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Abstract: Tooth sensitivity is a painful and very common problem. Often stimulated by consuming
hot, cold, sweet, or acidic foods, it is associated with exposed dentin microtubules that are open to
dental pulp. One common treatment for tooth hypersensitivity is the application of occlusive particles
to block dentin microtubules. The primary methodology currently used to test the penetration and
occlusion of particles into dentin pores relies upon dentin discs cut from extracted bovine/human
teeth. However, this method is limited due to low accessibility to the raw material. Thus, there
is a need for an in vitro dentin model to characterize the effectiveness of occlusive agents. Three-
dimensional printing technologies have emerged that make the printing of dentin-like structures
possible. This study sought to develop and print a biomaterial ink that mimicked the natural
composition and structure of dentin tubules. A formulation of type I collagen (Col), nanocrystalline
hydroxyapatite (HAp), and alginate (Alg) was found to be suitable for the 3D printing of scaffolds.
The performance of the 3D printed dentin model was compared to the natural dentin disk by
image analysis via scanning electron microscopy (SEM), both pre- and post-treatment with occlusive
microparticles, to evaluate the degree of dentinal tubule occlusion. The cytocompatibility of printed
scaffolds was also confirmed in vitro. This is a promising biomaterial system for the 3D printing of
dentin mimics.

Keywords: 3D printing; dentin; occlusive particles; tooth sensitivity

1. Introduction

Dentin contains thousands of open-ended microtubules to ensure its permeability.
This permeability is essential to support the physiology and reaction patterns of the pulp–
dentin organ. Nutrients and impulses are transported from the pulp via the odontoblast
process, while the contents of its tubules maintain the dentin as a vital tissue. When dentin
microtubules are exposed to the oral environment [1] through receding gums, loss of the
cementum, and smear layers and tooth wear [2], it results in hypersensitivity [3,4].

Dentin hypersensitivity is a very common dental problem characterized by short and
sharp pain. It arises in response to stimuli, typically thermal (hot or cold), evaporative,
tactile, osmotic (sweet or salty), chemical (acidic or basic), or electrical, with no effective
remedy [5,6]. Common short-term treatments include applying fluoride gels, rinses, or
varnishes that can be applied to sensitive areas of the teeth at regular intervals to help
strengthen the tooth, or tooth surface treatment with occluding agents [7,8]. A current
area of interest to reduce dentin sensitivity is decreasing tubule permeability through
occlusion [9]. A number of studies have shown that dentin sensitivity is reduced when the
dentinal tubules are occluded [10–12].

The current gold standard to determine the penetration and adhesion of occlusive
particles into dentin pores is to use dentin discs cut from extracted bovine/human teeth
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and to visualize the treated dentin disks under scanning electron microscopy (SEM) [13].
An important limitation of this method is the low supply of the raw material [14]. Thus,
there is a need to develop an in vitro method/model of dentin that allows for the investiga-
tion of different occlusion agents. Additionally, developing a 3D printed cytocompatible
dentin-mimic, with the ability to maintain the bone cell phenotype, is highly beneficial to
concurrently assess the effects of occlusive particles on cell behaviour.

Both adhesion onto the dentin surface and penetration into the tubules are important
properties for occlusion agents. When considering the former, a material mimic should be
of similar composition to the native dentin. Dentin is a biological composite containing
65–75 wt% of hydroxyapatite (HAp), 15–20 wt% of type I collagen (Col), and 10–15 wt% of
dentinal fluid, mainly water [15,16]. To evaluate the penetration of occlusive agents into
tubules, the model system must have a comparable morphology and microstructure [15,16].
Importantly, matching the native porosity and a pore size of 3–5 µm are essential to achieve
a dentin-like structure [17].

Three-dimensional printing of polymer filaments using techniques such as fused
deposition modelling are well established to produce structures with defined pore sizes
and geometry. The printing of gels and pastes, however, is more challenging due to their
relaxation prior to solidification [18]. Printability of a dentin-like paste depends on the
rheological profile of the ink; it should be a yield stress fluid that is shear thinning, with
minimal thixotropy [19]. Print parameters such as extrusion pressure, print speed, and
needle size and geometry can also be used to tailor print characteristics [20]. Several
attempts have been made to develop a suitable bioink for dentin tissue regeneration using
3D printing.

A few recent approaches have attempted to mimic the dentin structure [21]. Recently,
Han et al. reported a fibrin-based bioink composed of fibrinogen, gelatin, hyaluronic
acid, and glycerol for 3D printing of human dental pulp stem cells to construct a 3D
dentin–pulp complex [22]. It was shown that the printed scaffold had a pore diameter
of 2–4µm similar to that of a human dentinal tubule [22]. In another study, a novel
bioink consisting of a hydrogel blend of the soluble and insoluble fractions of the dentin
extracellular matrix and alginate was developed to fabricate 3D printed scaffolds for
regenerative dentistry [23]. It should be noted that the smallest pore size of the printed
structure was around 2 mm, much larger than the size of natural dentin tubes. Wu et al.
studied the potential of 3D printed scaffolds composed of a polycaprolactone/mineral
trioxide aggregate to support the regeneration of dentin and periodontal tissue [24]. This
scaffold had a pore size of 200 µm, about 60–100 times larger than native dentin. In addition
to the pore size, the composition lacked the presence of collagen as a main component
for biological interactions. Overall, the above-mentioned studies do not mimic or satisfy
the natural dentin composition and microstructure. To the best of our knowledge, no 3D
printed dentin model has been proposed in the literature. Thus, the development of a
novel 3D printed construct similar to natural dentin has a great benefit for researchers
to effectively develop and evaluate the potential of occlusive agents. Additionally, the
3D printing of hard tissues such as bone and dental tissues is a favourable fabrication
technique and a robust method to develop a customized tissue suitable for specific patient
needs [25].

In this study, a compositionally and microstructurally appropriate dentin mimic
was produced using a collagen–hydroxyapatite–alginate ink. The addition of alginate
enabled rapid ionic crosslinking following printing to ensure shape fidelity. Extrusion-
based 3D printing was used with specific layer-shifting to produce pores with tubule-like
diameters. Following lyophilisation, the occlusion of tubules was investigated as well as
the cytocompatibility of the dentin mimic.

2. Materials and Methods

Calcium nitrate tetrahydrate (Fisher, Hampton, NH, USA), ammonium phosphate
(Fisher, USA), ammonium hydroxide (Sigma Aldrich, Oakville, ON, USA), hydroxyapatite
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(Sigma Aldrich, Oakville, ON, Canada), atelo-collagen solution (Advanced BioMatrix,
Carlsbad, CA, USA), sodium hydroxide (Fisher, USA), and sodium alginate (DuPont,
Wilmington, DE, USA) were utilized for ink preparation. Calcium chloride (Fisher, Schw-
erte, Germany) and glutaraldehyde (Sigma-Aldrich, Schnelldorf, Germany) were used as
crosslinking agents. Thymol (Fisher, USA), ethanol (Fisher, USA), and citric acid (Sigma
Aldrich, USA) for dentin disk preparation and polystyrene microspheres (Sigma Aldrich,
USA) for the occlusion test were utilized. For cell study, bone marrow-derived stem cells
(Lonza, Bend, OR, USA), high glucose DMEM (Gibco, Thermo Fisher, Ottawa, ON, Canada),
fetal bovine serum (Gibco, Canada), 1% penicillin–streptomycin (Gibco, Canada), ascorbic
acid (Sigma Aldrich, Oakville, ON), dexamethasone (Thermo Fisher, Waltham, MA, USA),
and β-glycerophosphate (Sigma Aldrich, Oakville, ON, Canada) were used.

2.1. Nanocrystalline Hydroxyapatite Paste Preparation

Hydroxyapatite was prepared by a solution–precipitation method [26] with calcium
nitrate tetrahydrate (Ca(NO3)2·4H2O) and ammonium phosphate ((NH4)2HPO4) as precur-
sor materials while ammonium hydroxide (NH4OH) was used for pH adjustment. A total
of 350 mL of 0.24 M calcium nitrate tetrahydrate was prepared in DI water and adjusted to
pH 10. Under constant stirring, 250 mL of 0.29 M ammonium phosphate was added drop-
wise to the calcium nitrate tetrahydrate while maintaining the pH between 9 and 11. The
solution was stirred for 16 h before the precipitate was allowed to sediment. The aqueous
phase was removed, and the precipitated HAp paste was collected by centrifugation at
3000 rpm. To remove residual ammonium, the paste was vigorously washed with DI water
and centrifuged 5 times.

2.1.1. X-ray Diffraction (XRD)

The preparation of nanocrystalline HAp was confirmed by XRD. Samples were ana-
lyzed with a Bruker D8 Advance X-ray diffractometer (Bruker AXSS Inc., Fitchburg, WI,
USA) equipped with a CuKα (λ = 0.15406 nm) target set to a power level of 40 mV and
40 mA. Data were collected from 10 to 90 2 theta (◦) with 0.02 increments. Phase identifica-
tion was carried out using X’Pert HighScore Plus (PANalytical, Almelo, The Netherlands).
Commercially available synthetic hydroxyapatite nanopowder (Sigma Aldrich Cat no.
677418) with an average particle size of 73 nm was used as a reference for HAp peaks
and 3 independent syntheses were investigated for crystallite size, calculated using the
Scherrer equation.

2.1.2. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy

FTIR spectra of the hydroxyapatite powder were measured using a Spectrum Two
FTIR Spectrometer (PerkinElmer, Waltham, MA, USA) in ATR mode. A spectral resolution
of 4 cm−1 with 16 scans was used for collection of reference spectra over a range of
4000–400 cm−1.

2.1.3. Transition Electron Microscopy-Energy Dispersive X-ray (TEM-EDX)

TEM images and EDS analysis were obtained using a Thermo Scientific Talos F200X
G2 S/TEM operating at 200 kV. Samples were prepared by diluting and dispersing a
very small amount of HAp in mQ water. Carbon-coated copper TEM grids were briefly
submerged in the sample and dried before imaging. A 1 min acquisition time was used for
the EDS analysis.

2.1.4. Nanoparticle Tracking Analysis (NTA)

A NanoSight NS300 (Malvern Panalytical Ltd., Malvern, UK) was employed to mea-
sure the size of HAp nanoparticles. The HAp paste was diluted in DI water to achieve
approximately 20 particles per frame. A video of 30 s duration with three repeats was
taken, and particle size was analyzed by NTA software (NanoSight Ltd., Salisbury, UK).
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2.2. Ink Preparation

Bovine Type I atelo-collagen solution at 3 mg/mL was neutralized with 1 M of NaOH
and mixed with 2 w/w% alginate solution and 12 w/w% HAp paste. The mixture was
placed in a dry incubator at 37 ◦C until sufficient water was evaporated to constitute an
80% weight reduction to render a printable composite paste of 8.6 w/w% HAp, 1.1 w/w%
collagen, and 0.5 w/w% alginate.

2.3. Ink Rheology

All rheological measurements were performed using an MCR 302 rheometer (Anton
Paar, Graz, Austria) with 25 mm stainless steel parallel plates and a gap height of 0.5 mm.
A total of 0.5 mL of material was added to the gap and trimmed where necessary before
light mineral oil (Sigma-Aldrich, USA) was applied to prevent evaporation during mea-
surements. Shear strain ramps from 0.1 to 100% and 3-step thixotropy measurements at a
shear rate of 0.1, 500, and 0 s−1 were performed at room temperature.

2.4. Scaffold Fabrication

Scaffolds were printed at room temperature using a pneumatically controlled bio-
printer (BioX, Cellink, Boston, MA, USA). Layer shifting with a 200 µm offset was used in
alternating layers to reduce pore size. The inner diameter of the nozzle was 518 µm and
the pneumatic pressure was 40−50 kPa with a print speed of 10–12 mm/s. Immediately
after printing, scaffolds were crosslinked with 0.1 M of CaCl2 for 1 h and then washed
three times with DI water. Scaffolds were then crosslinked with glutaraldehyde for 1 h
and again washed three times with DI water to remove remaining crosslinking agent.
Finally, scaffolds were freeze dried (samples were frozen at −80 ◦C for 24 h and freeze
dried at −40 ◦C and 300 mTorr for 24 h), resulting in a composite material of 80 w/w%
HA–10 w/w% collagen–5 w/w% alginate that was used for further characterization.

2.5. Micro Computed Tomography

Freeze-dried samples were scanned using a SkyScan 1172 (Bruker, Billerica, MA, USA)
with a source voltage of 34 kV, current of 210 µA, rotation step of 0.28◦, and pixel size
of 1.23 µm. Reconstruction was performed using NRecon v1.0 (2018, Bruker) with ring
artefact reduction (4), smoothing (2), and beam hardening correction (65%). Quantitative
analysis was performed in CTAn v1.18 (2018, Bruker) following thresholding between
110 and 255 to include mineral only and the removal of white speckles smaller than 20
voxels to remove scanning artefacts. While some smaller HAp particles will be removed
for the analysis, the chosen scanning parameters were required to ensure the visualization
of both the inorganic and organic phases of the material. Organic content was calculated
as the difference between the thresholded, mineral-only volume and the total volume of
the scaffold.

2.6. Natural Dentin Disk Preparation

Extracted teeth were stored in distilled water containing 0.1% thymol and 10% ethanol.
To prepare dentin disks, the occlusal part of the enamel was removed with a slow speed
diamond saw to expose the dentin, before 1 mm thick dentin disks were cut from the
coronal section. To mimic the open dentinal tubules of hypersensitive dentin and to remove
the smear layer, the dentin disks were polished by hand using 600 and 1000 grit carbide
polishing papers, with circular motions for 10 s each, before they were ultrasonicated in DI
water for 2 min. Afterwards they were acid etched using 6% citric acid for 2 min followed
by ultrasonication in DI water for 2 min. The prepared dentin discs were stored in 0.1%
thymol and 10% ethanol solution before characterization.

2.7. Occlusion Test

The fabricated scaffolds were treated with polystyrene microspheres with a diameter
of 2–3 µm as simulated occlusive particles. A 10 w/w% particle suspension was prepared
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in DI water before 50 µL of suspension was deposited on the top of scaffold for 5 min.
Scaffolds were then washed with DI water and dried at room temperature for 24 h before
further characterisation.

2.8. Sputter Coating and Scanning Electron Microscopy (SEM)

Samples were sputter-coated with a 4 nm layer of Pt (EM ACE600, Leica Microsystems,
Buffalo Grove, IL, USA). A FEI Quanta 450 ESEM (FEI Corporation, Hillsboro, OR, USA)
was used with an acceleration voltage of 5 kV to image the topography of the native dentin
and dentin mimics with and without occlusive particles.

2.9. Cytocompatibility and Gene Expression

To confirm the cytocompatibility of the dentin mimics, bone marrow-derived stem
cells were seeded at a density of 250,000 cells per scaffold by placing the scaffold in a syringe
containing the cell suspension for 2 h, turning every 30 min to ensure homogeneous cell
seeding. After 14 days of culture in control media (high glucose DMEM, 10% fetal bovine
serum, 1% penicillin–streptomycin) or osteogenic media (as control with ascorbic acid,
dexamethasone, and β-glycerophosphate), calcein AM/ethidium homodimer-1 staining
(Life Technologies, Carlsbad, CA, USA) was performed to determine the cell morphology
and viability on the scaffold. At both 4 and 14 days, RNA was extracted using TriZol
reagent (Life Technologies, Carlsbad, CA, USA) for qRT-PCR analysis. Scaffolds were
placed in 500 µL of TriZol reagent for 5 min to lyse cells before being centrifuged. The
supernatant was aspirated, transferred to a new tube, and used to isolate RNA as per the
manufacturer’s instructions while the scaffold was discarded. Briefly, chloroform was used
to separate the aqueous RNA phase before it was aspirated, and RNA was precipitated
with isopropanol. After centrifugation, the precipitate was washed with 75% ethanol
before drying and resuspension in RNAse-free water. RNA concentration was quantified
using spectrophotometry (TECAN, Mannedorf, Sweden) before 500 ng was used for cDNA
synthesis (qScript kit, QuantaBio, Beverly, MA, USA). RT-PCR was then performed to
determine the expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), and runt-
related transcription factor 2 (RUNX2) against the housekeeping gene GAPDH (sequences
in Table 1, all supplied by Thermo Fisher) with PowerUp SYBR Green Master Mix (Applied
Biosystems, Waltham, MA, USA).

Table 1. Primer sequences.

Gene Forward Reverse

Alkaline phosphatase (ALP) AGAACCCCAAAGGCTTCTTC CTTGGCTTTTCCTTCATGGT

Bone sialoprotein (BSP) AAGCTCCAGCCTGGGATGA TATTGCACCTTCCTGAGTTGAACT

Runt-related transcription
factor 2 (RUNX2) TCAGCCCAGAACTGAGAAACTC TTATCACAGATGGTCCCTAATGGT

Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) TCCCTGAGCTGAACGGGAAG GGAGGAGTGGGTGTCGCTGT

2.10. Statistical Analysis

Statistical significance of the measured parameters between samples was determined
using the Student’s t-test at a significance level of p < 0.05. Data are presented as mean ±
standard deviation.

3. Results and Discussion
3.1. HAp Characterization

Nanocrystalline HAp was synthesized both to ensure small crystallite sizes and to
produce a sol formulation that could be easily incorporated into an ink. Prior to being used
in the ink formulation, the synthesized HAp was characterized regarding its crystalline
structure and particle size. Compared to the reference sample (Figure 1a), the synthesized
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nanocrystalline material had broader peaks (Figure 1b, representative scan), particularly
between 2θ = 31 and 33◦, which occluded the peak at 2θ = 32.2◦, which is normally observed
in stochiometric HAp. This poorly-crystalline nature of nanocrystalline HAp has previously
been reported by Drouet [27]. Nevertheless, all other characteristic HAp peaks were
detected. Crystallite size was measured using the 25.9◦ peak as it was consistently sharp.
The reference material (hydroxyapatite) had a greater crystallite size of 511.6 Å compared
to the synthesized nanocrystalline material with a size of 328.5 ± 56.5 Å. The solid phase
produced in the precipitation reaction had an average particle size of 96.33 ± 36.8 nm,
calculated using nanoparticle tracking analysis. The D50 value (median particle size)
was 62.03 ± 37.08 nm and the D90 (90% of particles were smaller than this value) was
171.53 ± 75.27 nm for the synthesized HAp.
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To verify that the residual ammonium was fully removed after the washing step, FTIR
was conducted. Figure 2a shows the presence of water between 3700 and 2800 cm−1 (peak
value at 3373 cm−1) and at 1640 cm−1 (O–H stretching and H–O–H bending modes of the
water molecules, respectively) [28]. Characteristic bands of the PO43− group were detected
as well, in particular, v1 stretching mode at 962 cm−1, v3 stretching vibration at 1024 cm−1,
and v4 at 561 cm−1 and 600 cm−1. Peaks around 874 and 1420 cm−1 can be attributed to
the presence of carbonate CO3

2– groups, vibrational mode v2 and v3, respectfully [29–31].
No residual nitrate (NO3

− typical sharp peak at 1384 cm−1) and ammonium ions (NH4
+

peak at 1400−1) were detected [32,33].
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TEM-EDX analysis was conducted (Figure 2b) to verify the morphology and crystal
size of HAp particles, which concorded with the XRD and particle size measurements.
Further, the EDX analysis indicated that hydroxyapatite crystals were not transformed
to the other calcium phosphate phases. There was no evidence of the presence of an
amorphous phase [34,35].

3.2. Printability of Hap–Collagen Ink

Ideal inks for printing have a yield stress to ensure controlled extrusion, shear thinning
flow profiles to allow extrusion through a small orifice, and low thixotropy, such that they
quickly recover their pre-shearing elastic modulus or viscosity to ensure a good shape
fidelity post-printing [19]. As shown in Figure 3a, the viscosity of the ink decreased with
increasing shear strain. The shear thinning properties of the ink are crucial for extrusion-
based printing [19,36]. Figure 3b demonstrates clear yielding behaviour at around 10%
shear strain, which is important for controlled extrusion. Using oscillatory rheology, the
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viscous moduli were elucidated with the storage modulus dominating until the flow point
at 40% shear strain (Figure 3c). The time an ink needs to return to its initial viscous state
after applying high shear stress is important for high fidelity 3D printing [36,37]. Figure 3d
shows that that upon removal of a high shear stress (500 s−1), the initial viscosity of the ink
was recovered in around 10 s, indicating a very low thixotropy. With time there was an
increase in viscosity suggesting the aggregation of particles in the ink, which would lend to
a further increase of the shape fidelity and stability of the printed part prior to crosslinking.
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respect to increasing shear strain and (d) thixotropic recovery after high-rate shearing. Data are
plotted as mean ± SD (shaded region), n = 3.

3D Printed Scaffolds

The printing speed, pressure, and lattice offsets were optimized to achieve the desired
pore sizes. Some extrudate swell and relaxation of the ink following printing reduced the
shape fidelity, but with increased print speed or decreased pressure, the line width and
pore size decreased. In this study, pore sizes mimicking the human dentinal tubule mi-
crostructure were achieved with a print speed and pressure of 10–12 mm/s and 40−50 kPa,
respectively. With increased printed layers, some full thickness pores were lost. The
sublimation of water during freeze drying resulted in both large (250–300 µm) and small
(2–5 µm) pores (Figure 4a).
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mens of dentin exhibited the typical appearance of a microstructure of open tubules (Fig-
ure 5(c.1,c.2)). Figure 5(a.1,a.2) shows SEM images of the crosslinked and freeze-dried 
scaffold. The surface was much rougher than that of the native dentin, but there were 
clearly pores of similar length scales to the dentin. As shown, the 3D printed dentin-like 
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Figure 4. MicroCT reconstruction of representative sample: (a) mineral (yellow) and polymeric (blue) components separated
by attenuation and overlaid; (b) mineral phase shown separately, average mineral content 8.49% (SD 3.65, n = 3).

MicroCT scanning, shown in Figure 4b, indicated a homogeneous distribution of min-
eral throughout the region of interest. The volume of mineral relative to the total volume
was calculated as 8.49 ± 3.65%, which is very close to the 8.6 w/w% stated previously.
The decrease is likely due to limitations in detecting all HAp as the minimum observable
feature was limited by pixel size (1.23 µm). The total porosity was 78.388% (±1.556%, n = 3),
and of this, 99.996% was detected as open porosity, indicating a very high interconnectivity.

Following crosslinking and freeze drying, scaffolds had good homogeneity and in-
tegrity. Structural properties of the 3D printed scaffolds were compared with the to-
pographical microstructure of the natural dentin. The untreated, acid-etched control
specimens of dentin exhibited the typical appearance of a microstructure of open tubules
(Figure 5(c.1,c.2)). Figure 5(a.1,a.2) shows SEM images of the crosslinked and freeze-dried
scaffold. The surface was much rougher than that of the native dentin, but there were
clearly pores of similar length scales to the dentin. As shown, the 3D printed dentin-like
scaffold had a pore size of 2–4 µm with a homogenous pore distribution (Figure 5(a.1,a.2)),
similar to that of a human dentinal tubule (Figure 5(c.1,c.2)).
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These results confirmed that the collagen/HA/Alg ink, along with a well-designed
printing–freeze drying protocol, could provide a biomaterial for 3D printing of an in vitro
dentin model that can mimic a similar microstructure and composition to that of natural
dentin tissue.

Polystyrene microspheres were applied as occlusive agents on the surface of acid-
etched dentin as the control as well as on the surface of 3D printed scaffolds. Microspheres
were visible on the surface of the scaffold and, similarly to the native dentin, some covered
the pores and some entered the pores. The pore size and number of open pores for
both the 3D printed scaffolds and human dentinal tubules decreased after treatment with
polystyrene microspheres as an occlusive agent.

3.3. Cytocompatibility of Dentin Mimics

To confirm that this model can be used to address both the occlusivity and cyto-
compatibility of therapeutic agents, it is important that the 3D printed scaffold itself is
cytocompatible. This was tested using human bone marrow-derived mesenchymal stem
cells seeded onto the 3D printed scaffold. After 14 days of culture, cells adhered to the
scaffolds and live-dead staining indicated a very good viability, with very few dead cells
present (Figure 6a,b). When cultured in osteogenic media, cells expressed increased ALP,
BSP, and RUNX2 compared to cells cultured in control media at both 4 and 14 days
(Figure 6c,d). ALP expression was significantly higher in the osteogenic condition than
controls at day 4 (Figure 6c), while BSP expression was significantly higher after 14 days
(Figure 6d). Higher ALP expression at day 4 and BSP expression at day 14 suggest that
there is more inhibition of mineralization in the early stage, but also a stronger promotion
of osteogenic differentiation in the later stage [38].
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4. Conclusions

In this study, we aimed to produce a biocompatible ink for the direct printing of a
dentin mimic. A collagen–hydroxyapatite–alginate formulation was developed and, with
the evaporation of excess water, an extrudable paste was produced. Rheological evaluation
showed that the ink fulfilled the required parameters to produce printed constructs of high
fidelity. The printing of pores of sizes equivalent to those in native dentin was challenging,
but with the sublimation of water, a porous structure was produced. When occlusive
particles were added to the surface, they could enter the pores, as in the native dentin
surface. Finally, the cytocompatibility of these dentin mimics was confirmed through
live/dead staining and the maintenance of the bone cell phenotype when cultured on
these scaffolds.
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