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Abstract: Gestational low-protein (LP) diet leads to glucose intolerance and insulin resistance in adult
offspring. We had earlier demonstrated that LP programming affects glucose disposal in females.
Mitochondrial health is crucial for normal glucose metabolism in skeletal muscle. In this study,
we sought to analyze mitochondrial structure, function, and associated genes in skeletal muscles
to explore the molecular mechanism of insulin resistance LP-programmed female offspring. On
day four of pregnancy, rats were assigned to a control diet containing 20% protein or an isocaloric
6% protein-containing diet. Standard laboratory diet was given to the dams after delivery until the
end of weaning and to pups after weaning. Gestational LP diet led to changes in mitochondrial
ultrastructure in the gastrocnemius muscles, including a nine-fold increase in the presence of giant
mitochondria along with unevenly formed cristae. Further, functional analysis showed that LP
programming caused impaired mitochondrial functions. Although the mitochondrial copy number
did not show significant changes, key genes involved in mitochondrial structure and function such
as Fis1, Opa1, Mfn2, Nrf1, Nrf2, Pgc1b, Cox4b, Esrra, and Vdac were dysregulated. Our study shows
that prenatal LP programming induced disruption in mitochondrial ultrastructure and function in
the skeletal muscle of female offspring.

Keywords: developmental programming; glucose intolerance; insulin resistance; mitochondria;
low-protein diet

1. Introduction

The developmental origin of the health and disease hypothesis postulates the impor-
tance of the fetal environment during development [1,2]. Maternal diet is a vital factor that
determines the trajectory of growth and early development of the offspring [2,3]. Many
epidemiological and experimental studies indicate that maternal low-protein (LP) diet is
linked to an increased risk of metabolic diseases in adulthood [4–6]. As prenatal LP diet-
exposed offspring are found to be insulin resistant, the prevalence of type 2 diabetes (T2D)
is much higher in them when compared with normal offspring. Maternal LP diet causes
low levels of amino acids in fetal circulation, thereby depriving the developing fetus of key
amino acids, leading to low birth weight and impaired skeletal muscle development [7,8].

Skeletal muscles play a crucial role in energy homeostasis by burning glucose and
fatty acids. This process is aided by the presence of mitochondria in the skeletal muscles.
The metabolic ability of skeletal muscles is unique, as they can adapt quickly to various
functional demands, and this ability is largely due to the presence of a healthy mitochon-
drial population [9,10]. Thus, the quality and quantity of mitochondria in skeletal muscle
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are critical for glucose homeostasis [11]. Skeletal muscle is the primary site of peripheral
insulin resistance, as several steps of insulin-stimulated glucose uptake and utilization
take place in this tissue [12]. Peripheral insulin resistance is the hallmark of impaired
glucose homeostasis and is a predictor of T2D [13]. Various studies have indicated that
insulin resistance is often associated with alterations in skeletal muscle mitochondrial
health caused by either a reduced number or dysfunctional mitochondria [14,15].

Prenatal nutrition is crucial for the normal development of skeletal muscles, and its
health is determined by the quality and quantity of muscle fibers formed during fetal
development [16,17]. Maternal undernutrition affects not only the number of muscle fibers
but also the functional attributes of the skeletal muscles and stem cell activity [18–20].
Previous studies using maternal LP diet-based animal models have reported long-lasting
changes in mitochondrial function [21–23]. Further, prenatal LP diet followed by postnatal
high-fat diet resulted in reduced skeletal muscle mitochondrial oxidation [21]. Another
study shows that fetal and early postnatal protein restriction caused decreased mtDNA
in the skeletal muscles and downregulation of mitochondrially encoded genes [22]. In
addition, a microarray analysis on skeletal muscles of newborn mice exposed to LP during
gestation revealed a significant reduction in the expression of mitochondrial genes involved
in oxidative phosphorylation [23]. As skeletal muscle functions as one of the main sites for
peripheral glucose disposal, the mitochondrial dysfunction in these tissues often leads to
insulin resistance and glucose intolerance [24].

In our earlier studies, we had extensively characterized a gestational LP-induced lean
T2D rat model. We showed that pups born to LP dams are smaller at birth but show rapid
catch-up growth [25–27]. They developed progressively worsening glucose intolerance
and insulin resistance with advancing age without any increase in body weight, body mass
index, or fat content when compared with controls [25,28]. We also showed that gestational
LP diet caused T2D in adult offspring with different signaling mechanisms in males and
females [25–27,29,30]. Our studies in females showed that impaired glucose homeosta-
sis is caused due to a defect in the insulin signaling cascade, which regulates glycogen
synthesis [26]. Further, we also showed that LP programming affects hepatic glucose pro-
duction via both gluconeogenesis and glycogenolysis in a sex-dependent manner with
greater dysregulation in females when compared to males [29]. The present study aims to
investigate the role of mitochondrial health in the skeletal muscle in LP-programmed T2D
female offspring. We hypothesized that a gestational LP diet impairs mitochondrial ultra-
structure and expression of genes associated with mitochondrial biogenesis and dynamics
along with compromised mitochondrial function in female adult offspring.

2. Materials and Methods
2.1. Animals

All the animal procedures were approved by the Institutional Animal Care and Use
Committee of the Baylor College of Medicine, Houston, Texas. Outbred Wistar rats were
obtained from Envigo bioproducts Inc. Madison, WI. Virgin females weighing ~250 g and
males weighing ~350 g were purchased and housed in a temperature-controlled room
(~23 ◦C) with a 10:14 h light/dark cycle and were given unlimited access to food and
water. Female rats were mated with males of proven fertility by housing two females
with one male. Females were checked for the presence of sperm in vaginal smear, and
the presence of sperm was marked as day one of pregnancy. Custom-formulated feed
pellets were obtained from Harlan Teklad (Madison, WI) in consultation with their in-house
nutritionist. The control diet (Diet # TD.91352) had 20% protein (casein), and the LP diet
(Diet # TD.90016) had 6% protein (casein). Diets were made isocaloric (3.8 kcal/g) by
adjusting the carbohydrate quantity. Control diet had 20.3% (21.5% kcal) protein, 61.6%
(65.3% kcal) carbohydrates, and 5.5% (13.1% kcal) fat, and LP diet had 6.1% (6.5% kcal)
protein, 75.6% (80.4% kcal) carbohydrates, and 5.5% (13.3% kcal) fat. Further, the diets
were matched for calcium (0.7%) and phosphorus (0.54%). On day four of pregnancy, rats
were randomly assigned to a control diet containing 20% protein (n = 10) or an isocaloric
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6% protein-containing diet (n = 10) until delivery. Standard laboratory rat chow (Teklad
Global (Diet # 2019) containing 19% Protein Extruded Rodent Diet, Teklad Diets, Madison,
WI, USA) was given to dams after delivery until the end of weaning, and pups were given
the standard laboratory rat chow after weaning. Two-day-old pups were sexed, and pups
with extreme weights were culled to normalize the litter size to eight pups (four males
and four females when possible) per mother in both groups. Dams were euthanized after
weaning. All experiments were performed using 4-month-old rats except for the Seahorse
XF Cell Mito Stress Test, where the rats were 6 months old. Rats were euthanized during
diestrus, and tissues were harvested and processed for various studies.

2.2. Transmission Electron Microscopy (TEM)

TEM was carried out as described previously [31]. Briefly, gastrocnemius muscles
were dissected and were placed in fixative (2.5% glutaraldehyde in 0.1M cacodylate buffer
to a pH of 7.4 at 4 ◦C) and trimmed into small pieces. The pieces were placed in the fixative
and stored at 4 ◦C until processing. The muscle pieces were then washed in buffer for
15 min thrice followed by post fixing in 1% OsO4 in 0.1M cacodylate for 45 min at 4 ◦C. The
samples were washed three times in distilled water, followed by washes in ascending series
of alcohol. The muscle samples were then embedded and cured in resin. Fifty nanometer
sections were then cut from these blocks using an ultra-microtome. The thin sections were
mounted on a copper grid and stained with heavy metals for ultra-structural analysis. For
image analysis, 10 randomly chosen fields were photographed at 3000× for each animal,
and the mitochondria were manually counted for five animals for each group. Selected
areas were imaged at 10,000× to observe the mitochondrial ultrastructure.

2.3. Mitochondrial DNA Copy Number

Total DNA was isolated from gastrocnemius muscle using QIAmp DNA kit (Qiagen,
Germany). The genomic DNA was stored at −80 ◦C for subsequent use. Mitochondrial
DNA copy number was assessed as previously described [31,32]. The qPCR was performed
with 1:100 of diluted DNA templates for mitochondrially encoded cytochrome c oxidase 1, 2,
and 3 and compared with genomically encoded reference gene, tubulin. The total volume of
reaction conducted was 10 µL, and the reaction mix was prepared fresh every time. The PCR
conditions used were 3 min at 95 ◦C for initial denaturing, followed by 15 s at 95 ◦C, 30 s at
60 ◦C for annealing, and 15 s at 72 ◦C for extension for 40 cycles, followed by a melt curve
analysis. All samples were run in triplicates. Details of primers are provided in Table 1.

Table 1. Oligonucleotide primers used for qPCR.

Gene Primer (F = Forward; R = Reverse)

mtCox1 F: 5′- ATCGCAATTCCTACAGGCGT-3′

R: 5′-TGTTAGGCCCCCTACTGTGA-3′

mtCox2 F: 5′-CAAGACGCCACATCACCTATC-3′

R: 5′-TTGGGCGTCTATTGTGCTTG-3′

mtCox3 F: 5′-GGAACATACCAAGGCCACCA-3′

R: 5′-TCGTGGGTAGGAACTAGGCT-3′

Esrra F: 5′- AAAGTCCTGGCCCATTTCTATG-3′

R: 5′-CCCTTGCCTCAGTCCATCAT-3′

CoxIVa F: 5′-CAAGGGCACCAATAGGTGGA-3′

R: 5′-GATGGGGCCATACACCTAGC-3′

CoxIVb F: 5′-CGTCTTCAGCTTGCAACTATGT-3′

R: 5′-ACATAGGGGGTCATCCTCCG-3′

Cyc A F: 5′-TATCTGCACTGCCAAGACTGAGTG-3′

R: 5′-CTTCTTGCTGGTCTTGCCATTCC-3′

Fis1 F: 5′-GTGCCTGGTTCGAAGCAAATA-3′

R: 5′-CATATTCCCGCTGCTCCTCTT-3′
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Table 1. Cont.

Gene Primer (F = Forward; R = Reverse)

Mfn1 F: 5′-ATCTTCGGCCAGTTACTGGAGTT-3′

R: 5′-AGATCATCCTCGGTTGCTATCC-3′

Mfn2 F: 5′-CCTTGAAGACACCCACAGGAATA-3′

R: 5′-CGCTGATTCCCCTGACCTT-3′

Nrf1 F: 5′-CTCTGCATCTCACCCTCCAAAC-3′

R: 5′-TCTTCCAGGATCATGCTCTTGTAC-3′

Nrf2 F: 5′-CATTTGTAGATGACCATGAGTCGC-3′

R: 5′-GAGCTATCGAGTGACTGAGCC-3′

Opa1 F: 5′-AAAAGCCCTTCCCAGTTCAGA-3′

R: 5′-TACCCGCAGTGAAGAAATCCTT-3′

Pgc1a F: 5′-CTACAATGAATGCAGCGGTCTT-3′

R: 5′-TGCTCCATGAATTCTCGGTCTT-3′

Pgc1b F: 5′-TCGGTGAAGGTCGTGTGGTATAC-3′

R: 5′-GCACTCGACTATCTCACCAAACA-3′

Sirt1 F: 5′-CTGTTTCCTGTGGGATACCTGACT-3′

R: 5′-ATCGAACATGGCTTGAGGATCT-3′

Vdac1 F: 5′-GTCACCGCCTCCGAGACCAT-3′

R: 5′-CCAATCCATTCTCGGACTTCGT-3′

Tuba1a F: 5′-ATGGTCTTGTCGCTTGGCAT-3′

R: 5′-CCCCTTTCCACAGCGTGAGT-3′

2.4. Quantitative Real-Time qPCR

Expression of key genes involved in mitochondrial function was quantified using
qPCR. Total RNA was isolated from gastrocnemius muscle by using TRIzol reagent (Life
Technologies, Carlsbad, CA, USA). Total RNA was further refined with the RNeasy Cleanup
Kit (Qiagen, Valencia, CA, USA). All the RNA samples were quantified using the ND-1000
model NanoDrop Spectrophotometer (Thermo Fisher Scientific, Newark, DE, USA). Total
RNA (2 µg) was reverse transcribed using a modified Maloney murine leukemia virus-
derived RT (New England Biolabs Inc., Ipswich, MA, USA) and random hexamer primers
(Life Technologies) as reported earlier [26]. After dilution, cDNA was amplified by real-time
PCR using SYBR Green (Bio-Rad, Hercules, CA, USA) in a CFX96 model real-time thermal
cycler (Bio-Rad). Specific pairs of primers were designed and purchased (IDT, Coralville,
IA, USA). Details of primers are provided in Table 1. All reactions were performed in
triplicates, and cyclophilin A was used as the reference gene. Results were calculated using
2–∆∆CT method and expressed as fold changes of expression of genes of interest.

2.5. Mitochondrial Oxygen Consumption

The FDB muscles were isolated, and Cell Mito Stress Test was performed using an
XF 96 Extracellular Flux Analyzer (Seahorse Bioscience) as described earlier [33]. Briefly,
harvested FDB muscle pieces (~20 µg) from each rat were incubated in dissociating media
at 5% CO2 and 37 ◦C for 2 h. Dissociation media were prepared by dissolving collagenase
(4 mg/mL; Roche, Mannheim, Germany) in DMEM (Invitrogen, Carlsbad, CA, USA)
containing 2% charcoal-stripped FBS along with 0.1% gentamycin. After dissociation, single
myofibers were separated from each FDB muscle bundle. After removing the undigested
fragments, myofibers were transferred to a 35 mm sterile dish with 1 mL of culture media
(DMEM with 2% charcoal-stripped FBS with gentamycin). After thoroughly dispersing the
muscle fibers, 50 µL aliquots of the fibers were taken and seeded into the Aligent Seahorse
XFe96 microplate pre-coated with extracellular matrix (ECM, Sigma-Aldrich, St. Louis,
MO, USA) to facilitate attachment of the muscle fibers. The fibers covered 60–70% of the
well bottom. Samples from each animal were seeded in triplicates. The microplates were
placed in a 5% CO2 incubator at 37 ◦C overnight before analysis. Mitochondrial stress tests
were performed by following manufacturer’s protocol (Agilent Technologies). XF DMEM
medium was supplemented with 10 mM glucose solution, 2 mM glutamine solution, and
1 mM pyruvate for the assay. Inhibitors were used at the following concentrations: 2.5 µM
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oligomycin, 0.5 mM FCCP, and 0.5 µM antimycin A + 0.5 µM rotenone. Data analyses were
conducted using Wave software and XF Report Generators (Agilent Technologies). OCR
measurements were normalized to protein content.

2.6. Western Blot

Western blots for mitochondrial proteins in gastrocnemius muscle were performed as
described earlier [34]. Briefly, 30 µg of protein extract was resolved on 4–15% precast gradi-
ent polyacrylamide gels (Mini-PROTEAN TGX Precast Gels; Bio-Rad, Hercules, CA, USA).
Resolved proteins were transferred to a polyvinylidene fluoride membrane (Millipore,
Billerica, MA, USA). Primary antibodies were incubated overnight at 4 ◦C after blocking
the membranes in 5% bovine serum albumin or 5% nonfat dried milk in Tris-buffered saline
containing 0.1% Tween 20 for 1 h at room temperature. Details of primary antibodies and
their dilutions are as follows: Gapdh (Cat #97166, 1:1000), Vdac1 (Cat #4661, 1:1000), Opa1
(Cat #80471, 1:1000), Nrf1 (Cat #46743, 1:1000), Sirt1 (Cat #9475, 1:1000), Esrra (Cat #13826,
1:1000), and Cox-IV (Cat #4850, 1:5000) were obtained from Cell Signaling Technology
(Danvers, MA, USA); Fis1 (Cat #sc-376447, 1:1000), Mfn1 (Cat #sc-166644, 1:1000), and
Mfn2 (Cat #sc-515647, 1:1000) were obtained from Santa Cruz Biotechnology (Dallas, TX,
USA); and Total OXPHOS Rodent Antibody Cocktail (Cat #ab110413) and Pgc1b (Cat #
ab 176328) were obtained from Abcam Cambridge (MA, USA). After primary antibody
incubations, membranes were washed and incubated for 60 min at room temperature with
horseradish peroxidase-conjugated secondary antibodies (Proteintech Inc., Rosemont, IL,
USA). Membranes were washed and incubated in ECL Western blotting detection reagents
(Pierce Biotechnology, Waltham, MA USA) for detection and imaged using the Odyssey
Fc imaging system (LI-COR). Densitometry analyses were performed using Image Studio
software from LI-COR.

2.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software. Data are presented
as the mean ± SEM. Comparisons between the two groups were performed using unpaired
Student t-tests. Differences were considered to be statistically significant when p < 0.05.

3. Results
3.1. Controls and LP Rats Had Similar Weights at 4 Months and Feed Intake

LP-programmed and control female offspring had similar body weights at 4 months
of age (LP: 329.5 ± 8 vs. Control: 348.8 ± 12 g, p > 0.05). Further, there were no dif-
ferences between the weights of gastrocnemius muscles between the two groups (LP:
1.8 ± 0.05 vs. Control: 1.9± 0.05 g, p > 0.05). Feed intake normalized to their body weight at
4 months of age did not show differences between the LP-programmed females and controls
(LP: 17.5 ± 1.5 vs. Control: 19.0 ± 1.0 g/kg body weight, p > 0.05).

3.2. Maternal LP Diet Alters the Mitochondrial Morphology and Ultrastructure

TEM images showed that LP programming caused changes to mitochondrial morphology
and ultrastructure in gastrocnemius muscles when compared with controls (Figure 1A,B).
Although there were no differences in the total number of mitochondria per field (Figure 1C),
LP-programmed muscles showed an eight-fold increase in the number of giant mitochondria
(Figure 1D), clearly showing anomalies in the fission-fusion process of mitochondria. Further,
control animals had well-defined cristae with an electron-dense matrix that was distributed
uniformly throughout the mitochondria, whereas the LP-programmed animals had an
electron-dense matrix with sparsely distributed and unevenly formed cristae, which could
lead to compromised mitochondrial function.
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Figure 1. Transmission electron microscopic images depicting alteration of mitochondrial structure
in control vs. LP (Low protein programmed lean diabetic rats). (A) Ultrastructure of mitochon-
dria in the gastrocnemius muscle of control and (B) low protein programmed lean diabetic rats;
(C) Average number of mitochondria/ field in control and LP rats; (D) Average number of giant
mitochondria/field in control and LP rats (** p < 0.01); n = 5. Scale bar represent 800 nm.

3.3. LP Programming Did Not Alter mtDNA Copy Number in Gastrocnemius Muscles

Although image analysis from TEM did not show any changes in mitochondrial
numbers, we wanted to further confirm by assessing the mtDNA copy number. The
mtDNA copy number was assessed by qPCR for genes encoded in mitochondria (mtCo1,
mtCo2, mtCo3) and compared with a somatic reference gene (β-actin) in LP-programmed
gastrocnemius muscles versus controls. No difference noted in mtDNA copy number of
LP-programmed skeletal muscle when compared with controls for mtCo1 (LP: 251 ± 18 vs.
Control: 279 ± 23), for mtCo2 (LP: 1331 ± 51 vs. Control: 1349 ± 195), and for mtCo3 (LP
580 ± 38 vs. Control 586 ± 71) (Figure 2).

Nutrients 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 2. Mitochondrial copy number levels in control vs LP. Quantification of mitochondrial DNA 
copy number was conducted using qRT-PCR: (A) depicts mitochondrial Complex I (mtCo1) levels; 
(B) shows mtCo2 levels; (C) illustrates mtCo3 levels when normalized to beta-actin. Data represent 
mean ± SEM; n = 8. 

3.4. LP Programming Reduced Oxygen Consumption in Skeletal Muscles 
The Cell Mito Stress Test was conducted to examine the impact of LP programming 

on the change in oxygen consumption rate (OCR) and mitochondrial function (Figure 3). 
Overall results suggest that skeletal muscles (FDB) from LP-programmed females showed 
a decrease in OCR (Figure 3A). Further analysis using various inhibitors and the algorithm 
of Seahorse Bioscience Inc. for the Mito Stress Test showed that there was no difference in 
the OCR during basal respiration (Figure 3B; 15.5 ± 9.8 in controls vs. 14.1 ± 9.0 
pmol/min/mg protein in LP). However, there were significant decreases in the OCR dur-
ing maximum respiration (Figure 3C; 66.6 ± 9.6 in controls vs. 31.7 ± 6.4 pmol/min/mg 
protein in LP, p < 0.05), non-mitochondrial respiration (Figure 3D; 56.7 ± 5.8 in controls vs. 
39.1 ± 3.6 pmol/min/mg protein in LP, p < 0.05), and spare respiratory capacity (Figure 3E; 
45.5 ± 5.6 in controls vs. 21.7 ± 4.9 pmol/min/mg protein in LP, p < 0.05) clearly showing 
compromised mitochondrial function. 

 
Figure 3. Mitochondrial oxygen consumption rate in control vs. LP skeletal muscle. Mitochondrial 
respiratory parameters in the skeletal muscle were measured using mitochondrial stress test. Basal 

Figure 2. Mitochondrial copy number levels in control vs LP. Quantification of mitochondrial DNA
copy number was conducted using qRT-PCR: (A) depicts mitochondrial Complex I (mtCo1) levels;
(B) shows mtCo2 levels; (C) illustrates mtCo3 levels when normalized to beta-actin. Data represent
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3.4. LP Programming Reduced Oxygen Consumption in Skeletal Muscles

The Cell Mito Stress Test was conducted to examine the impact of LP programming on
the change in oxygen consumption rate (OCR) and mitochondrial function (Figure 3). Over-
all results suggest that skeletal muscles (FDB) from LP-programmed females showed a decrease
in OCR (Figure 3A). Further analysis using various inhibitors and the algorithm of Seahorse
Bioscience Inc. for the Mito Stress Test showed that there was no difference in the OCR during
basal respiration (Figure 3B; 15.5± 9.8 in controls vs. 14.1± 9.0 pmol/min/mg protein in LP).
However, there were significant decreases in the OCR during maximum respiration (Figure 3C;
66.6± 9.6 in controls vs. 31.7± 6.4 pmol/min/mg protein in LP, p < 0.05), non-mitochondrial res-
piration (Figure 3D; 56.7± 5.8 in controls vs. 39.1± 3.6 pmol/min/mg protein in LP, p < 0.05),
and spare respiratory capacity (Figure 3E; 45.5± 5.6 in controls vs. 21.7± 4.9 pmol/min/mg
protein in LP, p < 0.05) clearly showing compromised mitochondrial function.
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Figure 3. Mitochondrial oxygen consumption rate in control vs. LP skeletal muscle. Mitochondrial
respiratory parameters in the skeletal muscle were measured using mitochondrial stress test. Basal
respiration was measured before the addition of inhibitors. The arrows indicate the exact time
at which different inhibitor compounds were injected into the wells: (A) representative image of
normalized mitochondrial oxygen consumption rates; control (blue) vs. LP (red); (B) basal respiration;
(C) maximal respiration; (D) non-mitochondrial respiration; (E) spare respiratory capacity. Data repre-
sent mean ± SEM (* p < 0.05); n = 8. FCCP: Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone,
OCR: Oxygen consumption rate.

3.5. LP Programming Reduced the Expression of Mitochondrial Complex I

We further wanted to investigate whether the molecular mechanisms leading to
mitochondrial oxidative phosphorylation were impaired. To determine whether LP pro-
gramming altered the ETC protein levels, we measured the OXPHOS-associated protein
complexes in the muscle. We found that the protein levels of Complex 1 (Ndufb8) were re-
duced around 1.5-fold (p < 0.05) in the LP muscles compared with the control (Figure 4A,B).
The protein levels of other complexes (Complex II, Complex III, Complex IV, and Complex
V) did not show any significant changes (Figure 4C–F).
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GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) was used as a loading control for Western
blots, and its values were used for normalization. Data represent mean ± SEM (* p < 0.05,); n = 7.

3.6. LP Programming Dysregulated Mitochondrial Dynamics and Biogenesis Genes

Given the physiological and structural attributes of mitochondria in the LP muscles,
we further investigated the role of mitochondrial dynamics and biogenesis in compromised
mitochondrial function. First, we determined the mRNA expression of key genes involved
in mitochondrial dynamics and biogenesis in the skeletal muscle using qPCR (Figure 5).
Analyses were performed for mitochondrial fusion genes Opa1, Mfn1, and Mfn2, and fission
genes Drp1 and Fis1. Among the mitochondrial fusion genes tested, the expression levels
of Opa1 and Mfn2 in the LP skeletal muscles were significantly (p < 0.05) reduced than in
the controls (Figure 5A,C). However, the Mfn1 expression level did not show any change
between the LP and the control (Figure 5B). The mitochondrial fission gene Fis1 expression
was significantly (p < 0.05) increased in the LP skeletal muscles compared with the control
(Figure 5E), but Drp1 expression remained the same between the groups (Figure 5D).

The expression of key genes involved in mitochondrial biogenesis that were investi-
gated included Nrf1, Nrf2, Parl1, Pgc1a, Pgc1b, Sirt1, Esrra, Cox1, CoxIVa, Cox IVb, and Vdac1.
Among these genes, Pgc1b, Esrra, and Nrf1 were significantly (p < 0.05) downregulated
in the LP-programmed rats (Figure 5F–H). Similarly, the expression of Sirt1 and Vdac1
were also downregulated (p < 0.01) in LP-programmed rats when compared with controls
(Figure 5J,K). On the other hand, Nrf2 and Cox IVb expressions were significantly (p < 0.05)
elevated in the LP skeletal muscles than in the controls (Figure 5I,L). Other investigated
genes did not show any differences (data not shown).
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Figure 5. Expression of genes involved in mitochondrial dynamics and biogenesis in the skeletal
muscle of control and LP offspring. qPCR analysis was conducted to determine expression of
mitochondrial dynamic genes: (A) Opa1; (B) Mfn1; (C) Mfn2; (D) Drp1; (E) Fis1; and biogenesis
genes: (F) Pgc1b; (G) Erra; (H) Nrf1; (I) Nrf2; (J) Sirt1; (K) Vdac1; (L) Cox 4b. The mRNA expression
was normalized relative to Cyclophilin A expression. Data represent mean ± SEM (* p < 0.05,
** p < 0.01); n = 8.

We further investigated the protein expression pattern of these genes (Figure 6A). Their
expression pattern reflected a similar pattern to that of mRNA. The inner mitochondrial
fusion gene Opa1 (p < 0.01) and outer mitochondrial membrane fusion gene Mfn2 (p < 0.05)
were downregulated in LP-programmed females (Figure 6B,D) with no changes in Mfn1
(Figure 6C). However, the mitochondrial fission gene Fis1 protein level was significantly
(p < 0.01) increased in the LP skeletal muscle when compared with controls (Figure 6E).
Further, the mitochondrial biogenesis-linked genes such as Pgc1b, Nrf1, Esrra, and Vdac1
levels were significantly (p < 0.05) reduced in the LP skeletal muscles compared with the
control (Figure 6F–I). However, CoxIV and Sirt1 protein levels were not different between
the groups (Figure 6J,K).
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4. Discussion

Skeletal muscle is a major site of glucose disposal where glucose is broken down to
produce energy. We had earlier shown that LP-programmed T2D rats had compromised
insulin signaling leading to peripheral insulin resistance [25,26]. It is well known that
mitochondria play a vital role in energy production, and mitochondrial dysfunction has
been observed in insulin target tissues during insulin-resistant states [35]. Abnormal
mitochondria are often connected to metabolic syndrome [36]. Various reports show
that mitochondrial structure, number, and oxidative capacity are diminished in skeletal
muscles of patients with insulin resistance [37,38]. Further, insulin resistance and T2D
are often associated with the dysregulation of genes responsible for oxidative metabolism
and dysfunctional mitochondrial electron transport chain in skeletal muscles [11,39–42].
Skeletal muscle fibers are the center of glucose and fatty acid utilization; therefore, defective
mitochondria affect the peripheral glucose disposal capacity [43,44].

Gestational LP diet is known to dysregulate mitochondrial function in skeletal muscles
leading to insulin resistance [23,45–47]. Further, mitochondrial genes involved in oxidative
phosphorylation were downregulated in skeletal muscles, indicating LP programming
could contribute to mitochondrial dysfunction [23]. In the present study, we report for
the first time that LP programming during gestation causes significant changes in mito-
chondrial morphology, ultrastructure, and function without changes to the mitochondrial
copy number in the skeletal muscles of adult female offspring in a lean T2D rat model.
Structural abnormalities in mitochondria have been reported in protein-restricted animal
models [48–50]. The morphological changes to mitochondria in the skeletal muscle exposed
to in utero LP diet may indicate impaired mitochondrial dynamics [51].

Mitochondrial morphology and ultrastructure often mirror the functional characteris-
tics of the mitochondrial network in a cell. We needed to utilize FDB muscles to perform
functional analysis due to technical difficulties with the large muscle fibers of gastrocne-
mius muscles. Although the quantity of mitochondria is different between the skeletal
muscle types, the mitochondrial oxidative capacity and mitochondrial efficiency was found
to be similar [52–55]. These data suggest most mitochondrial qualitative properties are
conserved across different fiber types. Hence, FDB is a reasonable alternative; however, the
data should be interpreted with caution. Functional analysis using Mito Stress Test showed
that LP skeletal muscles displayed inferior mitochondrial function than the controls. In-
terestingly, mitochondrial respiration in the presence of FCCP (maximal respiration) was
lower in LP animals compared with control animals. The depletion of maximal respiratory
capacity indicates the incompetence of skeletal muscle to meet any additional ATP demand,
which is often observed under the settings of electron transport chain inhibition [56]. Inter-
estingly, the depletion in maximal respiratory capacity has been reported in the skeletal
muscle mitochondria of type 2 diabetic individuals [57,58]. As the number of mitochondria
was similar in both the groups, impaired electron transport chain components might be
the cause of diminished maximal respiratory capacity. Spare respiratory capacity is the
ability to increase the metabolic rate from baseline for accommodating transiently elevated
energy demands [59,60]. Therefore, the reduction in spare respiratory capacity shown by
the LP skeletal muscle further indicates the intrinsic defect with the LP mitochondria and
the reduced ability to adapt during increased energy demand.

To further understand the role of mitochondrial complexes in the mitochondrial struc-
ture and function, we determined the levels of different electron transport chain (ETC)
complexes in the skeletal muscle. A downregulation of genes responsible for oxidative
phosphorylation and dysfunctional mitochondrial electron transport chain was observed
in earlier studies in other models and tissues [11,23,39]. In our study, we noticed maternal
LP diet programming caused a reduction in the Complex I protein, Ndufb8. Mitochondrial
Complex I is composed of 44 different subunits and one of the largest membrane-bound
protein complexes in the ETC [61]. Complex I deficiency is found to be one of the common
biochemical defects in metabolic diseases and mitochondrial disease in children [62]. In
addition, Complex I is one of the key components of mitochondrial super complex, which is
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essential for normal oxidative phosphorylation [63]. Therefore, the reduction in Complex I
proteins might limit the super complex’s ability to perform optimally. Our result is consis-
tent with a previous study that reported impaired mitochondrial super complex assembly
and function in the muscles fibers of type 2 diabetes patients [64].

We also show that the expression of key genes involved in mitochondrial dynam-
ics and biogenesis is dysregulated in the skeletal muscles. Mitochondrial dynamics is a
tightly choreographed action of mitochondrial fusion (Opa1 and Mfn) and fission (Drp1
and Fis1) proteins [51]. Earlier studies have clearly shown that abnormal mitochondrial
dynamics affect normal glucose disposal [36,43,44]. Opa1 is obligatory at the inner mito-
chondrial membrane (IMM) for tethering and fusion of membranes, and it is also critical for
cristae remodeling [65]. Moreover, Opa1 levels decreased with the progression of insulin
resistance [66]. The two isoforms of mitofusin (Mfn1 and Mfn2) cooperate and aid in
mitochondrial outer membrane fusion. Mfn2 expression is greater in muscle compared
with other tissues, and it is crucial for the sustenance and operation of the mitochondrial
network [67,68]. Previous studies have noticed that Mfn2 is a crucial player in maintaining
glucose homeostasis [41]. Mfn2 regulates insulin signaling and sensitivity in muscle and is
often downregulated in the skeletal muscle of T2D patients [69,70]. A positive correlation
between Mfn2 expression and improved insulin sensitivity via improved Glut4 translo-
cation has also been reported [71]. Further, Mfn2 deficiency is frequently coupled with
mitochondrial dysfunction and impaired mitochondrial dynamics [41]. Fis1 is a mitochon-
drial receptor protein that helps to recruit Drp1 for mitochondrial fission. Independent of
Drp1 protein association, Fis1 can also promote fission through functioning as a negative
regulator of fusion machinery, Opa1 and Mfn2 [72]. Our study shows a significant reduc-
tion in Opa1 and Mfn2 expression in the skeletal muscle, and this could be responsible for
the abnormal mitochondrial structure and could potentially contribute to insulin resistance.
Our data show that Fis1 expression is increased in the LP samples compared with the
controls, indicating a possible imbalance in the mitochondrial fission mechanism. However,
another key gene involved in the fission process Drp1 showed no increase. The lack of Drp1
response might justify the presence of giant mitochondria in the LP samples, considering
the critical role of Drp1 in mitochondrial fission [73]. Although inadequate, it is likely that
increased Fis1 was a compensatory attempt to reduce Opa1 and Mfn2 and to promote
mitochondrial fission [72]. Further, maternal LP diet altered the expression of several genes
associated with mitochondrial biogenesis [23]. The transcriptional coactivator Pgc1b is a
positive regulator of mitochondrial function and biogenesis in skeletal muscle [74]. Pgc1b
is essential for adequate expression of genes associated with ETC and oxidative phos-
phorylation (OXPHOS), which regulate basal energy homeostasis [75]. Overexpression of
Pgc1b in skeletal muscle was shown to improve diet-induced insulin resistance in rats [76].
As a co-transcription activator, Pgc1a/b induces mitochondrial biogenesis through the
activation of a variety of transcription factors such as Esrra, Nrf1, and Nrf2 [77]. Esrra is
an orphan nuclear receptor that targets several gene networks connected to mitochondrial
biogenesis and glucose homeostasis [77]. Nrf1 and Nrf2 are critical factors to the series
of events steps leading to enhance the transcription of important mitochondrial enzymes.
In addition, they are found to interact with the mitochondrial transcription factor that
facilitates transcription and mtDNA replication [78]. Furthermore, Nrf2 expression has
been shown to reduce blood glucose levels and skeletal muscle glycogen content [79]. We
had previously reported that the glycogen synthesis in skeletal muscle of LP female rats
were inhibited [26]. It is likely that the downregulation of Pgc1 might lead to reduced Esrra,
Nrf1, and Nrf2 expression, which could further impact the mitochondrial complex protein
levels and establish a vicious metabolic cycle with the onset of insulin resistance. Reduced
Pgc1 protein level is observed in skeletal muscles of T2D patients due to hypermethylation
of the promoter [40,80]. Our data show Pgc1b levels were downregulated in the LP skeletal
muscle, which indicates that mitochondrial biogenesis is impaired. The mismatch between
the in utero and postnatal environments can introduce histones modifications in the Pgc1
promoter of skeletal muscle [81]. Although further studies are warranted to confirm the
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promotor methylation status of Pgc1 in our model, previous studies indicate that epigenetic
changes may play a major role in reduced Pgc1 expression and associated mitochondria
dysfunction [81,82]. Further, the adaptive response of skeletal muscle to energy demand is
often synchronized through increased mitochondrial biogenesis, which is, in turn, regulated
by complex networks of genes, including Pgc1, Esrra, Nrf1, and Nrf2 [40,41]. The damp-
ened responses of these genes found in our study indicate that the mitochondrial adaptive
response arm in the LP skeletal muscle is crippled by in utero LP programming. On the
other hand, Pgc1a levels, most studied homolog of Pgc1b, were not different between
the groups, suggesting that Pgc1b plays a major role in muscle mitochondrial biogenesis.
Comparable results were reported in a previous study in which they found Pgc1b is more
potent in stimulating mitochondrial biogenesis and respiration compared with Pgc1a [83].
Moreover, under basal (non-exercise stimulated) settings, the Pgc1b in skeletal muscle is
found to be expressed 28 times higher than that of Pgc1a [41,84]. Hence, the unstimulated
condition in the present study explains the diminished role of Pgc1a.

5. Conclusions

In summary, our results indicate that prenatal LP programming induced disruption
in mitochondrial morphology and function along with dysregulation of genes involved
in mitochondrial biogenesis and dynamics in the skeletal muscle of female offspring.
In addition, LP programming compromised cellular bioenergetics by reducing maximal
respiration, spare respiratory capacity, and mitochondrial Complex I level. We show that
LP diet-induced mitochondrial dysfunction could be the uterine environment influenced
modification of genes, which predisposes the offspring to mitochondrial dysfunction
in adulthood (Figure 7). Taken together, our study shows maternal protein restriction
triggered mitochondrial dysfunction in the skeletal muscle of female offspring, possibly
leading to peripheral insulin resistance. Therefore, efforts to improve in utero nutrition and
mitochondrial health could have a preventive capability in insulin resistance associated
with maternal protein restriction.
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