further verified the correlation of lncRNA KCNQ1OT1 
with the radioresistance of LUSC cells. Moreover, we 
disclosed the potential role and regulatory mechanism of 
lncRNA KCNQ1OT1 in the radioresistance of radioresistant 
LUSC cells. We present the following article in accordance 
with the MDAR reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-22-1261/rc).

Methods

Cell lines

LUSC cell  l ines (SK-MES-1 and NCI-H226) and 
HEK293 cells were purchased from American Type 
Culture Collection (Manassas, USA). SK-MES-1 cells 
were incubated in minimum Eagle’s medium (MEM, 
Gibco; Thermo Fisher Scientific, Inc.; Shanghai, China), 
NCI-H226 cells were grown in RPMI-1640 medium 
(Gibco), and HEK293 cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Life Technologies; 
Thermo Fisher Scientific, Inc.; Shanghai, China). All the 
media were supplemented with 10% fetal bovine serum 
(FBS, HyClone; Logan, USA) and all cells were incubated 
at 37 ℃ with 5% CO2.

https://jtd.amegroups.com/article/view/10.21037/jtd-22-1261/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-1261/rc
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X-ray irradiation

SK-MES-1 and NCI-H226 cells were cultured to achieve 
90% confluence and then exposed to 0, 2, 4, 6, 8, and 10 Gy 
6 Mv X-rays at room temperature with a radiation distance 
of 100 cm and a radiation area of 10 cm × 10 cm for 4 h. 
After cell passage, the procedure was repeated. The surviving 
cells were the radioresistant cells (SK-MES-1R and NCI-
H226R). After 8 passages, cells were used for the subsequent 
experiments.

Cell transfection

Control, lncRNA KCNQ1OT1 siRNAs (si#1 and si#2), 
miR-491-5p mimics, and anti-miR-491-5p were obtained 
from Shanghai Integrated Biotech Solutions Co., Ltd. 
(Shanghai, China). SK-MES-1R and NCI-H226R cells 
were transfected with above recombinants at a concentration 
of 40 nM using Lipofectamine 3000 (Invitrogen; Thermo 
Fisher Scientific, Inc.; Shanghai, China) in line with the 
experimental instructions.

Clonogenic assay

The 4 kinds of cell lines were inoculated in 6-well plates with 
200, 200, 400, 800, 1,600, 2,000, and 4,000 cells per well, 
respectively. Then, cells were exposed to 0, 2, 4, 6, 8, and  
10 Gy 6 Mv X-rays. After 14 days, 4% paraformaldehyde was 
applied to fix the cells and Wright-Giemsa (Shanghai yuan 
Mu Biotechnology Co., Ltd.; Shanghai, China) was adopted 
to stain the cells. Cell clones were observed and counted 

with at least 50 cells. Based on previous research (30),  
the surviving fraction was also counted.

RT-qPCR analysis

According to the kit instructions, total RNA was extracted 
by the TRIzol method (Invitrogen), and cDNA was obtained 
by reverse transcription using the BestarTM qPCR RT kit 
(DBI Bioscience, Shanghai, China). The levels of lncRNA 
KCNQ1OT1 and miR-491-5p in cells were examined by RT-
qPCR analysis with SYBR green master mix (Thermo Fisher 
Scientific). Primer sequences are exhibited in Table 1.

MTT assay

The treated  SK-MES-1R and NCI-H226R ce l l s  
(4,000 cells/well) were administered in 96-well plates and 
cultured at 37 ℃ for 0, 12, 24, 48, and 72 h. At the set time 
point, 20 μL MTT reagent (cat. no. M5655) was added to each 
well and the cells were incubated for an additional 4 h. After 
dissolution with dimethyl sulfoxide (DMSO, cat. no. D8418), 
the 96-well plates were placed under an automatic microplate 
reader to detect the optical density (OD) at 490 nm.

Colony formation assay

After digestion and counting, the treated SK-MES-1R 
and NCI-H226R cells were seeded in 6-well plates with  
400 cells/well. After incubation for 12 days, cells were fixed 
using methanol for 10 min and dyed with crystal violet for 
10 min. After washing, the cells were air dried, and the 
number of clones was taken and counted.

EdU staining

Cell proliferation was monitored by the EdU assay kit (Life 
Technologies). EdU solution (10 μM) was added to the cells in 
24-well plates, and cells were cultured for 2 h at 37 ℃. After 
fixation using 4% formaldehyde for 20 min, the EdU-stained 
cells were examined. Next, the cells were treated with Hoechst 
33342 for 20 min, and the results were visualized under a 
fluorescence microscope (Olympus, Tokyo, Japan).

Flow cytometry

The treated SK-MES-1R and NCI-H226R cells were 
collected and washed using phosphate-buffered saline 
(PBS). The cell suspension was then added with Annexin-V-

Table 1 The sequences of primers used in the RT-qPCR assay

ID Sequence (5'-3')

GAPDH Forward: TGTTCGTCATGGGTGTGAAC

GAPDH Reverse: ATGGCATGGACTGTGGTCAT

LncRNA KCNQ1OT1 Reverse: GACCTGGCAGTCTCAAAAGC

LncRNA KCNQ1OT1 Forward: CACTGGGGCAGTCACCTAAT

U6 Forward: CTTCGGCAGCACATATAC

U6 Reverse: GAACGCTTCACGAATTTGC

miR-491-5p Forward: GGAGTGGGGAACCCTTCC

miR-491-5p Reverse: GTGCAGGGTCCGAGGT

LncRNA, Long non-coding RNA; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; RT-qPCR, real-time quantitative 
polymerase chain reaction.
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fluorescein isothiocyanate (FITC) and propidium iodide (PI) 
(BD Biosciences, San Jose, USA) for 15 min. Apoptotic cells 
were determined using a FACS Calibur Flow cytometer (BD 
Bioscience).

Western blot

The treated SK-MES-1R and NCI-H226R cells were 
harvested, and total proteins were extracted using RIPA 
buffer. The protein concentration was determined by 
the BCA method (Beyotime Biotechnology, China). 
Protein samples (40 μg) in each group were subjected to 
electrophoresis for 2 h and transmembrane treatment for 1 h,  
and then sealed in 5% non-fat milk for 2 h. Subsequently, 
the membranes were cultivated with primary antibodies at 
4 ℃ overnight, followed by the cultivation with horseradish 
peroxidase (HRP)-conjugated secondary antibodies (1:1,000, 
cat. no. ab6802, Abcam, Shanghai, China) for 1 h. The 
immunochemical detection was conducted using the ECL 
system (Thermo Fisher Scientific). The primary antibodies 
were Bax (1:1,000, cat. no. 5023, Cell Signaling Technology, 
Shanghai, China), Bcl2 (1:1,000, cat. no. ab196495, Abcam), 
cleaved caspase-3 (1:1,000, cat. no. 9664, Cell Signaling 
Technology), Xenopus kinesin-like protein 2 (TPX2; 
1:1,000, cat. no. ab32795, Abcam), RING finger protein 
2 (RNF2; 1:1,000, cat. no. ab101273, Abcam), and β-actin 
(1:5,000, cat. no. ab179467, Abcam).

Anti-AGO2 radioimmunoprecipitation (RIP) assay

As reported by a previous study (31), we also used the 
Magna RIP RNA-Binding Protein Immunoprecipitation 
kit (Millipore, Billerica, USA) to conduct the anti-AGO2 
RIP assay. Extracts of the treated SK-MES-1R and NCI-
H226R cells in RIP buffer were incubated with normal rabbit 
IgG (Proteintech Group, Inc.; Wuhan, China) and AGO2 
antibodies (Cell Signaling Technology), which were combined 
with magnetic beads. We isolated the immunoprecipitated 
RNAs and examined genes using RT-qPCR.

Luciferase assay

We constructed the wild-type and mutant lncRNA 
KCNQ1OT1, TPX2, and RNF2 with potential miR-491-5p 
binding sites using the pMIR-REPORT plasmids (Promega 
Biotechnology Co., Ltd.; Beijing, China). HEK293T 
cells (1×105 cells/well) were inoculated in a 24-well plate 
and co-transfected with luciferase plasmids, miR-491-5p 

mimics, and miRNA control for 48 h. Luciferase activity 
was confirmed using a dual luciferase reporter assay system 
(Promega).

Statistical analysis

Measurement data was presented as mean ± standard 
deviation (SD) from 3 replications. The statistical 
significance was confirmed using SPSS software 21.0 (SPSS 
Inc., Chicago, USA) with Student’s t-test. P<0.05 indicated 
a significant difference. All experiments were independently 
repeated in triplicate and all experimental data were 
biologically repeated in triplicate.

Results

LncRNA KCNQ1OT1 was highly expressed in 
radioresistant LUSC cells

To explore the possible relationship between LUSC cell 
radiosensitivity and lncRNA KCNQ1OT1, the parental 
LUSC cells  (SK-MES-1 and NCI-H226) and the 
radioresistant LUSC cells (SK-MES-1R and NCI-H226R) 
were exposed to different levels of X-ray irradiation. The 
results from the clonogenic assay showed that SK-MES-
1R and NCI-H226R cells displayed greater resistance to 
X-ray exposure than their parental cells (Figure 1A,1B). 
Subsequently, our data from RT-qPCR demonstrated that 
lncRNA KCNQ1OT1 expression was notably increased 
in SK-MES-1R and NCI-H226R cells relative to their 
respective parental cells (Figure 1C). Furthermore, we 
demonstrated that lncRNA KCNQ1OT1 was significantly 
expressed in the cytoplasm of SK-MES-1R and NCI-
H226R cells, as well as in the nucleus (Figure 1D,1E). 
Consequently, we validated that lncRNA KCNQ1OT1 was 
prominently upregulated in the SK-MES-1R and NCI-
H226R cells, especially in the nucleus.

Knockdown of lncRNA KCNQ1OT1 significantly repressed 
the proliferation of radioresistant LUSC cells

To further elucidate the impact of lncRNA KCNQ1OT1 on 
radioresistant LUSC cells, lncRNA KCNQ1OT1 expression 
was knocked down by siRNAs in SK-MES-1R, NCI-
H226R, and the parental cells. As presented in Figure 2A,  
lncRNA KCNQ1OT1 was significantly downregulated in 
the knockdown group versus the control group, indicating 
the effective transfection of siRNAs in each group. Next, 
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cell proliferation was examined by conducting the MTT 
assay, colony formation assay, and EdU staining. The MTT 
results demonstrated that the proliferation capacities of SK-
MES-1R and NCI-H226R cells were dramatically weakened 
in the knockdown group compared to the control group 
(Figure 2B,2C). Also, the experimental results of the colony 
formation assay showed that silencing lncRNA KCNQ1OT1 
resulted in a significant reduction in the proliferation of SK-
MES-1R and NCI-H226R cells (Figure 2D). Similarly, the 
results of EdU staining also revealed that the proliferation 
of SK-MES-1R and NCI-H226R cells could be significantly 
inhibited by lncRNA KCNQ1OT1 knockdown (Figure 2E).  
On the whole, we demonstrated that silencing lncRNA 
KCNQ1OT1 has a significant inhibitory effect on 
radioresistant LUSC cell proliferation.

Silencing of lncRNA KCNQ1OT1 suppressed 
radioresistance and induced the apoptosis of radioresistant 
LUSC cells

Furthermore, we adopted MTT assay to assess the role of 
lncRNA KCNQ1OT1 silencing in the radioresistance of 

SK-MES-1R and NCI-H226R cells. The results showed 
that silencing of lncRNA KCNQ1OT1 significantly 
repressed cell growth in SK-MES-1R and NCI-H226R 
cells, and X-ray irradiation could also lead to a decrease 
in the survival rate of SK-MES-1R and NCI-H226R cells 
(Figure 3A,3B). Additionally, the flow cytometry data showed 
that silencing of lncRNA KCNQ1OT1 could significantly 
increase the number of apoptotic cells after treatment with 
4 Gy X-ray irradiation (Figure 3C,3D). Meanwhile, we 
also found that in X-ray-treated SK-MES-1R and NCI-
H226R cells, the levels of Bax and cleaved caspase-3 were 
dramatically elevated, and the level of Bcl2 was markedly 
lowered in the lncRNA KCNQ1OT1 silencing group 
compared to the control group (Figure 3E,3F). Overall, we 
uncovered that lncRNA KCNQ1OT1 knockdown markedly 
reduced the radioresistance of radioresistant SK-MES-1R 
and NCI-H226R cells.

MiR-491-5p was a regulatory target of lncRNA 
KCNQ1OT1

More and more evidence has shown that lncRNAs may 
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Figure 1 LncRNA KCNQ1OT1 was highly expressed in radioresistant LUSC cells. (A) The clonogenic assay was adopted to examine 
the radioresistance of SK-MES-1 and SK-MES-1R cells, which were exposed to 0, 2, 4, 6, 8, and 10 Gy X-rays. (B) The radioresistance of 
NCI-H226 and NCI-H226R cells was also determined via the clonogenic assay. (C) RT-qPCR analysis of lncRNA KCNQ1OT1 expression 
in the parental LUSC cells (SK-MES-1 and NCI-H226) and the radioresistant LUSC cells (SK-MES-1R and NCI-H226R). (D,E) The 
level of lncRNA KCNQ1OT1 was identified by applying RT-qPCR in the nucleus and cytoplasm of SK-MES-1R and NCI-H226R cells. *, 
P<0.05. LncRNA, long non-coding RNAs; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LUSC, lung squamous cell carcinoma.
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play the role of miRNA sponges, regulating the binding 
of miRNAs to the target mRNAs (32,33). We used a 
bioinformatics tool (LncBase Predicted v.2) to predict the 
target miRNAs of lncRNA KCNQ1OT1, and screened 
4 potential target miRNAs including miR-491-5p, miR-

133b, miR-15a, and miR-7. Firstly, we discovered that 
only miR-491-5p was prominently downregulated in SK-
MES-1R and NCI-H226R cells compared with their 
respective parental cells (Figure 4A,4B). Secondly, we 
performed the anti-AGO2 RIP assay to monitor whether 

Figure 2 Knockdown of lncRNA KCNQ1OT1 significantly repressed the proliferation of radioresistant LUSC cells. (A) LncRNA 
KCNQ1OT1 was silenced through the transfection of siRNAs into SK-MES-1, SK-MES-1R, NCI-H226, and NCI-H226R cells, and the 
silencing efficacy of lncRNA KCNQ1OT1 was examined using RT-qPCR. (B,C) After lncRNA KCNQ1OT1 knockdown, proliferation 
was examined by the MTT assay in SK-MES-1R and NCI-H226R cells. (D) The colony formation assay was used to confirm the impact of 
lncRNA KCNQ1OT1 knockdown on the proliferation of SK-MES-1R and NCI-H226R cells (crystal violet staining, ×1). (E) EdU staining 
of lncRNA KCNQ1OT1-silenced SK-MES-1R and NCI-H226R cells. Magnification, ×100; scale bar =100 μm. *, P<0.05. LncRNA, long 
non-coding RNAs; LUSC, lung squamous cell carcinoma; OD, optical density.
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Figure 3 Silencing of lncRNA KCNQ1OT1 markedly suppressed the radioresistance and induced the apoptosis of radioresistant LUSC 
cells. (A,B) SK-MES-1R and NCI-H226R cells were exposed to 0, 2, 4, 6, 8, and 10 Gy X-rays, and the cell survival rate was evaluated 
by applying the MTT assay. (C,D) After treatment and without treatment of 4 Gy X-rays, the apoptosis rate was estimated using a flow 
cytometer in lncRNA KCNQ1OT1-silenced SK-MES-1R and NCI-H226R cells. (E,F) Western blot was conducted to assess the influence 
of lncRNA KCNQ1OT1 knockdown on the expression of Bax, Bcl2, and cleaved caspase-3 in SK-MES-1R and NCI-H226R cells. β-actin 
acted as the internal reference. *, P<0.05, **, P<0.01, ***, P<0.001. LncRNA, long non-coding RNAs; LUSC, lung squamous cell carcinoma.
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lncRNA KCNQ1OT1 could directly interact with these 4 
miRNAs. The data indicated that lncRNA KCNQ1OT1 
could be specifically enriched in miR-491-5p-overexpressed 
SK-MES-1R and NCI-H226R cells (Figure 4C,4D). In 
addition, we constructed the wild-type and mutant lncRNA 
KCNQ1OT1 plasmids, which were co-transfected into 
HEK-293 cells. The results uncovered that the luciferase 
activity was substantially reduced in HEK-293 cells with 
the co-transfection of miR-491-5p and wild-type lncRNA 
KCNQ1OT1, while the luciferase activity was not affected 
in the lncRNA KCNQ1OT1 mutant co-transfection 
group (Figure 4E). We also found that silencing of lncRNA 
KCNQ1OT1 could notably upregulate miR-491-5p in 
SK-MES-1R and NCI-H226R cells (Figure 4F). As a 
whole, miR-491-5p was an inhibitory target of lncRNA 
KCNQ1OT1.

MiR-491-5p inhibited proliferation and downregulated 
TPX2 and RNF2 in radioresistant LUSC cells

We further predicted the target genes of miR-491-5p 
using bioinformatics analysis, and discovered that TPX2 

and RNF2 might be the potential target genes of miR-
491-5p. The luciferase assay showed that miR-491-5p 
reduced only the luciferase activity of wild-type TPX2, 
while the luciferase activity of mutant TPX2 was not 
responsive to miR-491-5p overexpression (Figure 5A). 
We also demonstrated that miR-491-5p significantly 
attenuated the luciferase activity of wild-type RNF2, 
but did not affect the luciferase activity of mutant RNF2  
(Figure 5B). Furthermore, the colony formation assay 
elucidated that overexpression of miR-491-5p led to the 
inhibition of proliferation in SK-MES-1R and NCI-H226R 
cells (Figure 5C). Similarly, inhibition of miR-491-5p could 
result in the enhancement of proliferation in SK-MES-
1R and NCI-H226R cells (Figure 5D). Western blotting 
analysis demonstrated that overexpression of miR-491-
5p significantly lowered TPX2 and RNF2 expression, 
and inhibition of miR-491-5p markedly elevated TPX2 
and RNF2 expression in SK-MES-1R and NCI-H226R 
cells (Figure 5E,5F). Overall, we demonstrated that miR-
491-5p could significantly prevent proliferation and 
reduce TPX2 and RNF2 expression in SK-MES-1R and  
NCI-H226R cells.
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Knockdown of lncRNA KCNQ1OT1 markedly prevented 
radioresistant LUSC cell proliferation by targeting miR-
491-5p to regulate TPX2 and RNF2

Subsequently, we performed rescue experiments to 

explore the impact of lncRNA KCNQ1OT1/miR-491-
5p on the proliferation or TPX2 and RNF2 expression 
in radioresistant LUSC cells. LncRNA KCNQ1OT1 
siRNAs and anti-miR-491-5p were adopted to transfect 
SK-MES-1R and NCI-H226R cells. The colony formation 

Figure 5 MiR-491-5p inhibited proliferation and downregulated TPX2 and RNF2 expression in radioresistant LUSC cells. (A) Schematic 
illustration of the binding site between miR-491-5p and TPX2, and the targeted regulation was evaluated by the luciferase assay. *, P<0.05 vs. 
miRNA control. (B) The binding site between miR-491-5p and RNF2 was exhibited, and the targeted regulation was identified by the luciferase 
assay. *, P<0.05 vs. miRNA control. (C,D) The proliferation was monitored through the colony formation assay in miR-491-5p-overexpressed 
or -inhibited SK-MES-1R and NCI-H226R cells (crystal violet staining, ×1). *, P<0.05 vs. miRNA control or anti-control. (E,F) The regulatory 
effects of miR-491-5p on TPX2 and RNF2 were identified by Western blot in SKMES-1R and NCI-H226R cells. ***, P<0.001 vs. miR-control. #, 
P<0.05; ###, P<0.001 vs. anti-control. LUSC, lung squamous cell carcinoma; UTR, untranslated region; Mut, mutant. 
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assay revealed that lncRNA KCNQ1OT1 knockdown 
dramatically repressed proliferation, and inhibition of miR-
491-5p markedly accelerated proliferation. Meanwhile, 
co-transfection of lncRNA KCNQ1OT1 siRNAs and 
anti-miR-491-5p offset this effect in SK-MES-1R and 
NCI-H226R cells (Figure 6A). Western blot results 
demonstrated that lncRNA KCNQ1OT1 knockdown 

significantly downregulated TPX2 and RNF2 expression, 
inhibition of miR-491-5p notably upregulated TPX2 
and RNF2 expression, and co-transfection of lncRNA 
KCNQ1OT1 siRNAs and anti-miR-491-5p further 
enhanced the expression of TPX2 and RNF2 in SK-MES-
1R and NCI-H226R cells (Figure 6B). Collectively, these 
data demonstrated that lncRNA KCNQ1OT1 knockdown 

Figure 6 Knockdown of lncRNA KCNQ1OT1 markedly prevented radioresistant LUSC cell proliferation by targeting miR-491-5p to 
regulate TPX2 and RNF2. SK-MES-1R and NCI-H226R cells were transfected with lncRNA KCNQ1OT1 siRNAs and/or anti-miR-491-
5p. (A) The colony formation assay was applied to assess the influence of lncRNA KCNQ1OT1 and miR-491-5p on cell proliferation (crystal 
violet staining, ×1). (B) The expression changes of TPX2 and RNF2 were tested by applying Western blot in the treated SK-MES-1R and 
NCI-H226R cells. ***, P<0.001 vs. control + anti-control. ##, P<0.01; ###, P<0.001 vs. si#1 & 2 + anti-control. LncRNA, long non-coding 
RNAs; LUSC, lung squamous cell carcinoma.
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prevented the proliferation of SK-MES-1R and NCI-
H226R cells by miR-491-5p to regulate TPX2 and RNF2.

Discussion

Lung cancer has been considered to be one of the biggest 
contributors to cancer-related deaths worldwide (34). As a 
vital subtype of lung cancer, the incidence of LUSC is also 
increasing yearly (35). At present, radiotherapy has become 
one of the crucial methods of LUSC treatment because it can 
inhibit tumor growth and induce cell apoptosis. Increasing 
the radiosensitivity of tumor cells has become the most 
effective strategy for LUSC radiotherapy (36). However, 
the progression of LUSC is a multifactorial and multi-step 
process, and the carcinogenesis mechanism is still not very 
clear. At present, there is no effective biological target to 
increase radiosensitivity. In recent years, more and more 
evidence has confirmed that lncRNAs can participate in 
tumor progression through multiple pathways (37,38). Over 
the past decade, significant efforts have been made to bring 
ncRNA-based therapies to clinical use, some of which have 
received FDA approval. However, trial results to date have 
been contradictory, with some studies reporting effective 
results and others showing limited efficacy or toxicity (39,40). 
More important, studies have found that lncRNAs are 
involved in regulating the radiosensitivity of tumors (41,42). 
For instance, LINC02532 contributes to the radiosensitivity 
of clear cell renal cell carcinoma (43). LINC00958 could 
suppress radiosensitivity in colorectal cancer (44), and 
lncRNAs, such as PVT1 (45) and TUG1 (46), can also 
enhance radiosensitivity by promoting the apoptosis of tumor 
cells. Therefore, investigating the mechanism of lncRNAs 
in LUSC can lay the foundation for the improvement of 
radiosensitivity. 

According to the literature, lncRNA KCNQ1OT1 
has also been proven to be involved in the progression 
of multiple diseases, such as osteolysis (47), fracture 
healing (48), myocardial ischemia/reperfusion injury (49),  
atrial fibrillation (50), and diabetic cardiomyopathy (51).  
Fur thermore ,  re search  has  shown tha t  lncRNA 
KCNQ1OT1 is also related to the progression of 
acute promyelocytic leukemia (52), ovarian cancer (17), 
bladder cancer (53), and NSCLC (18). Moreover, studies 
demonstrated that lncRNA KCNQ1OT1 was involved 
in oxaliplatin-resistant colon cancer (16), methotrexate-
resistant colorectal cancer (54), and cisplatin-resistant 
tongue cancer (21) .  In our study,  we establ ished 
radioresistant cells (SK-MES-1R and NCI-H226R cells) 

through X-ray irradiation. LncRNA KCNQ1OT1 was 
notably upregulated in SK-MES-1R and NCI-H226R 
cells. Moreover, we verified that knockdown of lncRNA 
KCNQ1OT1 has a significant inhibitory effect on 
the proliferation and radioresistance of radioresistant 
LUSC cells. Knockdown of lncRNA KCNQ1OT1 also 
had a significant promotive effect on the apoptosis of 
radioresistant LUSC cells. Therefore, we demonstrated 
that lncRNA KCNQ1OT1 could dramatically enhance 
the radioresistance and induce the malignant behaviors  
of LUSC.

MiRNAs are a group of crucial regulatory factors in 
cancers, and are closely related to the progression of 
NSCLC (55). Studies have discovered that lncRNAs 
can serve as “sponges” of miRNAs to reduce miRNA 
abundance, thus alleviating the inhibition effect of 
miRNAs on the downstream target genes (56,57). Research 
has shown that the lncRNA/miRNA/mRNA axis can 
play vital roles in regulating the biological behaviors 
and radiosensitivity of various cancer cells, such as 
hepatocellular carcinoma (58), pancreatic cancer (59), lung 
adenocarcinoma (60), nasopharyngeal carcinoma (61), 
and ovarian cancer (62), among others. We also predicted 
the target miRNAs of lncRNA KCNQ1OT1 through a 
bioinformatics tool, and miR-491-5p, miR-133b, miR-15a, 
and miR-7 were screened as the potential target miRNAs 
of lncRNA KCNQ1OT1. Several studies have confirmed 
that miR-491-5p can function as a tumor suppressor in 
many types of cancers, such as osteosarcoma (63), colorectal 
cancer (64), gastric cancer (65), prostate cancer (66), 
nasopharyngeal carcinoma (67), and NSCLC (68). After 
experimental verification, we also discovered that miR-491-
5p was a regulatory target of lncRNA KCNQ1OT1, and 
miR-491-5p could also be markedly upregulated by lncRNA 
KCNQ1OT1 knockdown. 

Furthermore, through bioinformatics and experimental 
validation, we proved that TPX2 and RNF2 might be the 
potential target genes of miR-491-5p. As a microtubule-
associated protein, TPX2 is essential for microtubule 
formation and can regulate many crucial biological 
processes (69,70). The aberrant expression of TPX2 has a 
vital relationship with the progression of human malignant 
tumors (71,72). RNF2, a member of the polycomb gene 
family, is a ubiquitin ligase with ring structure (73). Recent 
research has also confirmed that RNF2 is highly expressed 
in human malignant tumors, and is associated with the 
proliferation, invasion, and prognosis of tumors (74,75). 
Another study showed that silencing of RNF2 could promote 
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the radiosensitivity of NSCLC (76). In our study, we also 
revealed that miR-491-5p could markedly downregulate 
TPX2 and RNF2 expression in radioresistant LUSC cells. 
In addition, knockdown of lncRNA KCNQ1OT1 could also 
markedly inhibit the proliferation of LUSC through miR-
491-5p to regulate TPX2 and RNF2.

Conclusions

We demonstrated that lncRNA KCNQ1OT1 could 
markedly induce the radioresistance of LUSC by directly 
targeting miR-491-5p to reduce TPX2 and RNF2 
expression. Therefore, we uncovered that the lncRNA 
KCNQ1OT1/miR-491-5p/TPX2 or RNF2 axis  is 
correlated with the radioresistance of LUSC cells. In the 
future, this conclusion will be further validated in clinical 
and in vivo samples.
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