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Fluorescence nanoscopy has revolutionized our ability to visu-
alize (living) cells by extending the limits of optical imaging 
to single-digit nanometre resolution, and by enabling mini-

mally invasive observation of the internal nanoscale structures and 
dynamics of biological samples with molecular specificity1–4. Central 
to these techniques are chemically specific fluorescent labels and the 
intrinsic control between fluorescent (on) and non-fluorescent (off) 
states of the fluorophores. This sequential off–on transition is key 
to separating adjacent fluorophores at molecule-scale proximities. 
Photoactivatable or caged dyes—in which the off–on transition is 
irreversible and triggered by light—render these nanoscopy tech-
niques very powerful, because they eliminate the need for specific 
imaging buffers and high intensities of UV light. Such require-
ments are prevalent in single-molecule-based microscopy, such as 
photo-activated localization microscopy (PALM) or stochastic opti-
cal reconstruction microscopy (STORM), to drive commonly used 
fluorophores (for example, cyanines) between non-fluorescent and 
fluorescent states5–7, as well as enabling high-density single-particle 
tracking8–10. Most recently, photoactivatable dyes have been used 
to reduce the fluorescence background in DNA-PAINT11 and to 
increase the number of cellular structures that may be simultane-
ously imaged in stimulated emission depletion (STED) microscopy 
through channel duplexing12.

Rhodamine dyes have emerged as some of the most widely 
employed fluorophores in fluorescence microscopy and nanos-
copy due to the remarkable tunability of their optical and chemical 
properties13–15, cell membrane permeability16, photostability17 and 
brightness18. In particular, silicon rhodamines19 are often favoured 
for their intrinsic redshifted emission, fluorogenic behaviour20 and 
live-cell compatibility21–23. However, the reported caging strate-
gies for rhodamines rely on ‘locking’ the dyes in a non-fluorescent 

form, either through installation of photolabile protecting groups 
on the nitrogen atoms (such as with nitroveratryloxycarbonyl7,24,25 
or nitroso26 groups) or by synthetic transformation of the lactone 
ring into the corresponding cyclic α-diazoketones9,27. The former 
strategy restricts the attainable substitution patterns, reduces water 
solubility and yields stoichiometric amounts of potentially toxic 
by-products upon photoactivation. The latter strategy, meanwhile, 
suffers from varying uncaging efficiencies and the concomitant 
formation of non-fluorescent side products, whose abundance 
depends on the medium and substitution pattern27,28.

Accordingly, caging-group-free, compact photoactivat-
able and biocompatible fluorophores are highly desirable in 
fluorescence microscopy and nanoscopy applications, enabling 
lower-molecular-weight labels, provided that the photoactivation 
is rapid, complete and free of by-products. Recently, the photoac-
tivation of a Si-pyronine analogue was demonstrated, where the 
fluorophore was initially masked with an exocyclic double bond at 
the 9-position of the Si-xanthene scaffold29. Upon UV irradiation in 
aqueous solution, protonation of the exocyclic double bond yielded 
the fluorescent 9-alkyl-Si-pyronine. The resulting cationic fluoro-
phore, however, was susceptible to formation of non-fluorescent 
nucleophilic addition products with thiols and water, limiting  
its applicability.

Inspired by the long-established radical photochemistry of ben-
zophenone and other diarylketones, we have now designed, and 
report herein, a class of functionalized xanthones, which, upon one- 
or two-photon excitation, convert efficiently and cleanly into the 
corresponding dihydropyran-fused pyronine dyes. These photoac-
tivatable xanthone (PaX) dyes can be prepared from readily avail-
able starting materials via a straightforward and efficient three-step 
synthetic route, also compatible with carbon- and silicon-bridged 
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Fig. 1 | Design, synthesis and characterization of PaX dyes. a, Whereas traditional strategies for photoactivatable dyes for nanoscopy rely on the release 
(‘unlocking’) of caging groups, our approach relies on the light-induced assembly (‘locking’) of a fluorophore. b, General structure of a PaX with a 1-alkenyl 
radical trap and its 9-alkoxypyronine photoproduct (closed-form, CF), and the proposed photoactivation mechanism. c, Synthetic route for the preparation 
of PaX. (1) B2pin2, [Ir(cod)(OMe)]2, AsPh3, n-octane, 120 °C, 22 h; (2) CuBr2, KF, pyridine, DMSO/H2O, 80 °C, 30 min; (3) RB(OH)2, RBpin or RBF3K 
(R = alkenyl), Pd(dppf)Cl2, K2CO3, dioxane/H2O, 80 °C, 3–18 h; (4) CH2Cl2/TFA 3:1, r.t., 1 h. d, Temporal evolution of the absorption and fluorescence spectra 
of 1 (1.66 µg ml−1) irradiated in phosphate buffer (100 mM, pH 7; λact = 405 nm). e, Comparative photoactivation kinetics of Si-bridged PaX 1–6, under the 
same conditions as in d. f, Comparative photoactivation kinetics of PaX dyes 9–12, under the same conditions as in d. Inset: magnified view of the 0–60 s 
time region. g, Comparative photoactivation kinetics of 11 (3.8 µM) in phosphate buffer (100 mM) at different pH values (λact = 405 nm). h, Photo-fatigue 
resistance of 11-CF and established commercial fluorophores, with similar spectral properties, measured in phosphate buffer (λexc = 530 nm).
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analogues, to yield a family of fluorophores spanning much of the 
visible spectrum. In particular, PaX-derived Si-pyronine dyes dis-
play good live-cell compatibility, resilience to nucleophiles, and an 
unprecedented photostability for orange-emitting (TAMRA-like) 
fluorophores. We highlight the utility of PaX dyes and labels in opti-
cal microscopy and nanoscopy techniques, in fixed and living cells, 
including STED, photo-activated localization microscopy (PALM) 
and minimal photon fluxes (MINFLUX).

Results and discussion
Synthetic design and proposed mechanism of photoactivation. 
In our search for minimalistic photoactivatable fluorophores, we 
reasoned that the concept of employing photochemical reactions to 
assemble or ‘lock’ fluorophores, rather than ‘unlocking’ photocleav-
able caging elements, would provide an improved alternative to 
caged rhodamine dyes (Fig. 1a)—a strategy similar to photochromic  

diarylethenes30. Diarylketones are known photoinitiators of radi-
cal reactions31 due to their high inherent rate of intersystem cross-
ing (via spin–orbit coupling) and their triplet states with diradical 
character32,33. We hypothesized that their photochemistry would be 
extendable to 3,6-diaminoxanthones, which are utilized as precur-
sors in the synthesis of rhodamines34–36. With the introduction of a 
suitable intramolecular radical trap onto the xanthone scaffold, a 
juxtaposition of a radical source (diaryl ketone) and a radical trap 
(styrene) could be exploited to photoassemble 9-alkoxypyronine 
fluorophores through a light-triggered cascade (Fig. 1b)37.

To investigate the effects of substitution of the radical acceptor, 
we first synthesized a series of photoactivatable Si-xanthones (1–7; 
Fig. 1c). The target compounds were prepared by an Ir-catalysed, 
chelation-assisted, ortho-selective C–H borylation of the dia-
ryl ketone (A)38. Conversion of the resulting boronate ester (B) 
into the corresponding aryl bromide (C) was carried out with a  

a

MINFLUX

ed

PALM PALM

c

STED

0.5 30Counts

b

STED PALM

0 125Counts 0 106.4(a.u.)

0

10.2

(a.u.)

(a.u.)

0

11.0

0 7.2(a.u.) 0 11.0(a.u.)

O

HN

O

NH

O

N
H

O

NH

O

NH

O

N

O

OHO

HN

S

OH
NH

HN

Si NN

O

R
3

O

O

N

O

O

N
H

O

N

O

O

14
PaX560-maleimide

Target: -SH of Cys
(e.g. nanobodies)

13
PaX560-NHS

Target: -NH2 of Lys
(e.g. antibodies)

15
PaX560-phalloidin

Target: F-actin

Fig. 2 | Photoactivatable labels for optical nanoscopy. a, Structures of PaX560 derivatives for bioconjugation (13, 14) and actin labelling (15). b, STED (left) 
and PALM (right) images of microtubules in COS-7 cells labelled by indirect immunofluorescence with a secondary antibody bearing 13. Preactivation to 
13-CF for STED imaging was achieved with widefield illumination (AHF analysentechnik AG, 4,6-diamidino-2-phenylindole filter set F46-816). c, Actin 
structures of the periodic membrane cytoskeleton in the axon of fixed primary hippocampal neuron cultures labelled with 15 and mounted in Mowiol. 
Preactivation to 15-CF for STED imaging was achieved with widefield illumination (AHF, enhanced green fluorescent protein (EGFP) filter set F46-002) 
followed by a 518-nm laser. Image data were smoothed with a 1-pixel low-pass Gaussian filter. d, PALM image of NPCs in COS-7 cells labelled via indirect 
immunofluorescence with an anti-NUP98 primary antibody and a secondary nanobody labelled with 14. Inset: magnified view of the region marked in the 
overview image. Bottom row: individual NPCs. e, PALM image of NPCs in HeLa-Kyoto cells expressing NUP107-mEGFP labelled with anti-GFP nanobodies 
conjugated to 14. Inset: magnified view of the region marked in the overview image. Bottom row: individual NPCs. Scale bars: 2 μm (b–e, main images), 
500 nm (d,e insets), 50 nm (d, bottom row), 100 nm (e, bottom row).

Nature Chemistry | VOL 14 | September 2022 | 1013–1020 | www.nature.com/naturechemistry 1015

http://www.nature.com/naturechemistry


Articles NATUrE CHEMISTry

CuBr2–pyridine system39 in the presence of KF (details are provided 
in the Supplementary Information). A series of alkene substituents 
were then installed using standard Suzuki–Miyaura cross-coupling 
reaction conditions. Compounds 1–6 showed a strong absorption 
band (ε ≈ 104 M−1 cm−1) at ~400 nm, characteristic of Michler’s 
ketone and its analogues (Supplementary Table 1 presents the pho-
tophysical characterization). Upon irradiation in protic media (for 
example, phosphate buffer, 100 mM, pH 7), compounds 1–6 under-
went rapid and complete conversion to give highly fluorescent 
‘closed-form’ (CF) products with TAMRA-like spectral properties 
(1-CF to 6-CF; Fig. 1d and Supplementary Fig. 1). Liquid chro-
matography mass spectrometry (LC-MS) analysis of the reaction 
mixtures revealed no by-products for most samples. The measured 
quantum yields of photoactivation (ΦPA) ranged from 1 × 10−2 to 
6 × 10−2 (Supplementary Table 1). The rate of photoactivation was 
slowest for vinyl-substituted compound 1, increased with addi-
tional substitution of the alkene, and was highest for compound 

4, possibly due to a favourable orientation of the alkene induced 
by the α-methyl substituent (Fig. 1e). To confirm the formation of 
predicted 9-alkoxypyronine product 1-CF, a solution of compound 
1 in methanol was irradiated with a 405-nm light-emitting diode 
(LED) in a batch photoreactor (see Supplementary Information for 
details), and the resulting product was isolated and fully character-
ized by NMR and high-resolution mass spectrometry (HR-MS) 
analysis (Supplementary Fig. 2), confirming the expected dihy-
dropyran ring fusion. A solvent-dependent protonation step was 
confirmed by conducting photolysis in methanol-d4 (resulting in 
deuterium incorporation at the benzylic position) and by the absence 
of efficient photoactivation in aprotic solvents such as 1,4-dioxane. 
Deoxygenating the solvent increased the rate of photoactivation, 
confirming the role of the xanthone triplet state. Photolysis of 1 
(4.8 µM) in the presence of millimolar concentrations of the radical 
trap 4-hydroxy-TEMPO resulted in the formation of a PaX-TEMPO 
adduct (Supplementary Fig. 3); however, the radical clock probe 7 
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showed no evidence of cyclopropane ring-opening upon photoacti-
vation (Supplementary Fig. 4).

To render the PaX dyes suitable for bioconjugation, xanthone 9 
(PaX480), anthrone 10 (PaX525) and Si-xanthone 11 (PaX560), along 
with its bis-azetidine analogue 12 (PaX+560), were prepared (Fig. 1c)  
bearing alkenyl substituents with a short carboxylate-terminated 
spacer. The keto forms of 9, 10 and 11 showed initial absorbance 
maxima at 399, 408 and 414 nm, respectively (Supplementary Fig. 5 
and Supplementary Table 2). The rate of photoactivation yielding the 
pyronine dyes (with absorption/emission maxima at 480/514 nm for 
9-CF, 524/564 nm for 10-CF and 558/596 nm for 11-CF) decreased 
in the order 11 > 10 > 9 (Fig. 1f), without noticeable by-product for-
mation by LC-MS analysis, and the closed forms remained stable 
for at least 1 h at pH 7 (Supplementary Fig 6). As we expected, the 
azetidine auxochromic groups had little impact on the spectral prop-
erties of both the Si-xanthone (12) and Si-pyronine (12-CF) forms, 
but instead reduced the rate of photoactivation compared to the 
bis(N,N-dimethylamino) analogue (11). Fluorophore 12-CF dem-
onstrated remarkably improved emission quantum efficiency (0.92 
versus 0.48 for 11-CF), which can be attributed to the suppression of 
transfer into a twisted internal charge transfer state upon excitation18.

Screening the photoactivation properties of 11 over a range of 
biologically relevant pH values (Fig. 1g and Supplementary Fig. 7a) 
revealed a six-fold decrease in the photoactivation rate in acidic 
media (pH 4.3) as compared to neutral, and only small rate changes 
at basic pH values (up to 9.0). The low pH-dependence of the acti-
vation rate is similar to previous observations on the protonation of 
the benzophenone triplet excited state40,41, supporting the assumed 
involvement of this diradical in the activation mechanism. At high 
pH values, slow hydrolysis of 11-CF was observed (Supplementary 
Fig. 7b); however, there was no difference in the absorption and 
emission spectra of 11-CF and no change in product composi-
tion was detected by LC-MS up to pH 8.5 (Supplementary Fig. 7c),  
indicating little observable pH-sensitivity for this dye across the 
biologically relevant pH range. Furthermore, photoactivation 
of 11 proceeded cleanly in buffered solutions (pH 7) containing 
2 mM mercaptoethylamine or glutathione (Supplementary Fig. 8), 
anticipating a lack of unwanted radical or electrophilic reactiv-
ity towards biomolecules, and a potential orthogonality with the 
single-molecule localization microscopy (SMLM) blinking buffers 
used for cyanine dyes5. Finally, we assessed the photostability of 
11-CF, benchmarking it against a series of commercially available  
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dyes with similar spectral properties (Fig. 1h), and found that 
11-CF outperformed all of the tested fluorophores (for details, see 
Supplementary Information and Supplementary Figs. 9 and 10).

Caging-group-free photoactivatable labels for nanoscopy. 
Encouraged by the versatility of the PaX mechanism, we proceeded 
to construct targeted labels for fluorescence microscopy and nanos-
copy. For indirect immunolabelling (with secondary antibodies 
or nanobodies), an amino-reactive N-hydroxysuccinimide (NHS) 
ester (13) and a thiol-reactive maleimide (14) derivative of PaX560 
were prepared (Fig. 2a), along with the NHS esters of PaX480, PaX525 
and PaX+560 (Supplementary Figs. 11a and 16–18). For actin label-
ling in fixed cells, a phalloidin derivative (15) of PaX560 was assem-
bled (Fig. 2a).

Thanks to their remarkable photo-fatigue resistance, we reasoned 
that PaX dyes would be strong candidates for STED imaging. We 
tested their performance by indirect immunofluorescence labelling 
of microtubules in fixed COS-7 cells. The fluorescent form of the 
dye was generated in situ (405-nm photoactivation) before STED 
imaging with 561-nm and 660-nm light for excitation and STED, 
respectively. Super-resolved images of microtubules were success-
fully acquired for antibody conjugates of PaX560 (13; Fig. 2b), as well 
as of PaX525 and PaX+560 (17,18; Supplementary Fig. 11b), demon-
strating their compatibility with STED nanoscopy. The specificity of 
PaX560-phalloidin (15) for actin was validated in fixed neuron cul-
tures in which the periodic membrane cytoskeleton structure of the 
axon was visualized by STED (Fig. 2c).

We next tested the performance of our photoactivatable labels in 
SMLM42,43. With this aim, PALM imaging was carried out on indi-
rectly immunolabelled microtubules, and super-resolved images 
could be obtained for antibody conjugates bearing 13 (Fig. 2b) and 
16–18 (Supplementary Fig. 11c). Thanks to the efficient photoacti-
vation mechanism, very low powers (<100 µW) of activation light 
were required. Importantly, all samples were imaged in phosphate 
buffered saline (PBS) or in Mowiol, without the need for special 
blinking buffers or photostabilizing agents.

To further benchmark the utility of PaX labels for PALM imag-
ing, indirect immunofluorescent labelling of nuclear pore com-
plexes (NPCs) was conducted with a primary anti-NUP-98 antibody 
and secondary anti-rabbit nanobodies bearing 14 (Supplementary  
Fig. 12a,b). The PALM images of NPCs (Fig. 2d) were comparable 
in quality to those acquired through more demanding methods (for 
example, qPAINT44). Alternatively, the large-sized (~150 kDa) pri-
mary antibodies could be avoided to improve labelling precision45 in 
cell lines expressing an mEGFP46 (~27 kDa) fusion to NUP107 when 
combined with anti-GFP nanobodies labelled with 14 (Fig. 2e).

Targeted labels for live-cell imaging. To evaluate the compatibility 
of the PaX photoactivation mechanism with live imaging, we first pre-
pared PaX560 constructs (Fig. 3a) containing mitochondria-targeting 
triphenylphosphonium (19) and lysosome-targeting pepstatin A 
(20) moieties, as these selected organelles represent the extreme 
pH values found within the cell (pH 7.8 for the mitochondrial 
matrix and pH 4.5 in the lysosomal lumen). COS-7 cells were 
co-incubated with 19 and MitoTracker Deep Red and imaged 
with confocal microscopy before and after photoactivation with 
355-nm light (Fig. 3b and Supplementary Video 1). The resulting 
fluorescence of 19-CF co-localized strongly with the MitoTracker 
signal (Pearson correlation coefficient r = 0.94). Similarly, COS-7 
cells concurrently labelled with the pepstatin A conjugate 20 and 
the lysosome-targeting fluorophore SiR-lysosome20 demonstrated 
colocalization after photoactivation with r = 0.84. These results 
confirmed that the photoactivation mechanism is compatible with 
live-cell imaging in both high- and low-pH cellular environments.

Self-labelling protein tags, such as HaloTag and SNAP-tag, are 
well-established tools for targeting synthetic fluorophores to spe-
cific proteins in live-cell imaging47. Seeking to exploit this targeting 
strategy, we prepared the HaloTag-specific chloroalkane deriva-
tive (21) and the SNAP-tag specific O6-benzylguanine derivative 
(22) of PaX560 (Fig. 3a). Chloroalkane derivatives of PaX480, PaX525 
and PaX+560 were additionally prepared (Supplementary Figs. 13  
and 23–25).
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Fig. 5 | PALM imaging of NPCs in living cells using self-labelling PaX560 substrates. a, Bottom: PALM image of U2OS stably expressing a NUP107–
SNAP-tag construct labelled with 22. Top: magnified view of the region marked in the overview image. Right column: magnified individual NPCs. b, Bottom: 
PALM image of U2OS cells stably expressing a NUP96-HaloTag construct labelled with 21. Inset: magnified view of the region marked in the overview 
image. Bottom row: magnified individual NPCs. Scale bars: 2 μm (a,b, main), 500 nm (a,b, top insets), 100 nm (a, right column; b, bottom row).
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Upon covalent linking of PaX560-Halo (21) with the HaloTag 
protein, we observed a 7.8-fold increase in the photoactivation rate 
of the dye (Supplementary Fig. 14a–d). Complete reaction of 21 
with HaloTag with only a slight excess (~1.1 equiv.) of the protein 
was confirmed by mass spectroscopy (Supplementary Fig. 14b,d). 
No major fluorescence intensity changes were observed for 21-CF 
covalently bound to HaloTag in comparison to free 21-CF in buff-
ered solution (Supplementary Fig. 14e,f). However, a similar label-
ling efficiency and a greater fluorogenic response were observed 
upon binding of PaX560–SNAP (22) to SNAP-tag, with an 11-fold 
increase in photoactivation rate (Supplementary Fig. 13a–d) and a 
3.3-fold fluorescence intensity increase of SNAP-tag-bound 22-CF 
in comparison to free 22-CF (Supplementary Fig. 15e,f).

We then assessed the feasibility of two-photon activation of 
PaX560–Halo (21) with 810-nm near-infrared (NIR) light, as shift-
ing the excitation wavelength from UV to the NIR range reduces 
phototoxicity and increases imaging depth in tissues. U2OS cells 
stably expressing a vimentin–HaloTag fusion construct48 were 
labelled with compound 21 and imaged with a confocal microscope 
equipped with a subpicosecond pulsed laser (Fig. 3c). The activation 
rate constant was determined for selected areas of the same sample 
by mono-exponential fitting of the activation rates measured with 
variable powers of a UV laser for one-photon activation (355 nm) 
or a subpicosecond pulsed laser for two-photon activation in the 
NIR (810 nm). Two-photon activation was confirmed by the nearly 
quadratic (1.84) dependence on the power of the excitation light 
(Fig. 3d). A pre-activated region of the same sample was further 
imaged using STED (at 660 nm) to resolve vimentin filaments with 
subdiffraction resolution, confirming that live-cell STED was read-
ily possible with compound 21 (Fig. 3e). Live-cell STED time-lapse 
imaging further highlighted the cell dynamics after photoactivation 
(Supplementary Video 2).

Photoactivatable fluorophores can also be utilized together with 
regular ‘always-active‘ fluorescent dyes having similar spectral 
properties for colour duplexing within a single excitation/detec-
tion channel, effectively doubling the number of available imaging 
channels in a confocal or STED system12, provided that bleaching 
of the ‘always-active’ dye does not result in cell damage. To dem-
onstrate this possibility with PaX labels, U2OS cells stably express-
ing a vimentin–HaloTag fusion protein were concurrently labelled 
with PaX560–Halo (21) and an Abberior LIVE 560 tubulin (AL-560) 

probe, then imaged by confocal microscopy using a single detection 
channel (Fig. 4a–e). First, the AL-560-labelled tubulin filaments 
were visualized (Fig. 4a), followed by AL-560-photobleaching with 
high-intensity 560-nm excitation light (Fig. 4b). Compound 21 was 
then, in turn, photo-activated with a 405-nm laser to reveal the 
21-CF-labelled vimentin structure (Fig. 4c).

We explored the utility of the self-labelling protein tag sub-
strates 21 and 22 for live-cell SMLM. U2OS cells stably expressing 
a SNAP-tag fusion with NUP10749 were labelled with PaX560–SNAP 
(22) and imaged with PALM (Fig. 5a). The reconstructed image 
shows largely complete circumferential labelling, which is remark-
able given the one-to-one dye-to-protein ratio, highlighting the 
efficient labelling and efficient detection of activated PaX. Similarly, 
U2OS cells stably expressing HaloTag fusion proteins with NUP9645 
(another NPC protein) were labelled with PaX560–Halo (21). The 
reconstructed image (Fig. 5b) resolved the structural elements of the 
NPCs with even greater efficiency. Fixation of live-labelled samples 
(with HaloTag and SNAP-tag fusion proteins) also allowed PALM 
imaging with similar contrast (Supplementary Fig. 16). Thus, the 
established fixation and permeabilization treatments used to pre-
serve NUP structures45 for super-resolution imaging do not affect 
the performance of PaX labels.

Multiplexing of PaX labels by selective photoactivation. Given the 
difference in photoactivation rates for the PaX dyes, we surmised that 
two complementary labels could be used for multiplexing purposes 
by sequentially applying a lower and a higher dose of activation light, 
to first convert one fluorophore (for example, PaX560) while preserv-
ing the more difficult to activate (for example, PaX480) until higher 
light doses are applied. We tested this first by confocal imaging 
(Supplementary Fig. 17a–e) and next by two-colour single-detector 
PALM imaging (Supplementary Fig. 17f) in fixed cells. We further 
demonstrated sequential activation in live cells (Supplementary  
Fig 18) by confocal imaging, using the organelle- (PaX560–Mito 19  
or PaX560–Lyso 20) and HaloTag-specific (PaX480–Halo, 23) labels.

Utilizing PaX labels in MINFLUX nanoscopy. Finally, we tested 
the PaX labels in MINFLUX nanoscopy1,4, a recent technique that 
localizes individual fluorophores using an excitation beam with 
an intensity minimum (zero). Fixed HeLa-Kyoto cells expressing 
mEGFP fused to NUP107 were labelled with anti-GFP nanobodies 
bearing 14 and imaged by MINFLUX (Fig. 6a), yielding images of 
largely complete NPCs (Fig. 6b). On average, molecules were local-
ized 106 times, utilizing 116 photons in the final MINFLUX itera-
tion, and accounting for a mean label precision of 3.7 nm (s.d.).

Conclusion
We have introduced a general design strategy for caging-group-free, 
bright- and live-cell-compatible photoactivatable dyes, suitable 
for a wide range of optical microscopy and nanoscopy techniques, 
including PALM, STED and MINFLUX. The unique structural 
feature of these PaX dyes is the combination of a light-responsive 
3,6-diaminoxanthone core functionalized with an intramolecu-
lar alkene radical trap, to give a highly compact and intrinsically 
uncharged, intact cell-membrane-permeable label. Under one- or 
two-photon activation, these compounds rapidly assemble into 
highly photostable fluorescent pyronine dyes. By changing the sub-
stitution pattern of PaX dyes, the photoactivation kinetics as well as 
the spectral properties can be tuned, allowing for both multiplexed 
pseudocolour as well as conventional multicolour imaging. The 
utility and versatility of PaX dyes is illustrated with a diverse range 
of target-specific probes and labelling strategies, for fixed- and 
live-cell super-resolution fluorescence microscopy experiments. 
We expect that our methodology will further stimulate the develop-
ment of photoactivatable probes and sensors for biological imaging 
and material science. Further improvements to PaX fluorophores 

MINFLUX

a

0 504(a.u.)

361
b

0

(a.u.)

Fig. 6 | MINFLUX imaging of NPCs using PaX560. a, MINFLUX image 
of NPCs in HeLa-Kyoto cells expressing NUP107-mEGFP labelled with 
anti-GFP nanobodies conjugated to 14. b, Individual NPCs, as marked in  
a. Scale bars: 500 nm (a) and 50 nm (b).
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will benefit applications in MINFLUX imaging and the recently 
proposed MINSTED nanoscopy50.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41557-022-00995-0.
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Methods
Detailed procedures for the synthesis of all compounds and their characterizations, 
as well as methods sample preparation, live and fixed-cell labelling for microscopy 
and nanoscopy, are provided in the Supplementary Information. Image 
acquisition conditions for confocal and STED (Supplementary Table 3) and PALM 
(Supplementary Table 4), as well as detailed procedures for image processing and 
rendering, are provided in the Supplementary Information.

Statistics and reproducibility. All biochemical or spectroscopic data were 
obtained in triplicate with similar results. All staining/labelling of cells was 
performed in triplicate. Cells for microscopy were selected at random during the 
imaging session; sufficient microscopy images were collected, from experience, to 
ensure their representation of the sample.

Cell culture. COS-7, HeLa, U2OS-Vim-Halo, U2OS-Vim-SNAP48,51 and HK-
2xZFN-mEGFP-Nup10746 cells were cultured in Dulbecco’s modified Eagle 
medium (DMEM, 4.5 g l−1 glucose) containing GlutaMAX and sodium pyruvate 
(ThermoFisher 31966), supplemented with 10% (vol/vol) fetal bovine serum (FBS, 
ThermoFisher 10500064) and 1% Pen Strep (GIBCO, 15140122) in a humidified 
5% CO2 incubator at 37 °C. Cells were split every 2–4 days or at confluency, and 
were regularly tested for mycoplasma contamination.

U2OS-ZFN-SNAP-Nup10749 and U2OS-NUP96-Halo45 cells were cultured 
in McCoy’s 5a (modified) medium (GIBCO, 26600023) containing l-glutamine 
and sodium pyruvate, supplemented with 10% (vol/vol) FBS and 1% Pen Strep 
(GIBCO, 15140122) in a humidified 5% CO2 incubator at 37 °C. Cells were 
split every 2–4 days or at confluency, and were regularly tested to ensure no 
mycoplasma contamination.

Cell lines with genetically introduced self-labelling tags were verified by 
confocal microscopy using previously reported fluorophore labels.

Neuronal culture preparation and labelling. Cultures of dissociated rat 
hippocampal primary neurons were prepared from postnatal P0-P1 Wistar rats of 
either sex and cultured on glass coverslips coated with 100 µg ml−1 poly-ornithine 
(Merck KGaA) and 1 µg ml−1 laminin (BD Biosciences). Procedures were performed 
in accordance with the Animal Welfare Act of the Federal Republic of Germany 
(Tierschutzgesetz der Bundesrepublik Deutschland, TierSchG) and the Animal 
Welfare Laboratory Animal Regulations (Tierschutzversuchsverordnung). According 
to the TierSchG and the Tierschutzversuchsverordnung, no ethical approval from the 
ethics committee is required for the procedure of euthanizing rodents for subsequent 
extraction of tissues. The procedure for euthanizing P0-P1 rats performed in this 
study was supervised by animal welfare officers of the Max Planck Institute for 
Medical Research (MPImF) and conducted and documented according to the 
guidelines of the TierSchG (permit number assigned by the MPImF: MPI/T-35/18).

Cells were grown in the presence of 1-β-d-arabinofuranosyl-cytosin (Merck 
KGaA) at 37 °C and 5% CO2. Cultures were fixed at 27 days in vitro in 4% 
paraformaldehyde in PBS, pH 7.4 for 20 min, and quenched for 5 min in PBS 
supplemented with 100 mM glycine and 100 mM ammonium chloride. Cells were 
permeabilized for 5 min in 0.1% Triton X-100, blocked with 1% bovine serum 
albumin for 30 min and incubated with 1 µM 15 diluted in PBS. After extensive 
washing in PBS, samples were mounted in Mowiol supplemented with DABCO. 
The identification of axons was facilitated by staining of the axon initial segment 
with an anti-neurofascin primary antibody (NeuroMab, cat. no. 75-172) and an 
anti-mouse STAR GREEN (Abberior, cat. no. STGREEN-1001) secondary antibody.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
The data supporting the findings of this study are provided within the Paper and 
its Supplementary Information. The data are also available from the corresponding 
authors upon reasonable request. Source data are provided with this Paper.

Code availability
The custom code used for image rendering is available at https://github.com/
mbossi2015/paper_PaX.
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Software and code
Policy information about availability of computer code

Data collection Bruker Topspin 3.5, LabSolutions 5.89, Cary Eclipse Scan Application 1.2(147), Cary Eclipse WinUV Scan Application 6.2.0.1588, MatLab 
R2007a, Imspector (16.1.6905, 16.3.13033, 16.3.13367), LabVIEW 2019 32bit, Andor Solis 4.31.30022, EasyTau 1.4

Data analysis MestReNova 11.0.3, Imspector (16.1.6905, 16.3.13033, 16.3.13367), ImageJ 1.52i, ImageJ 1.53f51, OriginPro 2020 (64-bit) SR1 9.7.0.188, 
MatLab R2007a, FluoFit 4.6.6.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data supporting the findings of this study are available within the paper and its Supplementary Information and are available from the corresponding author 
upon reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed as no biologically-relevant outcome was analyzed. Sufficient microscopy images were collected 
from experience to ensure their representation of the sample.

Data exclusions No data were excluded.

Replication All biochemical or spectroscopic data was performed in triplicate with similar results. All staining/labelling of cells was performed in triplicate.

Randomization No randomizations were required for the experiments performed. Control of covariates was not relevant to the study as no biologically-
relevant outcome was analyzed. Cells for microscopy were selected at random during the imaging session.

Blinding No blinding was required for the experiments performed as no biologically-relevant outcome was analyzed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used AffiniPure Goat Anti-Rabbit IgG (H+L), Goat, Jackson ImmunoResearch Europe Ltd., 111-005-003 

AffiniPure Goat Anti-Mouse IgG (H+L), Goat, Jackson ImmunoResearch Europe Ltd., 115-005-003 
sdAB anti-Mouse kappa light chain (kLC), unconjugated, Camelid, NanoTag Biotechnologies, N1202 
sdAb anti-Rabbit IgG, unconjugated, Camelid, NanoTag Biotechnologies, N2402 
FluoTag-X2 anti-GFP unconjugated clone 1H, Camelid, NanoTag Biotechnologies, N0302 
FluoTag-X2 anti-GFP unconjugated clone 1B, Camelid, NanoTag Biotechnologies, N0303 
Pan-Neurofascin (extracellular), Mouse, Neuromab, 75-172 
abberior STAR GREEN, goat anti-mouse IgG, Goat, Abberior, STGREEN-1001 
Anti-Clathrin heavy chain antibody, Rabbit, Abcam, ab21679 
Anti-Nup153 antibody [QE5], Mouse, Abcam, ab24700 
alpha-Tubulin antibody, Mouse, Synaptic Systems, 302 211 
NUP98 (C39A3) Rabbit mAb, Rabbit, Cell Signalling, #2598

Validation antibodies and nanobodies were used without further validation as the obtained labelling was clearly compatible with the expected 
structures. All reagents have already been extensively used by us and others. 
 
FFluoTag-X2 anti-GFP unconjugated clone 1H, Camelid, NanoTag Biotechnologies, N0302: Manufacturer reports “Recognizes GFP 
(green fluorescent protein) and common GFP derivatives like EGFP, mEGFP, Sirius, tSapphire, Cerulean, eCFP, mTurquoise, acGFP, 
Emerald, superecliptic pHluorin, paGFP, superfolder GFP, eYFP, mVenus and Citrine.” utilization in Immunofluorescence (https://
nano-tag.com/product/fluotag-x4-anti-gfp/). 
FluoTag-X2 anti-GFP unconjugated clone 1B, Camelid, NanoTag Biotechnologies, N0303: Manufacturer reports “Recognizes GFP 
(green fluorescent protein) and common GFP derivatives like EGFP, mEGFP, Sirius, tSapphire, Cerulean, eCFP, mTurquoise, acGFP, 
Emerald, superecliptic pHluorin, paGFP, superfolder GFP, eYFP, mVenus and Citrine.” utilization in Immunofluorescence (https://
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nano-tag.com/product/fluotag-x4-anti-gfp/). 
Pan-Neurofascin (extracellular), Mouse, Neuromab, 75-172: Utilized for western blot, immunohistochemistry, immunocytochemistry; 
reported in 30 references (https://www.labome.com/product/Neuromab/75-172.html). 
Anti-Clathrin heavy chain antibody, Rabbit, Abcam, ab21679: Manufacturer reports “confirmed specificity through extensive 
validation”; utilized in Western blot and Immunocytochemistry; reported in 114 references (https://www.abcam.com/clathrin-heavy-
chain-antibody-ab21679.html). 
Anti-Nup153 antibody [QE5], Mouse, Abcam, ab24700: Manufacturer reports “ab24700 could also recognise other NPC 
polypeptides, p250 and p62, apart from Nup153.”; utilization in Immunocytochemistry/Immunofluorescence; reported in 50 
references (https://www.abcam.com/nup153-antibody-qe5-ab24700.html). 
alpha-Tubulin antibody, Mouse, Synaptic Systems, 302 211: Manufacturer reports “Specific for α-tubulin (glu- and tyr-α-tubulin)”; 
utilization in Western blot and Immunocytochemistry; reported in 14 references (https://sysy.com/product/302211). 
NUP98 (C39A3) Rabbit mAb, Rabbit, Cell Signalling, #2598: Manufacturer reports  “NUP98 (C39A3) Rabbit mAb detects endogenous 
levels of total NUP98 protein”;  utilization in Western blot and Immunofluorescence; reported in 37 references (https://
www.cellsignal.de/products/primary-antibodies/nup98-c39a3-rabbit-mab/2598). 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) COS-7, Hölzl Biotech, AddexBio (T0014002);  
HeLa, Kräusslich Group, Virology, University Heidelberg; 
U2OS-Vim-Halo, Jakobs Group, Structure & Dynamics of Mitochondria, MPI Multidisciplinary Sciences; 
U2OS-Vim-SNAP, Jakobs Group, Structure & Dynamics of Mitochondria, MPI Multidisciplinary Sciences;  
HK-2xZFN-mEGFP-Nup107, CLS Cell Lines Service GmbH (300676); 
U2OS-ZFN-SNAP-Nup107; CLS Cell Lines Service GmbH  (300294); 
U2OS-NUP96-Halo, CLS Cell Lines Service GmbH (300448).

Authentication The cell lines were used without further authentication. Genetically modified cells lines clearly exhibited the expected 
labeling pattern.

Mycoplasma contamination Cell lines were regularly tested for mycoplasma contamination and were negative. Primary neuron cultures were not tested.

Commonly misidentified lines
(See ICLAC register)

Not applicable as no commonly misidentified cell lines were used.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Postnatal day 0-1 Wistar rats of either sex.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Procedures were performed in accordance with the Animal Welfare Act of the Federal Republic of Germany (Tierschutzgesetz der 
Bundesrepublik Deutschland, TierSchG) and the Animal Welfare Laboratory Animal Regulations (Tierschutzversuchsverordnung). 
According to the TierSchG and the Tierschutzversuchsverordnung no ethical approval from the ethics committee is required for the 
procedure of sacrificing rodents for subsequent extraction of tissues, as performed in this study. The procedure for sacrificing P0–P2 
rats performed in this study was supervised by animal welfare officers of the Max Planck Institute for Medical Research (MPImF) and 
conducted and documented according to the guidelines of the TierSchG (permit number assigned by the MPImF: MPI/T-35/18).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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