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Abstract

Characteristics of the new phenotypic variation introduced via mutation have broad implications in evolutionary and medical genetics.
Standardized estimates of this mutational variance, VM, span 2 orders of magnitude, but the causes of this remain poorly resolved. We in-
vestigated estimate heterogeneity using 2 approaches. First, meta-analyses of �150 estimates of standardized VM from 37 mutation accu-
mulation studies did not support a difference among taxa (which differ in mutation rate) but provided equivocal support for differences
among trait types (life history vs morphology, predicted to differ in mutation rate). Notably, several experimental factors were confounded
with taxon and trait, and further empirical data are required to resolve their influences. Second, we analyzed morphological data from an
experiment in Drosophila serrata to determine the potential for unintentional heterogeneity among environments in which phenotypes
were measured (i.e. among laboratories or time points) or transient segregation of mutations within mutation accumulation lines to affect
standardized VM. Approximating the size of an average mutation accumulation experiment, variability among repeated estimates of (accu-
mulated) mutational variance was comparable to variation among published estimates of standardized VM. This heterogeneity was (par-
tially) attributable to unintended environmental variation or within line segregation of mutations only for wing size, not wing shape traits.
We conclude that sampling error contributed substantial variation within this experiment, and infer that it will also contribute substantially
to differences among published estimates. We suggest a logistically permissive approach to improve the precision of estimates, and conse-
quently our understanding of the dynamics of mutational variance of quantitative traits.
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Introduction
The magnitude of per-generation increase in genetic variance

due to spontaneous mutations (VM) is important for a wide range
of genetic and evolutionary phenomena, including the mainte-

nance of quantitative genetic variance (Lynch 1988; Barton and

Turelli 1989; Johnson and Barton 2005). Much of our understand-
ing of VM comes from mutation accumulation (MA) experiments,

where populations diverge phenotypically due solely to the neu-
tral fixation of new mutations (Mukai 1964; Halligan and

Keightley 2009). Reviews of MA experiments in a range of traits

and taxa have reported that mutation increases phenotypic vari-
ance in quantitative traits by 10�4–10�2 times the environmental

variance of the trait, or 0.02–5.1% of the trait mean per generation

(Houle et al. 1996; Lynch et al. 1999; Halligan and Keightley 2009).
Differences in VM may cause differences in the magnitude of

standing quantitative genetic variation and, ultimately, in rates

of phenotypic evolution (Houle 1998; Lynch et al. 1999; Houle et al.
2017; Walsh and Lynch 2018). However, the causes of variation

among estimates of VM, and thus the evolutionary interpretation
of this variability, are not well resolved.

Mutation rate is known to vary widely among species

(reviewed in Katju and Bergthorsson 2019), with further opportu-

nity for differences in per-generation mutation number arising

through differences in ploidy, genome size, and/or effective popu-
lation size (Lynch et al. 1999; Lynch 2010; Sung et al. 2012). Marked
variation in mutation rate has also been observed within species,
both among replicated MA experiments (i.e. different founder
genotypes: Ness et al. 2012; Sung et al. 2012; Schrider et al. 2013;
Ho et al. 2020) and among lines within a single MA panel (Huang
et al. 2016; Ho et al. 2020). Resulting differences in mutation num-
ber may explain variation in VM estimates, such as, for example,
the 4-times difference in h2

M of body size estimated for different
MA in Caenorhabditis elegans (Azevedo et al. 2002; Estes et al. 2005;
Ostrow et al. 2007).

Traits have also been hypothesized to differ in magnitude of
VM due to differences in mutation rate, arising due to differences
in the number of contributing loci. Specifically, life history traits
are hypothesized to be affected by more loci than morphological
traits (Houle 1991, 1992, 1998; Houle et al. 1996; Merilä and
Sheldon 1999). The magnitude of VM depends not only on the rate
of mutation, but also on their effects, and the relationship be-
tween rate and effect size is not well characterized. Besnard et al.
(2020) demonstrated that the high mutational variance (and rela-
tively rapid evolution) of a vulval phenotype in nematodes was
due to a broad mutational target size, rather than large-effect
mutation. Whether trait types differ systematically in mutational
target size is difficult to assess, as a full catalog of causal loci is
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unknown for most quantitative traits (Barton and Keightley 2002;
Mackay et al. 2009; Yang et al. 2010; Rockman 2012). Indeed,
emerging evidence that diverse traits, including morphology, are
all highly polygenic (Yang et al. 2010; Boyle et al. 2017) suggests
that differences in the distribution of mutational effect sizes
(Simons et al. 2018), rather than simply in number of contributing
loci, might cause heterogeneity in estimates of VM among traits.

Comparison among trait types is complicated by differences
among them in variability and measurement scale, which may
influence standardized values. Low mutational heritability (h2

M ¼
VM/VE, where VE is the environmental variance) of life-history
traits relative to morphological traits has been attributed to
greater environmental variance (larger VE) for life-history traits,
rather than lower VM (Houle et al. 1996). Thus, comparison on the
coefficient of mutational variance scale (CVM; 100 �

ffiffiffiffiffiffiffi
VM
p

=X,
where X is the trait mean) reveals a different picture, one of
greater mutational variance in life history than morphological
traits, consistent with the prediction of greater mutational target
size (Houle et al. 1996).

Other contributions to variation in magnitude of VM might be
revealed by consideration of the MA experimental design itself.
The timeframe over which mutations accumulate might influ-
ence estimates of VM. When MA lines are established from a ho-
mozygous (heterozygous) base population, estimates of VM will
be downwardly (upwardly) biased before 6 Ne generations (Lynch
and Hill 1986). However, VM is typically estimated after > 6 Ne

generations, suggesting limited contribution of ancestral varia-
tion to variability of VM. Conversely, long-running MA experi-
ments might under-estimate VM when the cumulative effect of
low fitness mutation causes line extinction, or within-line selec-
tion against further accumulation (Lynch et al. 1999; Estes et al.
2004; McGuigan and Blows 2013). A decline in VM over time has
been observed in some studies (Mackay et al. 1995), but not in
others (Garc�ıa-Dorado et al. 2000; Hall et al. 2008).

Stochastic sampling from the distribution of mutational
effects could also introduce temporal heterogeneity among esti-
mates of VM. For example, among-line variance estimated before
vs after a line(s) fixed a large effect mutation(s) could result in in-
ference of a much larger per-generation increase in variance at
the second time-point relative to the first. Transient within-line
segregation of mutations might generate variability in estimates,
for example causing temporary inflation of within-line variance
(VE), impacting power to detect among-line variance, and poten-
tially biasing estimates of h2

M (downward) and CVM (upward; see
Hoffmann et al. 2016). Notably, several studies in nematode have
suggested that within-line variance increased over the duration
of the MA experiment (Baer 2008; Baer et al. 2010; Braendle et al.
2010), which may contribute to a pattern of lower estimated VM

in longer-running MA experiments.
Environmental context within which MA lines are assayed

could also contribute to variation among VM estimates. Several
studies have considered the effect of replicable, experimenter-
imposed, changes in the environment, including in temperature
(Wayne and Mackay 1998), light (Kavanaugh and Shaw 2005),
and density (Fry et al. 1996). Although the magnitude of VM often
varies under such environmental manipulations, there is only
weak evidence for predicable patterns, such as novel or stressful
environments increasing the magnitude of VM (Kondrashov and
Houle 1994; Martin and Lenormand 2006). Even in carefully con-
trolled laboratory experiments, factors such as food quality or
quantity, light, humidity and diurnal timing of collection will
vary among individuals or lines within a phenotyping assay, and

among assays conducted in different laboratories or at different
times within the same laboratory. Such variation may impact
estimates of standardized VM through inflation of within-line var-
iance, similar to the effect of transient, within-line segregation of
new mutations. Furthermore, if MA lines differ in their response
to this unintended environmental heterogeneity, then genotype
by environment (G�E) variance could contribute variation among
MA lines, and variability among estimates of VM, a potential
source of variation that has received little attention (but see
Garc�ıa-Dorado et al. 2000).

Here, we combined 2 approaches to investigate causes of vari-
ability in estimates of mutational variance. Given that it has been
over 20 years since this variability has been broadly documented
and investigated (Houle et al. 1996; Houle 1998; Lynch et al. 1999),
we first conducted a meta-analysis to update tests of the previ-
ously implicated causal factors of taxon (Lynch and Walsh 1998;
Lynch et al. 1999; Halligan and Keightley 2009) and trait type
(Houle et al. 1996; Houle 1998). We had intended to examine how
the number of generations affected VM (Lynch and Hill 1986;
Mackay et al. 1995), but MA duration was confounded with taxon
(detailed in the Results). Second, we conducted a new empirical
experiment in Drosophila serrata, in which we repeatedly estimate
the among-line (mutational) variance to investigate whether
unintended environmental heterogeneity, or transient within-
line segregation of mutations can contribute variation among
estimates. After accounting for these effects within the data, we
finally quantify the magnitude of variation among estimates
from a set of 10 wing shape traits to characterize the magnitude
of variation among estimates within a trait category.

Methods
Meta-analysis of empirical estimates of
mutational variance
Literature search
We extracted all studies in 7 reviews of mutational variance:
Lynch (1988), Keightley et al. (1993), Houle et al. (1996), Lynch and
Walsh (1998), Lynch et al. (1999), Halligan and Keightley (2009),
and Walsh and Lynch (2018). We then searched the Web of
Science database on 11/12/2019 at 4:38 p.m. AEST for journal arti-
cle document types meeting the topic criteria of “MA” and (varia*
or “mutat* coefficient*”) and published between 1998 and 2019.
These years overlapped Halligan and Keightley (2009) (fitness
traits only) and Walsh and Lynch (2018) (brief update on Lynch
and Walsh 1998), allowing us to capture papers that may have
been excluded from those reviews, as well as those published
subsequently.

Further details on the papers identified and preliminary han-
dling steps can be found in Supplementary Fig. 1. For 473 unique
papers identified, we screened titles and abstracts, then the full
text, for relevance, applying 4 strict criteria, retaining only stud-
ies where the estimates of mutational variance were: (1) quanti-
tative; (2) from spontaneous MA; (3) from MA environmental
conditions; and (4) not re-reporting of previously published esti-
mates. We excluded 6 studies of transcriptomic data as the num-
ber of traits was much larger than for other trait categories.

Meta-analysis data collection
For each of the 65 papers retained after applying the above crite-
ria, mutational parameter estimates were extracted (as described
in Supplementary Table 1), associated with taxon and trait iden-
tifiers, and details of the experimental design. Twenty papers not
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reporting error for the mutational parameters were excluded
(Supplementary Table 1c). Following initial qualitative assessments
of data, we excluded 5 studies (15 traits) due to low representation
of taxon type (one vertebrate, Mus musculus; 1 alga, Chlamydomonas
reinhardtii, and; 2 non-Drosophila insects: Daktulosphaira vitifoliae and
Nasonia vitripennis), and 1 study due to low representation of trait
type: mitotic cell division traits (Supplementary Table 1b).

Where possible, we extracted (or calculated from provided in-
formation) both the coefficient of variance (CVM; 100 �

ffiffiffiffiffiffiffi
VM
p

=X,
where X is the trait mean) and mutational heritability (h2

M; VM/VE,

where VE is the environmental variance) for each trait. As de-
tailed below, estimates were weighted by the inverse of their
standard error (SE) in the meta-analysis. Where these were not
reported for h2

M or CVM, but were for VM and VE or X, we used a
sampling approach to obtain estimates. We sampled from N � (ĥ,
V) 10,000 times, using the rnorm function in R [v. 3.6.1], where ĥ

and V were respectively the reported parameter value and its SE.
We then calculated CVM or h2

M for each of these simulated sam-
ples, and obtained the SE of this sample of estimates. Samples
with negative values of VM are undefined for CVM; to ensure unbi-
ased estimates of the magnitude of error we calculated CVM as:
100 x sign of VM

� �
x

ffiffiffiffiffiffiffiffiffiffi
VMj j

p
=X. This sampling approach was used

to estimate the error for 28% of the h2
M estimates and 61% of the

CVM estimates analyzed (Supplementary Table 1a). Two studies
(17 estimates) were excluded due to nonsensically large SE esti-
mates, while a further 3 estimates (from 3 studies) were excluded
due nonsensical scaled parameter estimates (detailed in
Supplementary Table 1b). Two extreme values (>3 SD) of h2

M and
2 of CVM were excluded from the analyses (Supplementary Table
1b). There were 11 cases with extremely small SE (>5 IQR below
the median); notably, 6 of these came from studies where confi-
dence intervals (CIs) were constrained to be positive, suggesting
that this boundary condition had reduced the SE estimate, inflat-
ing meta-analysis weights for traits where the mutational vari-
ance was not supported. These outliers were excluded from
analyses, although results and conclusions were qualitatively
consistent when they were included.

Predictor variables for the meta-analysis
Estimates came from 11 species, and based on the distribution of
estimates, we defined 5 taxon categories (Fig. 1a): Daphnia
(Daphnia pulex only); Drosophila (Drosophila melanogaster [n¼ 68]
and D. serrata [n¼ 5]); Plant (Arabidopsis thaliana [n¼ 12], Amsinckia
douglasiana [n¼ 2] and Amsinckia gloriosa [n¼ 1]) and; Nematode
(C. elegans [n¼ 62], C. brenneri [n¼ 4], C. briggsae [n¼ 8], C. remanei
[n¼ 5], and Oscheius myriophila [n¼ 5]). We differ from a previous

study Houle et al. (1996, 1998) in considering size of juveniles as

morphological (not growth) traits. Reflecting more recent publi-

cations, we defined a physiology category (33% of estimates;

Fig. 1b), which included locomotive, enzymatic and metabolic ac-

tivity traits (Supplementary Table 2), which may differ from life-

history or morphological traits in mutational target size or

environmental sensitivity. We assigned the relatively well-

represented life-history traits (52% of estimates; Fig. 1b) into

more narrowly defined subcategories: total fitness, survival, pro-

ductivity, and a miscellaneous category (capturing traits such as

development time, phenology, longevity and mating success,

which were individually less well represented) (Fig. 1b;

Supplementary Table 2).

Meta-analyses of mutational variance estimates
We implemented a mixed model analyses via PROC MIXED in

SAS v.9.4 (SAS Institute Inc., Cary, N.C.), using restricted-

maximum likelihood (REML) and applying the Satterthwaite ap-

proximation to correct the denominator degrees of freedom, to fit

the model:

yijkl ¼ lþ Taxoni þ Traitj þ Studyk þ eijkl; (1)

where y was the vector of published estimates (either h2
M or CVM),

and l was the grand mean; the categorical predicators of taxon

and trait (defined above) were fit as fixed effects. Estimates were

weighted by the inverse of the SE of h2
M or CVM, obtained as de-

tailed above. The study was fit as a random effect, accounting for

nonindependence among estimates within a paper (1–29 esti-

mates per study; median¼ 3). Studies reporting multiple esti-

mates varied widely in whether these were estimates from

different trait types, species (strains), sexes, or time points. Likely

reflecting this, most variation not accounted for by the fixed

effects was observed at the residual, not study, level (99% for h2
M;

85% for CVM). Similarly, while some studies shared the same MA

lines (Supplementary Table 3) fitting a further random effect to

account for this nonindependence did not explain any variation,

a likely consequence of both the unbalanced design (only some

studies share lines), and the relative variation of estimates. We

investigated different options for fitting heterogenous residuals

(e.g. allowing separate estimation of residuals for studies grouped

depending on the number of estimates reported), but interpreta-

tion of the fixed effects (taxon and trait) were consistent across

all investigated models, and we report results only from model

(1) above.

Daphnia (2, 21)

Drosophila (19, 72)Nematode (11, 84)

Plant (5, 15) Fitness (10, 27)

Miscellaneous (9, 17)

Morphology (10, 29)

Physiology (5, 63)

Productivity (16, 35)

Survival (13, 21)
(a) (b)

Fig. 1. The distribution of published estimates of mutational variance across taxon (a) and trait (b) categories. The number of studies (first value in
brackets) and estimates (second value) per category are shown. See Methods (and Supplementary Table 2) for details of the categories and
Supplementary Table 1 for the studies.
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Variation in estimates of among-line variance
within the same taxon and trait type: an
experiment in D. serrata
To what extent do differences in magnitude among estimates of
VM reflect differences in mutation number and/or effect sizes
(correlated with the above-investigated proxies of taxon and
trait), vs factors such as mutations segregating within MA lines
or environmental dependency of mutational effects? We con-
ducted a further experiment to address this question. Drosophila
serrata is a member of the montium species group, endemic to
Australia and Papua New Guinea, which has been extensively
used in quantitative genetic research, including study of muta-
tional variance (e.g. McGuigan and Blows 2013; Hine et al. 2018;
Dugand et al. 2021). A panel of 200 MA lines was founded from
one of the D. serrata reference genome panel (DsRGP) lines de-
scribed in Reddiex et al. (2018). These MA lines were each main-
tained by brother-sister inbreeding for 20 generations, following
protocols established by McGuigan et al. (2011) to minimize selec-
tion. Genome-wide heterozygosity was very low (0.3%) in the
DsRGP line that founded the MA lines, and among-line variance
for wing traits (defined below) was not statistically supported in
the first generation of the MA (S. Chenoweth, pers. comm.).

As detailed below, we applied an experimental design to this
MA panel that allowed us to generate repeated estimates of the
magnitude of among-line variance over 6 sequential generations,
and characterize the relative contribution to differences among
these sequential estimates of (1) mutations segregating within
the MA lines or (2) unintentional variation in environment. We
randomly chose 42 of the MA lines for this investigation based on
the median number of MA lines in the reviewed published studies
(see Results). The number of MA lines is the relevant degrees of
freedom for the among-line variance, and this value (42) allows
us to consider the other 2 effects against a relevant level of sam-
pling error. Quantitative genetic parameters are associated with
large sampling errors (Klein et al. 1973; Klein 1974; Lynch and
Walsh 1998), and the relatively low signal (i.e. few genetic
differences) among MA lines will make mutational variance
particularly vulnerable to “noisy” estimation, and as such, it is
important to document the potential for statistical sampling
error to contribute to the observed variation among published
estimates.

There were 3 key aspects of the experimental design that
allowed us to test whether segregating variation or unintended
environmental variation could explain differences among re-
peated estimates of among-line variance. First, we increased the
population size within each MA line to a minimum of 12 males
and 12 females (Fig. 2a). Empirical evidence suggests that popula-
tion sizes as low as 10 may be sufficient to prevent fixation of
mutations (Estes et al. 2004; Katju et al. 2015; Luijckx et al. 2018).
Therefore, we expect no ongoing fixation of mutations among
lines during this experiment, and for the repeated estimates of
among-line variance to be true replicate sampling of the same
mutations (but also test this assumption, as detailed below). We
note that these changes in census population size complicate cal-
culation of a per-generation rate of increase in phenotypic vari-
ance (Lynch and Hill 1986; Lynch and Walsh 1998); here, we
instead focus on the among-line variance, VL, and do not inter-
pret a per-generation rate of change.

The second key aspect of the experimental design was to ma-
nipulate the mutation-selection-drift dynamics within an MA
line; this was achieved by imposing 2, substantially different,
population sizes on sublines of each of the 42 MA lines (N¼ 24 vs

288 flies, referred to hereafter as small, S, and large, L, population

size treatments: Fig. 2a). Segregating variants within MA lines (i.e.

mutations that have not yet been fixed or lost) could cause tran-

sient inflation of among and/or within line variance (VE), impact-

ing on both the estimation and scaling of VL, and this

manipulation allowed us to determine the magnitude of this

effect. The treatments contrast deterministic evolution of muta-

tions with relatively strong (s > � 0.038: Ne � 13), vs weak

(s> 0.003: Ne � 158) fitness effects, based on s¼ 1/2 Ne (Wright

1931; Kimura 1983) and genomic estimates of Ne in MA lines of

D. melanogaster maintained similarly to our small population size

treatment (10 males and 10 females: Huang et al. 2016). The S and

L treatments therefore had different opportunities for new muta-

tions to increase in frequency within a line, and thus for the mag-

nitude of within-line variance.
The final key aspect of the experimental design was the re-

peated measures themselves, allowing us to observe the effect of

environmental variation on among-line variance. If the pheno-

typic effects of a mutation are context-dependent (i.e. exhibit

G�E variance), then unintended differences in assay conditions

could contribute heterogeneity among estimates when pheno-

typic data is collected at different timepoints (or in different labo-

ratories). We randomly sampled the average environmental

conditions present within our laboratory by repeatedly sampling

the lines (genotypes) over 6 consecutive generations. Thus, our

experiment consisted of applying 2 population size treatments (S,

L) to each of 42 lines (derived from a classical MA experiment,

with low among-line variation), where these 84 lines were main-

tained under the same conditions (12 flies per sex per vial found-

ing each generation, with S and L differing in the number of vials)

for 6 generations (Fig. 2a). As detailed below, we consider 11 wing

shape and size traits. This allows us to understand the general

influences of segregating variation, environment and sampling

error for a set of related morphological traits. After accounting

for the 3 factors that are the main focus of the investigation, we

also determine whether the magnitude of VL varies among these

traits, allowing insight into potential magnitude of differences

in mutational variance among traits within the same category

(morphology).

Data collection
Each generation, 12 males (6 from each of 2 rearing vials) from

each of the 84 sublines were randomly sampled for wing pheno-

types (Fig. 2). Wings were mounted on microscope slides and

photographed using a Leica MZ6 microscope camera and the

software LAS EZ v2.0.0 (Leica Microsystems Ltd, Switzerland). A

total of 5,135 wings were landmarked for 9 positions, defined by

wing vein and margin intersections (Fig. 2b), using the software

tpsDIG2 (Rohlf 2013). The number of wings were evenly distrib-

uted across treatments (2,583 in S and 2,552 in L) and generations

(�425 per generation, per treatment). Landmarks were aligned

using a General Procrustes fit in tpsRelw (Rohlf 2007). Centroid

size (CS), the square root of the sum of squared deviations of the

coordinates from the centroid (Rohlf 1999), was recorded as a

metric of wing size. The aligned X-Y coordinates for each land-

mark were then used to calculate 10 inter-landmark distances

(ILDs) (Fig. 2b). ILDs scores were re-scaled prior to analysis (multi-

plied by 100) to aid model convergence. Outliers >3.0 SD from the

mean were removed for each of the 11 traits (10 ILD and size)

(329 measures across the 56,485 total measures).
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Analyses of variation in among-line variance estimates
Our experimental design allows us to repeatedly estimate vari-
ance among MA lines under conditions where we expect the
number of mutations fixed among the lines, and their phenotypic
effects, to be constant, and thus to investigate other potential
causes of variability in estimates. We first treat the data from
each generation and population size treatment as independent
experiments of similar size (number of lines and individuals sam-
pled per line) to typical MA experiments. To estimate among line
variance from these 12 “experiments” for each of the 11 traits we
fit the following model using REML in PROC MIXED in SAS v9.4
(SAS Institute Inc., Cary, NC.):

yklm ¼ lþ Linek þ ViallðkÞ þ eklm (2)

where yklm was the trait value for the mth wing (individual), from
the lth vial, within the kth line, l was the mean value of these
observations; Line and replicate rearing Vial (nested within line)
were fit as random effects, along with the among-individual vari-
ation (residual error, e). We used REML-MVN sampling (Meyer
and Houle 2013; Houle and Meyer 2015; Sztepanacz and Blows
2017) to estimate CIs, sampling 10,000 times from N � (ĥ, V) using
the rnorm in R [v. 3.6.1], where ĥ was the vector of REML random
effect parameter estimates, and V was their inverse Fisher infor-
mation matrix, I(ĥ)�1. We similarly estimated the CIs for the trait
mean, sampling based on least-squares mean and SE estimates
output from model (2). The samples of random effect variances
were not constrained to the parameter space (i.e. could be nega-
tive), allowing inference of statistical support when the lower 5%
CI did not encompass zero (a 1-tailed test); this approach is equiv-
alent to a log likelihood ratio test (LRT) (Dugand et al. 2021). Here,
we are interested in general patterns of variability among these
12 “experiments,” and thus do not correct for multiple testing.

As detailed in the Results, substantial heterogeneity in magni-
tude was observed among the 12 replicate estimates of VL per trait.
We considered the potential contribution to this heterogeneity from
unintentional heterogeneity in the culture conditions among sam-
pling time points (generations) or between replicate measures of
the same MA line within a generation (the S and L treatments).
First, to determine if simple effects of variability in culture

conditions on trait scale could account for the variability of among-
line (mutational) variation, we placed estimates on a heritability
(VL/VE where VE was the sum of among and within vial variances) or
coefficient of variance (100 �

ffiffiffiffiffiffiffiffi
VLj j

p
=X) scales, and calculated con-

fidences intervals by applying these equations to each of the 10,000
samples described above (and applying the sign correction for coef-
ficients of variance as detailed in the meta-analysis methods). We
further explored the relationship between VL and the scaling
parameters by regressing the 12 estimates of VL on the correspond-
ing estimates of VE or trait mean.

Second, we determined whether mutational effects changed
in response to the unintended changes in culture conditions,
with such G�E causing differences among sequential estimates
of VL. Therefore, we extended this investigation, following Garc�ıa-
Dorado et al. (2000) in treating different generations as different
environments to formally test the null hypothesis that there was
no G�E variance within the S or L treatments, using PROC MIXED
and REML to fit:

yjklm ¼ lþ Gj þ Linek þ ðG� LineÞjk þ ViallðjkÞ þ ejklm (3)

where the fixed effect of generation (G) accounted for differences in
trait mean among generations and the random effect of
G(eneration) � Line estimated the variation in genetic effects
among generations (where generations represent different local
environments). For the component of VE (i.e. Vial and residual),
generation-specific effects were modeled (using the GROUP state-
ment) to account for among-generation heterogeneity in the magni-
tude of VE. This model was applied to each trait within each
population size treatment, and statistical support for G � Line (and
for Line) was determined using log-LRTs (0.5 d.f.: Self and Liang
1987; Littell et al. 2006) to compare model (3) to reduced models that
did not fit G � Line (or did not fit Line). We applied the Benjamini-
Hochberg method (Benjamini and Hochberg 1995) to correct for
multiple hypothesis testing (within each random effect), using a
conservative 5% false discovery rate (FDR). Sampling based on the
REML variance estimate and the Fisher information matrix, as de-
tailed above, was used to estimate CIs for plotting.

While nonzero generation by line variance could reveal the pres-
ence of environment-specific mutational effects, it could alterna-
tively be explained by changes in the frequency at which mutations
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Fig. 2. Schematic of design (a) and phenotypes (b) from a manipulative experiment in D. serrata. (A) 42 MA lines (evolved through 20 generations of
brother-sister mating) each founded 2 sublines: Small (S; 12 virgin males and 12 virgin females) and Large (L; 144 virgin males and 144 virgin females,
distributed evenly among 12 vials). These 84 lines (S and L subline per 42 MA lines) were maintained at these census population sizes for 6 generations
(only 2 shown here). Each generation, all emergent flies from the 12 vials per L subline were pooled prior to virgin collection. For S sublines, 2 vials were
established each generation; the focal vial contributed offspring to the next generation, while the replicate vial (gray shaded) did not. Each generation,1
wing was sampled from each of 6 randomly chosen males from each of 2 vials per line (focal and replicate vials for S; randomly chosen 2 for L). (B) Wing
size and shape were characterized from landmarks recorded on an image of each wing: proximal (1) and distal intersections of the radial vein (2); distal
intersections of medial (3), cubital (4), and distal (5) veins and; the posterior (6, 7) and anterior (8, 9) cross-veins. ILD traits were described by their end-
point landmarks (e.g. ILD1.2 was the distance between landmark 1 and landmark 2).
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were segregating within or among lines. In contrast to environmen-
tal heterogeneity, we expect these evolutionary processes to sys-
tematically differ between the 2 population size treatments due to
the different efficacy of selection in the S vs L sublines, and the
independent sampling of mutations in the sublines after they were
established. Differences between S and L are predicted to increase
with increasing time since divergence. For each of the 11 traits, we
analyzed all data (from both L and S) collected within a single gen-
eration, using PROC MIXED and REML to fit:

yjklm ¼ lþ Treati þ Linek þ ViallðikÞ þ eiklm; (4)

where treatment was fit as a fixed effect to account for differen-
ces in trait mean between L and S panels of sublines within that
generation. Vial and residual are as described for model (2). At
the among-line level, we took advantage of the paired subline de-
sign to model the between treatment variance-covariance ma-
trix. We employed LRT to test 2 hypotheses. First, we determined
whether, for these analyses within a generation, there was sup-
port for differences between treatments in the magnitude of VE.
Mutations that are segregating (i.e. occur at frequencies other
than 0 or 1) within an MA line will contribute to variation both
among-vials and the residual. We compared a model in which
one (common to both Treatments) among Vial variance and one
residual variance were estimated to a model in which Treatment-
specific variances were modeled at both levels (fit using the
GROUP statement). Second, we tested whether the 2 copies of the
MA lines had diverged from one another by testing the hypothe-
sis that the correlation between the paired sublines was <1.00
(implemented using a PARMS statement). To correct for multiple
hypothesis testing (within each hypothesis), we employed a FDR
correction as described above.

Finally, as there was little support for varying mutational
effects (no G�E) or number (no divergence between S and L) con-
tributing to the apparent heterogeneity among repeated esti-
mates per trait (detailed in Results), we use our data to revisit the
question of whether traits inherently differ from one another in
the magnitude of mutational variance. We obtained a single esti-
mate of VL per trait by using PROC MIXED in SAS to fit:

yijklm ¼ lþ Ti þ Gj þ TGij þ Linek þ ðG� LineÞjk þ ViallðijkÞ þ eijklm;

(5)

where all effects are as described above, including the fixed
effects of population size treatment (T), generation (G), and their
interaction (TG), as well as the random effects of Line,
Generation by Line, Vial and residual. We obtained REML-MVN
CIs for each parameter, as described above. To test whether ob-
served differences in VL among traits were due to differences
among them in scale, we took the among-line (VL) estimates from
model (5) and regressed them on the corresponding estimates of
environmental variance or on the squared trait mean. These
regressions were applied to the REML parameter estimates, and
to each of 10,000 samples of these parameters to determine sta-
tistical significance (95% CI of slope did not include zero).

Results
Meta-analysis of published mutational variance
estimates
Our final meta-analysis data set consisted of 154 estimates of h2

M

and 148 estimates of CVM. These estimates of h2
M ranged from

2.50� 10�5 to 1.02� 10�2, while CVM ranged from 0.13 to 7.32. We
predicted that differences in genome size and/or genomic muta-
tion rate would cause differences in the magnitude of mutational
variance among taxa. However, there was no statistical support
for a difference in mutational variance among the taxon catego-
ries (h2

M: F3,24.2¼ 2.28, P¼ 0.1044; CVM: F3,17.5¼ 1.24, P¼ 0.3261),
although h2

M estimates from Plants were markedly lower than
estimates from Daphnia and Drosophila (Fig. 3a). We predicted
that differences among traits in the number of contributing loci
would cause differences in the magnitude of mutational vari-
ance. However, trait categories only differed in the magnitude of
CVM (F5,37.1¼ 3.86, P¼ 0.0064), not h2

M (F5,85.9¼ 0.40, P¼ 0.8497)
(Fig. 4). Overall, these factors (taxon and trait category) accounted
for 1.64% of the variation in estimates of h2

M and 9.88% of varia-
tion among CVM estimates.

Although not statistically supported, it is notable that the
among-trait trend did not follow predictions for h2

M: fitness traits
had the largest average h2

M, not the lowest as expected (Fig. 4a).
Following Houle et al. (1996), we also analyzed VE (fit model (1) to
CVE ¼

ffiffiffiffi
VE
p

X
). There was no statistical support for a difference

among traits in the magnitude of CVE (F5,25.2¼ 1.32, P¼ 0.2887);
morphology (average CVE ¼ 7.4) and physiology (71.6) differed the
most, with life history traits having intermediate values (e.g.
fitness¼ 42.6) (Supplementary Fig. 2a). For CVM, the statistically
supported differences did follow the predicted pattern, with mor-
phological traits having the smallest CVM and fitness the largest
(Fig. 4b). Survival notably had lower CVM than productivity and
fitness (Fig. 4b), although surviving to reproduce was a compo-
nent of fitness. Physiological traits had a similar magnitude of
CVM to morphological traits, lower than any life history trait cate-
gory (Fig. 4b).

While the lack of observed difference in scaled estimates of VM

among taxa may reflect a true commonality among species in
this important evolutionary parameter, aspects of the MA design
also differed markedly among taxa. Estimates from Plants were
derived from MA experiments that were of short duration (maxi-
mum 25 generations) relative to other taxa (median 44, 75, and
214 for Drosophila, Daphnia and Nematode, respectively)
(Supplementary Fig. 2b). As mutations arise independently in
each MA line, the number of MA lines maintained may also influ-
ence the number of mutations that similar duration MA could
sample, and the potential for sampling of rarer mutational
effects (i.e. from the tails of the distribution of effect sizes) to in-
fluence estimates; while the median number of MA lines was
similar in Nematode (43) Plant (50) and Drosophila (52), it was
substantially lower in Daphnia (8) (Supplementary Fig. 2c). While
mutational variance was estimated for multiple types of traits in
every taxon, most data from Plants was for fitness, while most
data from Daphnia was for morphological traits, and Drosophila
and Nematode were the only 2 taxon categories that contributed
estimates for physiological traits (Supplementary Fig. 2d).

Variation in estimates of among-line variance
within the same taxon and trait type
Within the D. serrata experiment, we first determined the hetero-
geneity in among-line variance (VL) under the assumption that
mutation number and effects were constant, treating the 12 VL

estimates per trait as independent MA experiments. There was
substantial variation among the 12 estimates per trait, with some
differences of over an order of magnitude (Fig. 5; Supplementary
Table 4). Notably, the smallest estimate of VL for size (CS) was
four times lower than the largest estimate, comparable to the 4-
times difference among reported estimates of h2

M for body size in
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C. elegans (Azevedo et al. 2002; Estes et al. 2005; Ostrow et al. 2007).
Predictably given this heterogeneity in magnitude of effect (i.e. in
VL), there was also inconsistent statistical support for the pres-
ence of VL for most traits, despite consistent sample sizes in each
of the 12 “experiments” (Fig. 5; Supplementary Table 4). Thus, we
might draw very different conclusions about the magnitude of VL

for a trait, depending on which “experiment” we had conducted
(Fig. 5).

Due to the changes in Ne within this experiment, we do not
place these VL estimates on a per-generation scale (i.e. do not cal-
culate VM). However, there is no trend for VL to increase through
time (i.e. no signal of ongoing divergence through fixation of
mutations), or to diverge between the different population
size (Ne) treatments (Fig. 5) (addressed further below). Therefore,
calculating VM is not expected to eliminate the heterogeneity in
estimates.

Reporting mutational variance estimates as h2
M or CVM facili-

tates comparison among estimates by accounting for inherent
differences in scale. Although here the 12 estimates come from
the same trait, scale differences may still arise through typical
effects of any unintended variation in culture conditions (occur-
ring among generations or between the replicate S and L sub-
lines) on nongenetic trait variance (VE) or mean. Both VE and the
trait mean varied substantially among the 12 repeated estimates

for all traits (Supplementary Figs. 3 and 4; Supplementary Table
4). However, this variation in VE and trait mean was independent
of the observed variation in VL; regressing the 12 estimates of VL

on their corresponding estimate of VE or trait mean supported
only 1 slope (ILD3.7, VL on mean) as statistically different from
zero (although this did not remain significant following FDR cor-
rection) (Fig. 6; Supplementary Table 5). Consistent with this
pervasive independence of VL from the scaling factors for these
repeated measures of the same trait, when the 12 estimates
were placed on either a heritability (Supplementary Fig. 5;
Supplementary Table 4) or coefficient of variance scale
(Supplementary Fig. 6; Supplementary Table 4), the variation
among them was of a similar magnitude to that observed for VL

itself (i.e. the variation plotted in Fig. 5). Plotting the scaled esti-
mates (h2 or CV) against their respective numerator (VL or

ffiffiffiffiffiffi
VL
p

)
and denominator (VE or mean) illustrates the predominant con-
tribution from variation in VL to variation in the scaled estimates
(Supplementary Fig. 7). Overall, the 12 estimates of VL are more
variable than the corresponding estimates of VE or trait mean,
with variability of the scaled estimates (h2 or CV) more similar to
VL than to their respective scaling factor (Supplementary Fig. 8).

To compare the variability among published estimates of h2
M

and CVM in similar morphological traits (excluding bristle traits:
19 estimates, 8 each from Daphnia and Nematode, 3 Drosophila

(a) (b)

Fig. 3. Variation in estimates of (a) mutational heritability and (b) coefficient of mutational variance across taxon categories. Plotted are the least-
squares mean estimate (6SE) from the analyses of model (1). The number of studies (and estimates) analyzed for each category are shown. The dashed
line indicates the global mean value.

(a) (b)

Fig. 4. Variation in estimates of (a) mutational heritability and (b) coefficient of mutational variance across trait categories. Plotted are the least-
squares mean estimate (6SE) from the analyses of model (1). The number of studies (and estimates) analyzed for each category are shown. The dashed
line indicates the global mean value.

C. Conradsen et al. | 7

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data


and 1 Plant) to the variability among the VL estimates for D. ser-
rata wing trait traits, we calculated the coefficient of variance (cv
¼ standard deviation/mean) for each set of estimates. The cv of
all 19 published h2

M (0.80) and CVM (0.82) estimates was above the
median cv of the 11 D. serrata traits on the observed VL scale
(0.55), VE-scale (h2: 0.54) or mean-scale (CV: 0.39), but nonetheless
within the same range: cv of VL (VE-scale; mean-scaled) ranged
from 0.30 (0.37; 0.15) up to 0.92 (0.85; 0.62) across the 11 traits
(Supplementary Fig. 8). Within taxa, cv of published h2

M (CVM) esti-
mates ranged from 0.29 (0.08) for the 3 Drosophila estimates up
to 0.97 (0.38) in Daphnia, with a median of the 3 within-taxon
(Drosophila, Daphnia, and Nematode) cvs of 0.64 (0.24). Thus,
overall, the heterogeneity among repeated VL estimates in D. ser-
rata is of a similar magnitude to the variation among published
estimates of the same trait type.

Having established that variation in the magnitude of VL is not
a simple consequence of varying scale (VE or mean), we investi-
gated other putative causes. In addition to the general effects on
scale, unintended differences in culture conditions among gener-
ations could also affect VL if mutations had context-dependent
effects on the trait (i.e. G�E), as characterized by generation by
among-line variance. GxE was statistically supported in only 4
cases, with only 2 remaining significant at a 5% FDR (LRT for CS,
in L: v2

1¼ 13.9, P¼ 0.0001; LRT for ILD2.5 in L: v2
1 ¼ 11.1, P¼ 0.0005)

(Fig. 7a). Thus, for these 2 traits, the analysis suggests that muta-
tional effects, and the magnitude of among-line variance, may
depend on the specific conditions under which the traits were
assayed.

Ongoing mutation-drift-selection processes could contribute
to variation among the 12 estimates, where the S and L treat-
ments are expected differ in the potential effects of these pro-
cesses on both within and among-line variance. Segregating
variation within a line will contribute to the estimate of VE, and
we determined whether the S and L treatments differed in the
magnitude of VE, analyzing each of the 11 traits within each
of the 6 generations separately. Eight of the 66 estimates of VE

differed significantly between S and L at P< 0.05, but only
one remained significant at 5% FDR (CS in generation 5;
Supplementary Table 6). There was no statistical support for the
S and L sublines founded by each of the 42 original MA to have di-
verged from one another in the mutations they carried, either
through initial sampling when lines were founded, or through
(near) fixation of mutations arising after establishment of the
sublines. Specifically, the among-line correlation between S and
L sublines was not statistically distinguishable from 1.0 for any
trait in any generation (Supplementary Table 6).

Finally, we obtained a single estimate of among-line variance
for each trait to determine whether the magnitude of VL was con-
sistent among the 10 wing shape traits, which are expected to
share a genetic basis, and developmental pathways (e.g. Mezey
et al. 2005; Neto-Silva et al. 2009). The among-trait heterogeneity
(i.e. nonoverlapping CIs: Fig. 8a; cv¼ 0.77) was larger than the me-
dian variability among the repeated estimates per trait (cv¼ 0.55;
see above), and comparable to the variability among published
estimates of mutational variance in morphological traits
(cv¼ 0.80, detailed above). Variation among shape traits

Fig. 5. Among-line variance estimates across 6 generations in an experiment in D. serrata. Variances were estimated independently for each trait (panel;
see Fig. 2b for trait definitions) in each generation (x-axis) for each of the 2 population size treatments (Small: solid circles; Large: open circles). Plotted
are the REML point estimate, and the REML-MVN 90% CIs. The dashed horizontal line indicates 0; estimates for which the lower CI did not overlap zero
were interpreted as statistically supported. Where REML estimates of among-line variance were zero, CI were not estimated.
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(excluding size) in VE accounted for �18% (95% CI: 0.049–0.383) of
this variation (b¼ 0.064 [95% CI: 0.050–0.106]), but variation in
trait mean did not account for any (b¼ 5.3� 10�7

[�0.74� 10�8–1.86� 10�6]; R2¼ 0.003 [95% CI: <0.001–0.027])
(Fig. 8b). Establishing whether these differences are informative
of the inherent genetic architecture, or are a manifestation of the
stochastic nature of mutation, requires repeating the estimation
using either the same or a different genetic background to deter-
mine if consistent differences among traits persist. When wing
size was also considered, overall scale influenced VL, with much
of the variation among estimates accounted from by the scaling
factors (VE: R2¼ 0.995 [0.978–0.998]; Mean2: R2¼ 0.921 [0.903–
0.925]), suggesting that there was little difference in the magni-
tude of underlying mutational variance between wing size and
the shape traits (Fig. 8b).

Discussion
Although numerous estimates of mutational variance have been
published, it remains unclear what contributes to the �2 orders
of magnitude difference among these estimates. Our meta-
analytic investigation provided some support for a difference
among trait types in the magnitude of mutational variance, but
also revealed substantial confoundment between potential
causal factors. Analyses of data from a manipulative experiment
in D. serrata suggests that, for the morphological traits under
consideration, factors such as unintended heterogeneity in envi-
ronmental conditions or transient segregation of mutations
within MA lines may contribute little to the variation among esti-
mates. Given this experimental design, and the evidence that
mutation number and effect did not typically cause differences
among repeated estimates, we conclude that substantial

Fig. 6. Among-line variance estimates for D. serrata wing traits plotted as a function of trait mean or variance. The 12 estimates of among-line variances
for each of the 11 wing traits (panels; see Fig. 2b for trait definitions) are plotted against the corresponding (i.e. same generation and treatment) squared
trait mean (bottom x-axis, black symbols) or environmental variance (summed among and within vial variances; top x-axis, gray symbols). All
regression statistics are reported in Supplementary Table 4; only the effect of mean2 on VL of ILD3.7 was significant at P< 0.05, although it does not
remain significant after applying a 5% FDR correction.

C. Conradsen et al. | 9

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac060#supplementary-data


variability among repeated estimates of the among-line variance
must reflect sampling error. Below we discuss the specific out-

comes and limitations of both approaches, and the implications
our analyses have for future work characterizing mutational in-

put to quantitative genetic variation.

Effects of taxon and trait type on the magnitude
of mutational variance
Given the �4-times higher per site mutation rate (Katju and
Bergthorsson 2019), and slightly larger genome of A. thalania rela-

tive to C. elegans we predicted (assuming the same mutational ef-
fect sizes) �5 times more mutational variance in the Plant than

Nematode taxon categories. However, the meta-analysis did not

support a difference among taxa in the magnitude of mutational

variance, and the observed (strong but nonsignificant) pattern
in h2

M contradicted this rank prediction, with Plants (to which
Arabidopsis contributed most estimates) having substantially
smaller h2

M than other taxa (Fig. 3a). Taxon categories differed
substantially in the number of generations (Supplementary Fig.
2b), and the number of genomes (MA lines) (Supplementary Fig.
2c) sampled. However, scaling predicted genomic mutation by
this opportunity for mutation also fails to predict the trend, with
Daphnia MA experiments predicted to sample the fewest muta-
tions but observed to have the largest h2

M (Fig. 3b). We suggest
that further MA experiments, decoupling the confounded effects
of MA duration and trait type from taxon, are warranted to
determine whether VM does vary among taxa. Advances in acces-
sibility of genome data provides substantial scope for such

(a) (b)

Fig. 7. Estimates of variance from an experiment in D. serrata. a) Among-line by generation (G�E) variance and (b) among-line variance estimated for 11
D. serrata wing traits (x-axis), in 2 different population size treatments (Small: solid circles; Large: open circles). Plotted are the REML point estimates
(from model 3) and the REML-MVN 90% CIs. The dashed horizontal line indicates 0; statistical significance was inferred where the lower 5% CI did not
overlap 0. After applying a conservative 5% FDR correction, 2 estimates in a) and 21 in b) remained significant (indicated by an asterisk).

(a) (b)

Fig. 8. Among-line variances for 11 wing traits in D. serrata. a) Among-line variance, VL REML estimates (and 90% CI) (model 5; see Fig. 2b for trait
definitions) are plotted. Dashed line indicates 0. b) REML estimates of among line variance (points in panel a) were plotted against the corresponding
estimate of environmental variance (black circles, top x-axis) or mean squared (gray squares, bottom x-axis) of the trait. Regression results are reported
in text.
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experiments to explicitly estimate relevant genomic parameters
(e.g. frequency spectra for different types of mutations across
putatively causal genes) alongside the phenotypic variation gen-
erated by those mutations (Katju and Bergthorsson 2019).
Furthermore, given evidence that epigenetic mutations arise
more frequently than genetic mutations (e.g. van der Graaf et al.
2015; Beltran et al. 2020), we suggest that the potential contribu-
tion of epimutations to patterns of heterogeneity of VM should be
explicitly assessed in future studies.

Houle et al. (1996; see also Lynch and Walsh 1998; Lynch et al.
1999) concluded that life-history traits had lower h2

M and higher
CVM than morphological traits, a pattern that is also observed in
standing genetic variation (e.g. Houle 1992; Hansen et al. 2011;
but see Hoffmann et al. 2016). However, this conclusion was not
supported by our analysis, where the trend was for fitness and
productivity to have the highest h2

M (nonsignificant) as well as
highest CVM (Fig. 4). As expected given this shared pattern, h2

M

and CVM estimates were positively correlated (Spearman’s corre-
lation coefficient: 0.309, N¼ 117, P¼ 0.0007). Although with re-
verse rank (life-history traits having lowest values), standing
genetic variation estimates have also been reported to be posi-
tively correlated between the 2 scales (h2 and CV) when biologi-
cally uninformative CV estimates were excluded (Hoffmann et al.
2016). Garcia-Gonzalez et al. (2012) highlight the potential for
skewed data distributions to inflate (deflate) CV, an issue that
may be particularly relevant to estimates of CVM. While strong
bias toward mutations that decrease mean fitness has been
reported (Halligan and Keightley 2009), bias in other traits is less
well-established. If trait types differ in the magnitude of direc-
tional bias of mutational effects, this may also result in differen-
ces in skew, and exaggerate differences between trait types on
the CVM scale. Again, resolution of the key question of whether
differences among traits in h2

M and CVM reflect differences in
mutation number and/or effect size may depend on further geno-
mic data.

The contributions of unintended environmental
variation, mutation-drift-selection processes, and
sampling error to variation in the magnitude of
mutational variance
We observed substantial variation among repeated estimates of
VL each of 11 wing traits measured in D. serrata (Fig. 5), resulting
in variation among scaled (h2 or CV) estimates that was of com-
parable magnitude to the differences observed among published
estimates. Although both VE and trait mean also varied among
repeated measures (Supplementary Figs. 3 and 4), this heteroge-
neity was substantially less than that observed for VL (or h2 or CV)
(Supplementary Fig. 8). Given the evidence that mutational
effects can vary among environments (Kondrashov and Houle
1994; Martin and Lenormand 2006), we tested the effects on the
magnitude of VL resulting from unintentional and undocumented
minor changes in culture conditions (e.g. density, humidity, or
temperature), such as may occur among phenotype assays con-
ducted at different times or in different laboratories. Variation in
mutational effects among phenotypic assays (generations) was
supported in only 2 cases (Fig. 7a). Garc�ıa-Dorado et al. (2000) also
found evidence of GxE among consecutive generations for 1 (ster-
nopleural bristle count) of 4 traits investigated. Notably, in D. ser-
rata, wing size, which might be particularly sensitive to variation
in energy availability (or competing energetic demands) (Cavicchi
et al. 1985; Bitner-Math�e and Klaczko 1999), exhibited the stron-
gest GxE (Fig. 7a). Our results, and those of Garc�ıa-Dorado et al.
(2000) suggest that changes in mutational effects with

environment may contribute to heterogeneity among published
estimates of some traits, which may reflect differences in trait
environmental sensitivity, or potentially in the covariation of en-
vironmental sensitivity and mutational effect size (Lynch et al.
1999; Garc�ıa-Dorado et al. 2000).

The mutation-drift process itself may also contribute to vari-
ability among published estimates due to effects on both the
within-line variance (transient inflation leading to increased
magnitude of VE but not VL) and among-line variance (transient
contribution to VL of additive or dominant mutations that are
subsequently lost via random sampling). We introduced an
�order of magnitude difference in census size in paired sets of
MA sublines to manipulate the mutation-drift-selection pro-
cesses. However, analyses did not support an effect of population
size on either within- or among-line variation; size was again an
exception, where there was some evidence that relaxed selection
allowed the S treatment to accumulate greater within-line vari-
ance (Supplementary Table 6). The effect of segregating variation
can be expected to be greater at smaller population sizes (e.g.
when N¼ 2, mutations can reach within-line frequency of 75%
before being lost by drift) than considered here, and so may play
a greater role in explaining variation among estimates from clas-
sical MA breeding designs. But, nonetheless, this factor did not
account for the substantial heterogeneity that was observed
among the 12 estimates per trait within the current study.

Rejecting general contributions from environmental variation
and transient segregation of mutations as explanations of the
heterogeneity among the 12 repeated estimates of VL for the wing
shape traits, we conclude that the observed variability is largely
the consequence of sampling error. Lynch et al. (1999) suggested
that a substantial part of the order of magnitude range of h2

M

reported for D. melanogaster may be due to sampling error. Here,
we observed the magnitude of heterogeneity among the 12 re-
peated estimates of VL to be similar to the heterogeneity among
published, scaled estimates of mutational variance in morpho-
logical traits, consistent with their prediction. We observed that
VL estimates varied markedly more than the other estimated
parameters (Supplementary Fig. 8), as expected given that quan-
titative genetic parameters are associated with relatively large
sampling errors. Notably, VE was more variable among the 12
estimates than trait mean was, which may lead to greater vari-
ability among estimates of h2

M than CVM (Supplementary Fig. 8).
We designed this experiment to mimic an average MA sample
size, and considered traits expected to have relatively low experi-
mental noise (residual variation) and small effect size (due to the
relatively few generations; see e.g. Vassilieva et al. 2000). While
traits and MA panels will vary in their vulnerability to sampling
error, we nonetheless suggest that greater consideration must be
given to the consequences of this error when designing experi-
ments. The heterogeneity among repeated estimates resulted in
the total confidence range for each trait spanning a far greater
region than suggested by the error estimated for each repeated
estimation of VL (Fig. 5), indicating that within-study estimates of
error do not fully capture the uncertainty in estimates.

The sequential repeated-measures experimental design pro-
vided greater statistical control over the experimental noise,
allowing us to consistently detect statistically significant muta-
tional variance in all traits (Fig. 8a), including in traits for which
very few of the 12 estimates were distinguishable from 0 (e.g.
ILD2.8; Fig. 5). While increasing sample sizes within a generation
is likely to have similarly improved estimate precision, this can
be logistically prohibitive in some systems. Given these limits,
our analysis highlights the potential benefits of short-term
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repeated measures (sequential generations) to improve estimate

precision, and power to detect small effects. Repeated measures

of lines at relatively large generation intervals have also been uti-

lized to estimate VM as the slope of the regression of among-line

variance on generation (Vassilieva et al. 2000; Houle and Nuzhdin

2004; McGuigan et al. 2011), which may also improve estimation.
Understanding the contribution that mutations make to evo-

lutionary and genetic phenomena relies on accurate estimates of

the phenotypic variance generated by new mutation. Our meta-

analysis of empirical estimates of mutational variance was

unsuccessful in clearly resolving causes of variation due to con-

founding of predictors, and inconsistent patterns. Our manipula-

tive experiment suggested that sampling error may contribute

substantially to estimate variability, and demonstrated that re-

peated measures over few (e.g. sequential) generations provides a

simple but effective approach to address this and improve infer-

ence. Overall, further empirical studies are needed to fully assess

how both general and study specific factors influence VM esti-

mates, where improved precision and replicability in estimates

will consequently advance broader evolutionary questions such

as those addressing the maintenance of quantitative genetic vari-

ance (Barton and Turelli 1989; Johnson and Barton 2005; Walsh

and Lynch 2018).

Data availability
Both analyzed datasets are available at doi: 10.6084/m9.figshare.

14913051.
Supplemental material is available at GENETICS online.
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