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Abstract

Glioblastoma (GBM) is an aggressive, grade IV brain tumor that develops from astrocytes located 

within the cerebrum, resulting in poor prognosis and survival rates following an accepted 

treatment regimen of surgery, radiation, and temozolomide. Thus, development of new 

therapeutics is necessary. During the last two decades, methylene blue (MB) has received 

increased attention as a potential neurotherapeutic due to its duality in brain cancers and 

neurodegenerative diseases. While MB is capable of easily permeating the blood-brain barrier, its 

therapeutic concentrations in GBM are known to induce off-target cytotoxicity and thus, another 

mode of drug delivery must be considered. To this end, encapsulation of formerly unusable 

compounds into nanoparticles (NPs) made from the biodegradable/biocompatible, FDA approved 

co-polymer poly (lactide-co-glycolide) (PLGA) has been more commonplace when developing 

novel therapeutics. In this study, we formulated and characterized Pluronic F68-coated PLGA NPs 

containing a sodium oleate conjugate of MB (MBOS) via solvent displacement. Conjugation of 

sodium oleate to MB was shown to reduce its release from PLGA NPs compared to unmodified 

MB, leading to potential improvements in drug accumulation and therapeutic effectiveness. Our 

drug-loaded NP preparations, which were ~170 nm in size and had drug loading values of ~2%, 

were shown to reduce cell viability and cell compartment-specific, as well as overall cell, 

functions equivalenty, if not more so, when compared to free drug in two GBM cell lines. 

Following bio-distribution analysis of free MBOS compared to its nano-encapsulated counterpart, 

drug-loaded NPs were shown to more effectively permeate the BBB, which could lead to 

improvements in therapeutic effectiveness upon further examination in a tumor-bearing mouse 

model. Based on these results, we believe that the further development and eventual utilization of 

this nanoformulation could lead to an effective GBM therapy that could extend patient survival 

rates.
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Introduction

According to statistics from the American Cancer Society (ACS), of the estimated 1.7 

million newly diagnosed cancer cases within the United States this year, nearly 1.4% 

(23,130) will be due to tumors of the brain and nervous system; additionally, of the 580,000 

total cancer deaths, approximately 2.4% will be attributed to the aforementioned anatomical 

areas [1]. Although these figures are significantly lower than those of more recognized 

cancer types (breast, colorectal, lung, pancreatic, and prostate), brain-associated cancer 

prevalence is rising due to increased resistance to conventional treatment methods - a 

combination of surgery, chemotherapy, and radiation - leading to significantly lower survival 

rates [2–4]. Glioblastoma (GBM), a rapidly developing grade IV brain cancer that originates 

from supportive glial cells called astrocytes, resulting in its classification as an astrocytoma, 

is located primarily within the cerebrum and considered the most common and aggressive 

primary human brain tumor due to poor prognosis (15 months maximum post-diagnosis with 

treatment) and substandard five-year survival rates (less than 5%) [2,3,5–10]. While GBM 

can affect individuals of all ages, it occurs more frequently in adults, primarily middle-aged 

people between 45 and 65, with a gender disparity favoring men, as well as a slight racial 

discrepancy towards Caucasians [2,3,11–15].

GBM, like other cancers and cells undergoing rapid proliferation, depend on an inefficient 

energy producing process called aerobic glycolysis to generate adenosine 5’-triphosphate 

(ATP) and other metabolic precursors for successive colony expansion through a 

phenomenon referred to as the Warburg effect [16–19]. In the Warburg effect, highly 

proliferative cells, including cancers such as GBM, exhibit irregular mitochondrial behavior 

that results from disjointed energy metabolism, leading to a dependence on cytosolic 

glycolysis for energy [20–23]. While decades of research have established the Warburg 

phenomenon and associated mitochondrial dysfunction as a consequence of compounding 

genetic mutations, the concept continues to be an intriguing aspect in the development and 

progression of cancer, specifically GBM, and thus, provides an avenue for the development 

of novel therapies.

Methylene blue (MB), also referred to as methylthioninium chloride, is a water soluble 

compound that was discovered in the late 1870s and originally used as a histological dye. 

MB, which has a proven safety record and demonstrated versatility in clinical applications, 

has been used to treat maladies ranging from chemotherapy-induced encephalopathy and can 

act as a photodynamic therapy (PDT) in cancer patients to more historical conditions such as 

cyanide poisoning and malaria [24–31]. In the case of various diseases, including GBM, MB 

has been shown to target dysfunctional mitochondria by acting as an electron carrier via its 

reversible photoreduction to inactive leucomethylene blue (LMB) to aid cytochrome c 

reduction, bypass complex II, increase oxygen consumption, and increase the production of 

reactive oxygen species (ROS) [32–41]. While MB shows promise as a neurotherapeutic due 
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to these benefits, as well as its ability to easily permeate the blood-brain barrier (BBB), the 

challenge arises when administering MB to patients. In order to achieve the necessary 

accumulation of drug concentration for treatment, a higher-than-required dose must be 

given, leading to potential overmedicating and off-target toxicity [29]. As a result, additional 

drug delivery methods must be considered.

Traditional modes of drug delivery across the BBB involve disruption of the BBB, which if 

still intact during the disease state, can lead to infection; lipidation of small molecules; and 

delivery of anti-sense or non-viral DNA [42]. Due to recent advances in nanotechnology, its 

applications have been considered as possible mechanisms for more effective drug delivery 

across the BBB, ranging from encapsulation in liposomes and polymeric nanoparticles to 

direct conjugation to antibodies [43–49]. Over the past few decades, nanoparticle drug 

development has grown because of its wide versatility of applications and formulations. In 

accordance with the previous statement, nanoparticle delivery of drugs for GBM has grown 

due to the need for more effective treatments that can maneuver the BBB. While numerous 

options are currently available for developing nanodrug delivery systems, including 

liposomes; solid lipid nanoparticles; polymeric nanoparticles; hybrid nanoparticles; 

dendrimers; and nanotubes, this study focuses on the application of polymeric nanoparticles, 

derived from the synthetic co-polymer poly (lactide-co-glycide) (PLGA). PLGA was the 

first FDA-approved co-polymer for medical use, is biocompatible/biodegradable via its non-

enzymatic hydrolysis at its ester linkages to lactic and glycolic acids, and has confirmed 

brain accumulation in in vivo studies [50–53]. Some of the advantages afforded by PLGA 

NPs as drug delivery systems include: their ability to encapsulate numerous compounds; 

provide targeted drug delivery using surface functionalization with antibodies/peptides; 

allow tunable sizing; can be prepared from various matrices; improve therapeutic efficacy of 

drugs due to reduced clearance; can be used for various administration routes, reduce toxic 

side effects; and traverse biological barriers, including the blood-brain barrier (BBB), skin, 

and tight junctions of various epithelial layers [43]. PLGA NPs are thought to obtain passage 

through the BBB via receptor-mediated endocytosis in brain capillary endothelial cells, 

which results from either covalent attachment of targeting ligands or coating with certain 

chemicals that enable adsorption of specific plasma proteins for improved circulation and 

distribution [46]. Methods that are being considered in order to improve PLGA NP passage 

through the BBB, as well as improve tumor uptake, include active targeting via surface 

conjugation with antibodies or BBB receptor ligands and use of surfactants [54].

While MB-loaded NP formulations have been developed in the last several years to treat 

various conditions, the concern with utilizing MB in a PLGA NP is due to its high water 

solubility. PLGA NPs tend to encapsulate hydrophobic and lipophilic drugs more effectively 

than hydrophilic drugs; therefore, modifications to MB are necessary that enable prolonged 

entrapment within the NP until delivery to the target site without affecting its normal 

chemical functions. To this end, we formulated a methylene blue oleate salt (MBOS) 

conjugate and encapsulated it within PLGA NPs. In this study, we tested the hypothesis that 

encapsulation of MBOS in PLGA NPs would elicit minimally equivalent in vitro effects in 

multiple GBM cell lines when compared to free MB, as well as free MBOS, based on the 

reversal of mitochondrial dysfunction and supposed reduction in off-target side effects. 

Additionally, we sought to determine the biodistribution of MBOSNPs compared to free MB 
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and MBOS, as a means to confirm any potential clinical applications toward improving 

disease progression and reducing drug-associated toxicity.

Experimental Procedures

Cell culture and other reagents

U87 MG (U87) was gifts from Dr. ShaoHua Yang (University of North Texas Health 

Science Center), while T98G cells were obtained from American Type Culture Collection 

(ATCC). Both were cultured as previously described [55]. MB was purchased from 

Calbiochem. Sodium oleate, Pluronic F68, glucose oxidase/peroxidase solution, O-

dianisidine dihydrochloride, and D-(+)-glucose were obtained from Sigma-Aldrich. PLGA 

50:50 DLG 8E was purchased from Lakeshore Biomaterials. Pierce protein reagent was 

obtained from ThermoScientific, D-luciferin sodium salt from Regis Technologies, and 

QuantiLum recombinant luciferase from Promega.

Preparation of methylene blue oleate salt

In pre-weighed 250 mL glass beaker containing a stir bar, 100 mg sodium oleate (SO) was 

dissolved in 100 mL distilled, deionized (DDI) H2O. 50 mg MB was added to 5 mL 

dehydrated ethanol and mixed, then combined with SO solution and allowed to stir overnight 

at room temperature in a fume hood to prepare the MBOS solution. The following day, 100 

mL chloroform was added to the MBOS solution, stirred for 5 minutes, and then placed at 

room temperature in a fume hood for at least 24 hours to obtain complete partitioning of the 

organic and aqueous layers. After achieving layer separation, the H2O layer containing free 

MB was removed, and the beaker containing the MBOS chloroform solution returned to 

stirrer under vacuum in fume hood for 72 hours until chloroform has completely evaporated 

and layer of MBOS coating remained. To determine the final amount of mg of MBOS 

obtained, the beaker was removed from stirring and re-weighed.

Preparation and characterization of MBOSNPS

Preparation of MBOSNPs—To generate MBOSNPs (Figure 1), 3 mg MBOS was 

combined in 1 mL acetone, placed on a mini vortexer until completely dissolved, then 10 mg 

PLGA added and returned to vortexer until PLGA was in solution. While MB and PLGA 

solution was vortexing, 1% PF68 in DDI H2O was prepared and 3 mL filtered through a 

0.45 micron syringe filter. Once MB and PLGA solution was obtained, it was added to PF68 

solution and placed under compressed nitrogen gas until acetone has evaporated and organic 

solvent odor no longer remained (~1 hour). Next, the NP sample was transferred to a 50 mL 

10K cut-off Amicon tube, where ~10 mL DDI H2O was added, then centrifuged at 3500 rpm 

for 20 minutes at 4°C. Once the flow through was discarded, centrifuge/wash step was 

repeated 2× more for 20 minutes, then 30 minutes. Once washes were concluded, 5% 

sucrose in DDI H2O was added to NP sample to obtain 1 mL total volume. The liquid 

MBOSNPs were transferred to a pre-weighed cryovial, placed at −80°C overnight, and then 

moved to a cooled, pressurized lyophilizer (ATR, Inc.) for 72 hours. Upon removal from 

lyophilizer, sample was stored at −20°C until needed. Empty, blank NPs were also 

generated, analyzed, and tested in subsequent in vitro assays for comparison at the highest 

“treatment” concentration for drug-loaded NPs.
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Physicochemical characterization of MBOSNPs—Prior to freezing and lyophilizing, 

as well as post, particle size and zeta potential were analyzed via a Malvern Zetasizer Nano 

ZS. Briefly, a small amount of lyophilized NPs was re-suspended in 1 mL DDI H2O, 

vortexed for 30 seconds, then transferred to a disposable cuvette (Sarstedt) for analysis of 

particle size (in nm) by dynamic light scattering. The sample was then transferred to a 

disposable capillary cell (Malvern) for analysis of zeta potential. For each NP batch, the 

mean diameter ± S.D. for three measurements was determined. The polydispersity index 

(PDI) was also quantified to establish particle size distribution.

Drug loading and encapsulation efficiency determination by UV/V is 
spectrophotometry—Drug loading and encapsulation efficiencies were determined post-

production by mixing 5 mg lyophilized MBOSNPs in 1mL acetone, placing in a 37°C 

incubator shaker for 4 hours, then centrifuging at 14,000 rpm at room temperature for 5 

minutes to precipitate residual PLGA. The acetone component containing MBOS was then 

analyzed via the UV/Vis spectrophotometry component of a Nanodrop (ThermoScientific) at 

645 nm, with values compared to an MBOS standard curve.

Transmission electron microscopy (TEM)—Following acquisition of the lyophilized 

final product, MBOSNPs were also analyzed for shape and surface morphology via TEM. 

Briefly, a small amount of NP was resuspended in 1 mL DDI H2O, then diluted 1:10. A drop 

(~5 µL) of diluted, resuspended MBOSNP sample was deposited on a discharged carbon 

grid, allowed to dry for 1 minute, carefully blotted, and a drop of 2% uranyl acetate added 

with a 1-minute dry time and subsequent blotting. Once negatively stained, the NP sample 

was on examined under a Tecani Spirit Biotwin at the University of Texas Southwestern 

Medical Center’s Electron Microscopy Core Facility.

MB(OS) release kinetics—To determine the rate of MBOS release from the NPs, 

MBOSNPs containing at least 0.5 mg MBOS (~30 mg) was weighed out and added to 2 mL 

1X PBS in 8 MWCO dialysis tubing. The dialysis tubing containing sample was then placed 

in a 250 mL glass beaker containing 100 mL 1X PBS as a “sink” under constant stirring at 

room temperature. At designated time points, 1 mL of 1X PBS from the “sink” was 

collected, replaced with fresh PBS, and analyzed at 645 nm via the UV/Vis 

spectrophotometry component of a Nanodrop (ThermoScientific), with values compared to 

an MBOS standard curve.

In vitro analyses

Cellular bioenergetics analysis—Assay was performed according to manufacturer’s 

directions and as previously described [55], where U87 and T98G cells were plated at 

30,000 cells/well in an XF24 plate and allowed to attach overnight. Media was replaced an 

hour before onset of the assay with XF24 media, and then, rotenone/antimycin A mix, 

FCCP, and oligomycin were diluted in XF24 media and loaded into the provided cartridge to 

obtain final concentrations of 100 nM, 300 nM, and 1 µg/mL, respectively. MB, MBOS, or 

MBOSNP treatments, at pre-determined concentration, were also inserted into the cartridge. 

Addition of the compounds into the medium took place at designated time points, and 
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oxygen consumption was examined using a Seahorse Bioscience XF24 Extracellular Flux 

Analyzer.

Liquid colony formation assay—Cells were seeded into 6-well culture plates (Falcon) 

at a concentration of 50 cells/well in 1 mL DMEM high glucose with pyruvate (Gibco), 10% 

FBS, and 1% Pen/Strep. Treatments were added to each well to obtain a pre-determined 

final concentration in 2 mL/well total volume. Plates were incubated for 4 weeks 

undisturbed, and only carefully received a media change at week 3 with or without drug 

treatments if colonies were not visible. Following completion of the 4-week incubation 

period, colonies were stained as previously described [55]. Culture plates were placed on ice 

and gently washed twice with ice-cold PBS; next, colonies were fixed with ice-cold 

methanol for 10 minutes, which was removed to allow for staining; plates were then 

relocated to the bench-top, where the colonies were stained with 0.5% crystal violet in 25% 

methanol for 10 minutes, which was removed; finally, plates were washed by immersion in 

cold, running tap water until the water ran clear and placed upside down on absorbent paper 

to allow overnight drying. Stained colonies were counted, with the number and size 

documented.

ATP quantification—U87 and T98G cells were seeded into 6-well plates at 200,000 cells/

well in 1 mL DMEM high glucose with pyruvate (10% FBS and 1% Pen/Strep) and allowed 

to grow overnight. The next day, media was replaced with MB, MBOS, or MBOSNPs at 

desired concentrations and analyzed at specified 24 hour increments. Following a modified 

protocol outlined in an ATP kit obtained from Life Technologies, cells were washed twice 

with PBS, then lysed with 150 uL of ATP assay buffer (500 mM Tricine buffer, pH 7.8, 100 

mM MgSO4, 2 mM EDTA, and 2 mM sodium azide) containing 1% Triton X-100, dislodged 

by scraping with a pipette tip, and transferred to 1.5 mL Eppendorf tubes on ice for 5 

minutes. 10 uL of cell lysate was then added in triplicate to a white 96-well plate, also 

containing ATP standards. Before reading the plate, 100 uL of ATP assay buffer containing 

90 µg/mL D-luciferin, 20 µM DTT, and 25 µg/mL Luciferase) was added to each well. 

Luminescence was calculated using a Tecan Infinite F200 plate reader. Protein concentration 

was also determined using the Pierce 660 nm Protein Assay (660 nm absorbance), with ATP 

production standardized to protein values.

Glucose quantification—Glucose was measured per instructions from a kit 

manufactured by Sigma-Aldrich. Briefly, 200,000 U87 and T98G cells were seeded into a 6-

well plate and incubated overnight. On the subsequent day, media was removed and 

exchanged with 2 mL fresh DMEM high glucose (4.5 g/L glucose) contained pre-

determined MB, MBOS, or MBOSNP concentrations. After designated times, medium was 

removed, diluted 1:100 in glucose assay buffer (glucose oxidase, horseradish peroxidase, 

and O-dianisidine), then added to a 96-well plate at a 1:3 dilution in glucose assay buffer. 

The plate was then incubated at 37°C and 5% CO2 for 30 minutes, and the reactions halted 

by the addition of 66 uL of 12 N sulfuric acid. Absorbance values were evaluated at 540 nm 

on a Biotek Synergy 2 plate reader.
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Cell viability—U87 and T98G cells were seeded at 750 cells/well in 100 µL DMEM high 

glucose with pyruvate (10% FBS and 1% Pen/Strep) in a black, 96-well flat-bottomed plate, 

and allowed to attached overnight. The following day, 50 µL media containing varying 

concentrations of MB, MBOS, or MBOSNP was added designated wells and incubated at 

37°C overnight. The next morning, the plates were washed with 200 µL/well 1X PBS, which 

was removed and replaced with 95 µL calcein AM reagent at 1:1000 dilution in 1X PBS. 

Plates were incubated at 37°C for 5–10 minutes, protected from light, and read via a Tecan 

Infinite F200 plate reader at 485/530 excitation/emission fluorescence.

In vivo bio-distribution

All animal studies were performed at the University of Texas Southwestern Medical 

Center’s Preclinical Pharmacology Core, with practices following Institutional Animal Care 

and Use Committee and National Institute of Health guidelines. Female mice (CD-1 

background, 5–6 weeks old) were used for all bio-distribution studies. Mice were 

administered a single intravenous (IV) dose of either MB (in 95% PBS/5% DI H2O), MBOS 

(in 10% DMSO/10% Cremophor EL/80% PBS), or MBOSNP (in 100% PBS) via lateral tail 

vein at 8 mg/kg treatment concentration, and then euthanized by CO2 inhalation at selected 

time points and blood sample obtained by cardiac puncture. Plasma was processed from 

whole blood by centrifugation of EDTA-treated blood for 10 minutes at 9,600g, then stored 

at −80°C until analyzed. In addition, kidneys, spleen, lung, liver, and brain were removed, 

weighed; flash frozen, then homogenized in a 3-fold volume of PBS for further analysis and 

stored at −80°C. For standard curve construction, 100 µL of blank plasma (Bioreclamation, 

LLC) or tissue homogenate was infused with 2 µL of varying concentrations of MB or 

MBOS, then processed as described below. Next, 100 µL of each sample (plasma or tissue 

homogenate) was crashed with 200 µL methanol+0.1% formic acid+50 ng/mL (final 

concentration) n-benzyl benzamide internal standard, vortexed for 15 seconds, incubated at 

room temperature for 10 minutes, then centrifuged at 16,000g for 5 minutes at 4°C. 250 µL 

of supernatant was then transferred to an Eppendorf tube, centrifuged as previously 

described, then 195 µL of supernatant transferred to an HPLC vial with insert for analysis by 

HPLC-MS/MS (AB Sciex 3200 QTrap). An Agilent C18 XDB column (50 × 4.6 mm, 5 

micron packing) was used for chromatography with the following conditions: 0–1.5 minutes 

in 90% Buffer A (water+0.1% formic acid), 1.5–2 minutes in 100% Buffer B (acetonitrile

+0.1% formic acid), 2–3.5 minutes in 100% Buffer B, and 3.6–4.5 minutes in 90% Buffer A. 

MB was detected with the mass spectrometer in MRM (multiple reaction monitoring) mode 

by following the precursor to fragment ion transitions: 284.1/268.0 (intact MB) and 

270.0/254.0 (demethylated MB), while the internal n-benzyl benzamide was detected using 

a 212.1/91.1 transition. The limit of detection (LOD) was set at the standard concentration 

providing an analyte signal three-fold above blank matrix. The limit of quantification (LOQ) 

was set at the lowest standard concentration which upon back-calculation gave a measured 

concentration within 20% of nominal and which was above the LOD. Per UTSW’s lab 

SOPs, samples falling below LOQ and above LOD are assigned a value of ½LOQ. Samples 

falling below LOQ and LOD are assigned a value of 0. Tissue concentrations of MB were 

corrected by subtracting residual compound remaining in the vasculature. Reference values 

for tissue vasculature provided in Kwon, 2001 were used for this calculation [56]. 
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Pharmacokinetic parameters for MB were calculated using the noncompartmental analysis 

tool in Phoenix WinNonlin.

Statistical analysis

All data are given as the means ± S.E. The difference in significance among groups with one 

independent variable was determined by one-way ANOVA with Dunnett’s multiple 

comparisons test for intended comparisons between groups when significance was 

identified. The difference in significance among groups where two independent variables 

occurred was established by two-way ANOVA with Dunnett’s multiple comparisons test for 

arranged comparisons between groups when significance was identified. For all tests, p < 

0.05 was deemed significant.

Results and Discussion

Characterization of MBOSNPs

Following analysis of numerous batches of MBOSNPs, an average particle size of 166.95 

± 63.1 nm was determined. Based on data reported by other publications, the value of our 

nano-formulations was determined to be within an acceptable range compared to other MB- 

or MBOS-loaded nanoparticle formulations (Table 1) [57–59]. Additionally, the size 

distributions (PDI) associated with the formulations ranged from 0.287 to 0.387, allowing 

for consistent particle size within and among the batches. Due to the small size and 

relatively uniform distribution of the NP formulations, enhanced cellular uptake and rapid 

passage through the bloodstream to the target tissue is expected. Finally, the zeta potential of 

the drug-loaded nanoparticles exhibited values of approximately −32 mV (Table 1). 

Nanoparticles exhibiting surface charge values between −1 and −45 mV have been shown to 

increase the likelihood of BBB permeation, as well as enhance their stability [60]. These 

values were also determined for empty, blank nanoparticles and deemed comparable to the 

drug-loaded formulation (at −38.33 ± 11.66 mV) (Table 1). Simultaneously, the average 

drug loading and encapsulation efficiencies for MBOSNPs were also determined to be ~2% 

and 29% (Table 1), respectively. These values were also found to be comparable to 

previously published nanoformulations containing MB or MBOS [57–59].

In addition to the aforementioned physicochemical characterizations of MBOSNPs and 

BNPs, the size and surface morphology were evaluated by TEM, as illustrated in Figure 2, 

with a subsequent release kinetic profile obtained, as shown in Figure 3. From TEM 

analysis, we were able to obtain a graphical representation of the overall, and expected, 

spherical morphology of the blank and drug-loaded NPs, as well as confirm the size and size 

distribution data acquired from the previously performed physicochemical analysis. 

Following formulation and preliminary characterization of MBOSNPs, release kinetic 

studies were also performed in order to determine the peak release, as well as overall release 

profile. Several batches of drug-loaded NPs with similar physicochemical characteristics 

were analyzed to obtain uniform data. After analysis concluded at 14 days, the peak drug 

release was found to occur at 24 hours, with a gradual reduction in release over time (Figure 

3).
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MBOSNPs impair cellular metabolism in U87 and T98G cells

We assessed the effects of MB, MBOS, and MBOSNPs on metabolic processes and their by-

products at concentrations between 100 nM and 10 µM in U87 and T98G cells. In U87 cells 

treated with 10 µM MB or MBOSNP, there was a significant increase in oxygen 

consumption rates (OCR) (Figure 4B and 4C), which was not seen with the lower treatment 

concentration (Figure 4A and 4C). However, with T98G cells, the increase in OCR 

following 10 µM MB and MBOSNP treatments was more pronounced at 1.5-fold (Figure 4E 

and 4F), with an additional noted increase with both 1 µM treatments (Figure 4D and 4F).

To determine the long-term effects of MBOSNPs on cellular bioenergetics, we treated U87 

and T98G cells with 10 µM MB, MBOS, and MBOSNPs for 24, 48, or 72 hours and then 

measured ATP production (24 or 48 hours) and glucose utilization (24, 48, or 72 hours). 

ATP levels were increased in 24 hours in both cell lines with 10 µM MBOSNP, and 10 µM 

MB in U87 cells compared to control (Figure 5A and 5B). However, an increase in ATP 

production was not observed by 48 hours, possibly due to a reduction in cell viability and/or 

number. When quantifying sample glucose based on the original media glucose 

concentration (4.5 g/L), all 10 µM treatments resulted in significant increases at 48 hours 

compared to untreated cells in U87 cells (Figure 5C through 5E), but only in 10 µM MB at 

48 and 72 hours in T98G cells (Figure 5F through 5H). Cell fitness and number may also be 

implicated in the lack of significant glucose utilization after 48 hours in all 10 µM 

treatments, regardless of cell line.

MBOSNPs inhibit in vitro tumor growth

To elucidate how changes in GBM metabolism and bioenergetics following MBOSNP 

treatment influenced tumor growth, we assessed cell viability and anchorage-dependent 

colony formation in U87 and T98G cells. Based on preliminary studies (unpublished), 

neither cell line exhibited a significant reduction in cell viability until 96 hours when 

analyzing a concentration range from 100 nM to 100 µM of MB, MBOS, and MBOSNPs 

(Figure 6A and 6B). Once the IC50 dose range was narrowed down to between 10 and 100 

µM, an extended time course was performed. In T98G cells treated with 10 µM MB or 

MBOSNPs for 24 and 72 hours, there was an initial reduction in cell viability by 25% that 

stayed consistent through 144 hours with MB(OS)NP treatment, but increased by an 

additional ~50% following MB treatment (Figure 6F and 6H). However, with the same 

treatment concentration for MBOS, there was no significant reduction in T98G cell viability 

until 144 hours (Figure 6G). With U87 cells, 10 µM MB did not induce cell death until 72 

and 144 hours, with an increase in cell viability following a 24-hour treatment (Figure 6C). 

According to previously published data, low concentrations of MB have been shown to 

enhance cell viability by augmenting mitochondrial function [31], which could explain this 

observation. A similar trend in cell viability following MB treatment was also noted with 

MBOS treatments, with a reduction in cell survival not seen until 144 hours (Figure 6D). 

However, in U87 cells treated with even the lowest concentration of MBOSNPs (10 µM), a 

significant reduction in cell viability was detected at all three time points (Figure 6E). In 

both cell lines, the IC50 for MBOSNP treatment was determined to be 10 µM, which was 

observed to induce similar, if not better, reduction in cell viability when compared to free 

MB, but especially free MBOS.
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In addition to cell viability analysis, U87 and T98G cells were treated as previously 

described to determine the effects of MBOSNPs on cell proliferation. Following a 4-week 

liquid colony formation assay and subsequent examination of the average size and number 

of colonies, MBOSNP treatment was shown to be as effective as free MB, and more 

effective than free MBOS, at inhibiting cell proliferation in U87 and T98G cells at identical 

treatment concentrations (Figures 7 and 8, respectively). In both cell lines, the colonies 

obtained following 10 µM MB and MBOSNP treatments were on average fewer and smaller 

than their untreated, control cell counterparts (Figures 7 and 8). For U87 cells, both colony 

size and number were significantly reduced following 10 µM MBOSNP treatment (Figure 

7E and 7F), while only size was reduced to a comparable level by the same MB 

concentration (Figure 7A). In U87 cells treated with MBOS, little to no difference in colony 

size and number of colonies was produced regardless of treatment concentration compared 

to untreated U87 cells (Figure 7C and 7D). In T98G cells, all treatments produced similar 

outcomes as occurred with U87 cells, such that 10 µM MB significantly reduced the average 

size and number of T98G colonies (Figure 8A and 8B), while the same concentration of 

MBOSNP only significantly impacting average size, but not colony number (Figure 8E and 

8F). However, 10 µM MBOS did induce a change in average T98G colony size, but in the 

inverse direction (Figure 8C), which was also seen but with the lowest concentration in U87 

cells. Supplemental Figures 1 and 2 further illustrate the difference in average colony size 

and number of colonies for each treatment and concentration. Based on these statistical and 

graphical data, MBOSNP treatment demonstrated an ability to not only inhibit GBM cell 

viability, but also proliferation.

Bio-distribution of MBOSNPs

We further determined the bio-distribution of our nanoformulations. Following an initial 

analysis of MB and MBOS by LC-MS/MS, we found that both compounds produced 

chemical peaks at 284 and 270, but with inverted component ratios (i.e. MB had a 20:1 ratio 

of 284:270 mw species, while MBOS had a 15:1 ratio of 270:284 mw species). Through 

further evaluation, it was determined that the 284 mw species was intact MB, while the 270 

mw species was demethylated at some position on MB. While the difference in species 

ratios in MB and MBOS did not appear to result in functional inactivity in vitro, a similar 

assumption was reached in regards to in vivo effects.

Following treatment administration and tissue collection, free MB exhibited the highest drug 

concentrations across the designated time points, regardless of tissue type (Figure 9 and 

Table 2). However, due to the aforementioned issue involving the differences in mw species 

ratios for MB and MBOS, it was determined that the best comparison would be between 

concentrations of free MBOS and MBOSNPs recovered from the plasma and tissues. Upon 

doing so, it was determined that overall, MBOS exhibited better tissue accumulation 

following administration compared to MBOSNPs containing the same MBOS concentration 

(Figure 9 and Table 2). However, using the drug concentration values obtained (area under 

the curve – AUC), it was established that MBOSNPs were more effective at crossing the 

BBB than free MBOS by 1.6-fold (Table 2), due to the presence of the PF68 coating. As a 

result, this provides for a potential application for the drug-loaded NPs as a GBM therapy 

upon further formulation optimization and scale up.
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Conclusions

Due to the aggressive nature of GBM that results in sub-standard survival rates beyond two 

years, development of new therapies is required in order to more effectively treat the disease. 

While a cure for GBM is unlikely in the near future, advancements toward better identifying 

genes responsible for its growth and progression are possible. As a result, the utilization of 

formerly rejected compounds could be beneficial in treating GBM, if proper delivery 

systems are employed.

In this study, we were able to repurpose the photosensitizer methylene blue as a potential 

GBM chemo-therapeutic, by encapsulating it within nanoparticles composed of the synthetic 

co-polymer, PLGA. These NPs, which were formulated through solvent displacement, were 

coated with PF68 to enhance BBB passage, and then analyzed by DLS for particle size, size 

distribution (PDI), and zeta potential (surface charge). Additionally, particle size and surface 

morphology were analyzed by TEM, with drug loading and encapsulation efficiency 

performed by UV-Vis at 645 nm. The resultant drug-loaded PLGA NPs obtained were below 

size restrictions for passage across the BBB (<200 nm), which was confirmed by their 

enhanced ability to permeate the BBB compared to free MBOS and accumulate in the brain 

tissue, even at lower concentrations than free MBOS. Furthermore, MBOSNPs induced 

comparable, if not better, levels of cell death and inhibition of cell proliferation to free MB 

and MBOS, while inducing similar or greater degrees of cellular and metabolic changes in 

U87 and T98G cells in vitro, demonstrating their potential application as a treatment for 

GBM.

However, due to the variability in mw species ratios between MB and MBOS/MBOSNPs, a 

definitive comparison of their accumulations was not possible. Thus, this precluded an 

accurate determination of the effectiveness of MBOSNPs compared to free drug in vivo. 

With that said, we were able to determine that MBOSNPs were more efficient at permeating 

the BBB than free MBOS, establishing their potential application as a neuro-therapeutic for 

GBM. However, toxicological studies on free MBOS (and MBOSNPs) are imperative, as 

there is currently no data available on how the compound might affect animals, and 

ultimately humans, upon administration. Nevertheless, a forthcoming xenograft mouse 

model study is necessary to fully elucidate if the outcomes demonstrated in cultured cells 

could be translated into a tumor-bearing animal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic representation of MBOSNPs. MBOS, produced by chloroform extraction to 

reduce water solubility and release, was encapsulated within the co-polymer PLGA via 

solvent displacement, and subsequently coated with the surfactant Pluronic F68 and 

lyophilized. Abbreviations: MBOSNPs, methylene blue oleate salt-loaded nanoparticles; 

MBOS, methylene blue oleate salt; PLGA, poly (D,L-lactide-co-glycolide).
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Figure 2. 
TEM images of Blank NPs (A) and MBOSNPs (B). Lyophilized NPs were resuspended in 

DDI H2O, then further diluted 1:10 in DDI H2O and processed by negative staining for 

analysis. Both sets of NPs display a spherical shape with a dark, outer ring depicting the 

Pluronic F68 layer and lighter, inner core of PLGA. Scale bar set to 100 nm. Abbreviations: 

MBOSNPs, methylene blue oleate salt-loaded polymeric nanoparticles; NPs, nanoparticles; 

DDI, distilled, deionized; PLGA, poly (D,L-lactide-co-glycolide).
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Figure 3. 
Cumulative Release Kinetic Profile of MBOS from MBOSNPs. Following addition of drug-

loaded NPs to PBS in 8MWCO dialysis tubing, PBS from “sink” was collected at the 

designated time points at 28°C under constant stirring. Peak release occurred at 24 h (~16%) 

and gradually decreased until final sample collection at 14 days. Decrease in MBOS release 

possibly due to conversion of MBOS to MB, then LMB due to exposure to light, resulting in 

variability in quantified concentration by UV/Vis spectrophotometry. Inset graph illustrates 

%MBOS release values between 0 and 24 hours. N=3. Abbreviations: MBOS, methylene 

blue oleate salt; MBOSNPs, methylene blue oleate salt-loaded polymeric nanoparticles; 

NPs, nanoparticles; PBS, phosphate buffered saline; MB, methylene blue; LMB, 

leucomethylene blue.
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Figure 4. 
MBOSNPs increase OCR in U87 and T98G cells. A and B, OCR of U87 cells following 1 

and 10 µM treatments, including BNPs, respectively. C, MB and MB (OS) NPs significantly 

increased U87 cell OCR at 10 µM. D and E, OCR of T98G cells following 1 and 10 µM 

treatments, including BNPs, respectively. F, MB and MBOSNPs significantly increased 

T98G cell OCR at 1 and 10 µM. N=3. *p<0.05 and ****p≤ 0.0001 by 1-way ANOVA and 

Dunnett’s multiple comparisons test. Abbreviations: MBOSNP, methylene blue oleate salt 

loaded polymeric nanoparticles; OCR, oxygen consumption rate; BNPs, blank polymeric 

nanoparticles.
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Figure 5. 
MBOSNPs alter cellular bioenergetics. A, MB and MBOSNPs increased ATP production at 

24 h in U87 cells. B, MBOSNPs increased ATP production at 24 h in T98G cells. C–E, 

Effects of varying concentrations of MB, MBOS, and MBOSNPs on glucose quantification 

in U87 cells at 24, 48, and 72 h. F–H, Effects of varying concentrations of MB, MBOS, and 

MBOSNPs on glucose quantification in T98G cells at 24, 48, and 72 h. N=4. *p<0.05, **p ≤ 

0.01, ***p ≤ 0.001 by 2-way ANOVA and Dunnett’s multiple comparisons test. 

Abbreviations: MBOSNPs, methylene blue oleate salt-loaded polymeric nanoparticles; MB, 

methylene blue; ATP, adenosine triphosphate; MBOS, methylene blue oleate salt.
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Figure 6. 
MBOSNPs inhibit U87 and T98G cell survival. A and B, Cell survival analysis at 96 h post 

treatment in U87 and T98G cells, respectively. C–E, U87 cell survival following varying 

MB/MBOS/MBOSNP treatment concentrations at 24, 72, and 144 h. C, Reduction in 

viability not noted at lowest concentration (10 µM) until 72 h. D, U87 cell viability reduced 

at lowest concentration at 144 h. E, U87 cell viability reduced at lowest concentration 

beginning at 24 h. F–H, T98G cell survival following varying MB/MBOS/MBOSNP 

treatment concentrations at 24, 72, and 144 h. F, T98G viability reduced at lowest 

concentration beginning at 24 h, with drastic reduction at 144 h. G, T98G viability not noted 
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until 144 h H, T98G cell viability reduced following lowest treatment concentration starting 

at 24 h, with drastic reduction at 144 h. Based on these data, the IC50 for MBOSNP was 10 

µM. Additionally, MBOSNP treatment seemed to demonstrate a comparable, if not more 

effective, reduction in cell viability to free MB. N=6. Abbreviations: MBOSNPs, methylene 

blue oleate salt-loaded polymeric nanoparticles; MB, methylene blue; MBOS, methylene 

blue oleate salt.

Castañeda-Gill et al. Page 21

J Nanomed Nanotechnol. Author manuscript; available in PMC 2017 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
MBOSNP treatment inhibits U87 cell proliferation. A, 10 µM MB treatment significantly 

reduced average colony size compared to control. B, 10 µM MB treatment reduced average 

number of U87 colonies. C, 100 nM, but not 1 or 10 µM MBOS, treatment significantly 

reduced average colony size compared to control. D, MB treatment all concentrations had no 

effect on average number of U87 colonies. E, 10 µM MBOSNP treatment significantly 

reduced average colony size compared to control. F, 10 µM MBOSNP treatment reduced 

average number of U87 colonies. N=3. **p ≤ 0.01, ***p ≤ 0.001 by 1-way ANOVA and 
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Dunnett’s multiple comparisons test. Abbreviations: MBOSNP, methylene blue oleate salt-

loaded polymeric nanoparticles; MB, methylene blue; MBOS, methylene blue oleate salt.
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Figure 8. 
MBOSNP treatment inhibits T98G cell proliferation. A, 10 µM MB treatment significantly 

reduced average colony size compared to control. B, 10 µM MB treatments significantly 

reduced average number of T98G colonies. C, 10 µM MBOS treatment significantly 

increased average colony size compared to control. D, MB treatment all concentrations had 

no effect on average number of T98G colonies. E, 10 µM MBOSNP treatment significantly 

reduced average colony size compared to control. F, 10 µM MBOSNP treatments reduced 

average number of T98G colonies. N=3. *p<0.05, **p ≤ 0.01 by 1-way ANOVA and 
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Dunnett’s multiple comparisons test. Abbreviations: MBOSNP, methylene blue oleate salt-

loaded polymeric nanoparticles; MB, methylene blue; MBOS, methylene blue oleate salt.
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Figure 9. 
Bio-distribution of MB, MBOS, and MBOSNPs at 8 mg/kg (8 mpk) drug concentration. 

Following administration of each treatment, blood and tissues were collected from CD-1 

mice and analyzed by LC-MS/MS for 284 and 270 mw species (intact versus demethylated 

MB) at designated time points. The ng/mL or g drug concentrations per plasma volume or 

tissue weight, respectively, was obtained and plotted according to WinNonlin 

Noncompartmental PK parameters. In all samples, free MB had the highest concentration, 

followed by free MBOS, then MBOSNPs. Abbreviations: MB, methylene blue; MBOS, 

methylene blue oleate salt; MBOSNPs, methylene blue-oleate salt loaded polymeric 
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nanoparticles; mpk, mg/kg; LC-MS/MS, liquid chromatography-mass spectrometry/mass 

spectrometry (liquid chromatography tandem mass spectrometry); mw, molecular weight; 

PK, pharmacokinetics.
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Table 2

PK study values for area under the curve (AUC) in min.ng/mL for plasma or min.ng/g for tissues.

Tissue MB MBOS MBOSNP

Plasma 127,828 ± 7,507 52,659 ± 3,247 14,358 ± 1,109

Brain 7,626,056 ± 340,435 333,423 ± 46,799 142,258 ± 8,764

Liver 2,391,840 ± 162,972 172,265 ± 12,683 149,236 ± 5,744

Kidney 1,230,440 ± 40,621 423,681 ± 36,095 189,473 ± 6,653

Spleen 500,163 ± 41,386 244,660 ± 25,905 101,203 ± 15,207

Lung 765,373 ± 39,324 939,911 ± 76,188 187,453 ± 16,075
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