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Abstract: A new micromachined vibrating ring gyroscope (VRG) architecture with low quadrature
error and high-linearity is proposed, which successfully optimizes the working modes to first order
resonance mode of the structure. The improved mode ordering can significantly reduce the vibration
sensitivity of the device by adopting the hinge-frame mechanism. The frequency difference ratio is
introduced to represent the optimization effect of modal characteristic. Furthermore, the influence of
the structural parameters of hinge-frame mechanism on frequency difference ratio is clarified through
analysis of related factors, which contributes to a more effective design of hinge-frame structure.
The designed VRG architecture accomplishes the goal of high-linearity by using combination hinge
and variable-area capacitance strategy, in contrast to the conventional approach via variable-separation
drive/sense strategy. Finally, finite element method (FEM) simulations are carried out to investigate
the stiffness, modal analysis, linearity, and decoupling characteristics of the design. The simulation
results are sufficiently in agreement with theoretical calculations. Meanwhile, the hinge-frame
mechanism can be widely applied in other existing ring gyroscopes, and the new design provides a
path towards ultra-high performance for VRG.

Keywords: vibrating ring gyroscope; high-linearity; quadrature error; improved mode ordering;
hinge-frame mechanism

1. Introduction

Due to the advantages on miniaturization, lightweight, easy integration, mass-production,
and low-power consumption, the micro-electro-mechanical system (MEMS) vibrating gyroscope has
become a significantly attractive device in a wide range of applications including automotive industry,
biotechnology, medicine, space as well as consumer electronics [1–3]. Compared with tuning fork
gyroscope (TFG), vibrating ring gyroscope (VRG) has the following advantages: (1) the sensitivity of
the sensor is amplified by the quality factor due to the driving and sensing modes having identical
frequency when the structures are fabricated from isotropic materials [4,5]. (2) It is less sensitive to
temperature variations because thermal environment affects the identical vibrational modes of resonant
rings equally [6,7]. (3) It is robust against random vibration since external vibrations do not couple to
the identical vibration modes of rings [4,7–9].

A typical VRG consists of a ring structure, support beams and electrodes surrounding the ring
structure. The electrodes are used for drive, sense, or control of the gyro. The operation of the ring
gyroscope relies on two elliptically shaped vibration modes (flexural modes) [4,5,9–15]. The study
of VRG has been widely reported in the literature. Michael William Putty et al. firstly developed
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and fabricated the VRG with an open-loop sensitivity of 200 µV/◦/s in a dynamic range of ±250 ◦/s
under a low vacuum level [4,5]. Based on the design concept mentioned above, several variations
of the architecture were also reported in the literature [10–15]. Meanwhile, much effort was already
made to improve the gyroscope performance, including high shock reliability [7,9,16], parametric
amplification [17–19], electrostatic tuning [20–22] and so on.

It is obvious that the limited dynamic range of VRGs (around ±250 ◦/s) mentioned above is
insufficient to meet the demand for tactical applications. The original sources of the limited full-scale
range are the quadrature error and the parallel-plate sensing mechanism assumed to be linear consisting
of fixed electrodes and the outer circumference of the ring. The device vibration is mostly linear at
normally used levels, however, the nonlinear jump that occurs at higher vibration level will restrict
the application of ring gyroscope in higher requirements [4]. Some researchers focus on modelling of
nonlinearities and control of nonlinear vibration [23–28]. On the other hand, much work has been done
in decoupling the drive and sense modes, in order to minimize the quadrature error. The quadrature
error can be largely eliminated at low vibration levels [20–22], while the drive/sense strategy remains
the same and the improvement of the decoupling is extremely limited.

The vibration-induced error caused by poor mode ordering not only exists in TFG but also in
VRG [29–31]. The resonant frequencies of translation modes in previous ring gyroscope designs are
much smaller than those of the flexural modes (i.e., working modes). Detailed theoretical derivation
by Sang Won Yoon et al. demonstrated that ring gyroscopes with non-proportional damping were
not immune from external vibration. Therefore, the translation modes are more susceptible to
external/environmental vibration whose frequency spectrum also lies well below resonant frequencies
of flexural modes [8,32].

The hinge mechanisms with the advantage of rotation characteristic have attracted much attention
and applied in MEMS devices, such as MEMS TFG, MEMS accelerometer and ring coupled gyroscope
(RCG) [33–35]. The in-plane, n = 3 mode RCG designs of hinge mechanism have been adopted to
increase the capacitive transduction areas by means of the auxiliary arrayed transducers. However,
little attention has been paid to the principle of mode ordering improvement of VRG with hinge
mechanisms. Besides, hinge mechanism on the optimization of decoupling and linearity of VRG is
rarely reported.

In this paper, a novel designed vibrating ring gyroscope with a hinge-frame mechanism (HFVRG)
is proposed. The structural characteristics and advantages of a HFVRG are introduced in Section 2.
Section 3 establishes dynamic equations and discusses the modal characteristics as well as theoretical
calculation. Finite element method (FEM) simulation of the stiffness of different springs and comparisons
between simulation and theoretical results are discussed, and the linearity of the design is analyzed in
Section 4. In Section 5, the discussions are given. Section 6 concludes the paper with a summary.

2. Architecture Design

The typical VRG, shown in Figure 1, consists of a ring structure, eight semicircular elastic support
beams and electrodes. These electrodes can be sense, drive or control electrodes. Under the normal
working condition of the VRG, the ring structure is forced to vibrate at the drive mode resonant
frequency of the device along the green imaginary line. At higher vibration level, nonlinear jump
phenomenon in sense capacitance of the sense electrode will lead to a stronger nonlinear response of
the whole system.
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Figure 1. Schematic view of a typical vibrating ring gyroscope. 
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Figure 2. Modal analysis of the translation mode (a) and flexural mode (b) of a typical vibrating ring 
gyroscope. 

In order to eliminate the effects of nonlinear response and poor mode ordering, a novel vibrating 
ring gyroscope with a hinge-frame mechanism as drive/sense frame is designed, see Figure 3. The 
HFVRG is mainly composed of a ring structure, 8 semicircular elastic support beams, 8 hinge beams, 
32 drive/sense beams, 8 drive/sense frames, and 8 groups of drive/sense electrodes. It is noteworthy 
that the resonant ring and support beams of HFVRG are identical to those of the typical VRG in 
Figure 1. The advantages of this design include: 

(1). The hinge beams can realize the rotation function and enable effect decouple between the 
drive mode and sense mode. The capacitance nonlinearity generated by capacitance change between 
the ring and the pickoff electrode in a typical VRG can be eliminated through variable-area comb 
mechanism. 

(2). The hinge beams are located at the maximum radial displacement of the resonant ring to 
realize electromechanical coupling efficiently between the mechanical ring vibration and the 
electrical signal of drive/sense electrodes. Furthermore, the drive/sense electrodes with auxiliary 

Figure 1. Schematic view of a typical vibrating ring gyroscope.

As mentioned above, typical VRG designs that possess translation modes have natural frequencies
that are much smaller than those of flexural modes. As an intuitive quantitative consideration,
Workbench is used to simulate the flexural mode and translation mode of the typical VRG shown in
Figure 1 with radius, height and width of 1500 µm, 80 µm and 25 µm, respectively. The simulation
results in Figure 2 illustrate that the frequencies of translation modes lie well below those of the flexural
modes. Undoubtedly, this ring gyroscope is more impressionable to environmental vibration.
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Figure 2. Modal analysis of the translation mode (a) and flexural mode (b) of a typical vibrating
ring gyroscope.

In order to eliminate the effects of nonlinear response and poor mode ordering, a novel vibrating
ring gyroscope with a hinge-frame mechanism as drive/sense frame is designed, see Figure 3.
The HFVRG is mainly composed of a ring structure, 8 semicircular elastic support beams, 8 hinge
beams, 32 drive/sense beams, 8 drive/sense frames, and 8 groups of drive/sense electrodes. It is
noteworthy that the resonant ring and support beams of HFVRG are identical to those of the typical
VRG in Figure 1. The advantages of this design include:
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(1). The hinge beams can realize the rotation function and enable effect decouple between the drive
mode and sense mode. The capacitance nonlinearity generated by capacitance change between the ring
and the pickoff electrode in a typical VRG can be eliminated through variable-area comb mechanism.

(2). The hinge beams are located at the maximum radial displacement of the resonant ring to
realize electromechanical coupling efficiently between the mechanical ring vibration and the electrical
signal of drive/sense electrodes. Furthermore, the drive/sense electrodes with auxiliary parallel-plate
arrayed capacitors are adopted to increase the capacitive transduction areas remarkably.

(3). The geometric symmetry structure between the ring and the anchor contributes to releasing
the structural stress in the fabrication process.

3. Theoretical Analysis

The HFVRG operates as follows. The primary flexural (drive) mode is driven into resonance
by driving voltages imposed on the drive electrodes of variable-area along the driving direction.
When the device is subjected to rotation, a proportion of the vibration energy is converted from the
primary flexural (drive) mode to the secondary flexural (sense) mode. Then vibration occurs in the
sense direction due to the Coriolis effect. The amplitude of movable parallel plate displacement on the
sense frame is proportional to the angular rate. Based on the principle, the angular rate of rotation is
measured by detecting the displacement. As is depicted in Figure 3.

The stiffness of the support beams, hinge beams and drive/sense beams in the design of this
paper are much less than those of drive/sense frames. On the other hand, the mass of the frames
is larger than that of the beams. Therefore, the drive/sense frames are simplified to inelastic mass.
Considering that the stiffness and mass of the vibrating ring structure are distributed along the ring,
each beam is represented as a discrete spring attached to the drive/sense frame or ring mass and the
ring is represented as a continuous (curved) beam.

3.1. Normal Modes of HFVRG

As described above, the MEMS HFVRG has two working modes: the primary flexural (drive)
mode and the secondary flexural (sense) mode. Additionally, a more common translational vibration
induced by environmental vibrations may also excite other in-the-plane modes. Particularly, the two
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modes of ring translation cause a rigid translation of the ring on its support beams. Therefore, the
overall motion of the ring can be decomposed into the motions that are excited by the gyroscope’s
operation (flexural modes) and the environment vibration (in-the-plane translation modes). In the
present model, it was assumed that the ring performs in-plane motion only, and the out of plane
motion was neglected [8,32].

Vibrating ring structure can be analyzed using normal modes. This analysis strategy is based
on the fact that any plane vibration-induced displacement of the ring u can be demonstrated as the
linear combination of its flexural modes (ϕ1 and ϕ2) and translation modes (ϕ3 and ϕ4). The total
displacement of the ring structure is given by:

u = u(t,θ) =
4∑

i=1

ϕi(θ)qi(t) (1)

where θ is the independent spatial coordinate(s), and qi(t) are the generalized (modal) coordinates of
the dynamic model of HFVRG.

The horizontal and vertical displacement of ring(ux and uy) are governed by:

ux = ϕx1q1 + ϕx2q2 + ϕx3q3 + ϕx4q4

uy = ϕy1q1 + ϕy2q2 + ϕy3q3 + ϕy4q4
(2)

where Equation (2) is the Cartesian coordinate form of Equation (1). ϕx1, ϕx2, ϕx3, ϕx4, ϕy1, ϕy2, ϕy3,
and ϕy4 are the horizontal and vertical components of four plane modes in Cartesian coordinate system.

The mode shapes of a ring structure can be derived from simple calculations taking advantage of
the symmetry of the ring structure [32]. The two elliptical-shaped flexural modes and two in-the-plane
translation modes with Cartesian components are given by:

Drive− axis flexural mode : ϕx1 =
[1
4

cos(3θ) +
3
4

cos(θ)
]
, ϕy1 =

[1
4

sin(3θ) −
3
4

sin(θ)
]

(3)

Sense− axis flexural mode : ϕx2 =
[1
4

sin(3θ) +
3
4

sin(θ)
]
, ϕy2 =

[
−

1
4

cos(3θ) +
3
4

cos(θ)
]

(4)

X− axis translation mode : ϕx3 = 1, ϕy3 = 0 (5)

Y− axis translation mode : ϕx4 = 0, ϕy4 = 1 (6)

3.2. System Equations of HFVRG

The system equations of motion of HFVRG are derived in the literature by formulating the
mechanical potential energy, kinetic energy, electrical potential energy, and energy dissipation by
viscous damping, and employing Lagrange’s method [8,32]. The four degree-of-freedom dynamical
equation is as follows.

mass damping Coriolis couping
M1

M2

M3

M4




..
q1..
q2..
q3..
q4

+


c11

c22

c33

c44




.
q1.
q2.
q3.
q4

+


0 −2γ1Ωz

2γ1Ωz 0
0 −2γ2Ωz

2γ2Ωz 0




.
q1.
q2.
q3.
q4

+
angular acceleration centripetal sti f f ness sti f f ness drive f orce

0 −γ1
.

Ωz

γ1
.

Ωz 0
0 −γ2

.
Ωz

γ2
.

Ωz 0




q1

q2

q3

q4

−Ω2
z


M1

M2

α1

β2




q1

q2

q3

q4

+


k1

k2

k3

k4




q1

q2

q3

q4

 =


f1
f2
f3
f4



(7)
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where
M1 =

∫
V ρ

[
(ϕx1)

2 +
(
ϕy1

)2
]
dV + 4m f , M2 =

∫
V ρ

[
(ϕx2)

2 +
(
ϕy2

)2
]
dV + 4m f

M3 =
∫

V ρ
[
(ϕx3)

2 +
(
ϕy3

)2
]
dV + 2m f , M4 =

∫
V ρ

[
(ϕx4)

2 +
(
ϕy4

)2
]
dV + 2m f

(8)

γ1 =
∫

V ρ
[
ϕx3ϕy3

]
dV, γ2 =

∫
V ρ

[
ϕx3ϕy4 −ϕx4ϕy3

]
dV, α1 =

∫
V ρ(ϕx3)

2dV, β2 =
∫

V ρ
(
ϕy4

)2
dV (9)

KF = Kri + 4Khs + 8Kdsy1 + 8Kdsy2, KT = 2Khs + 2Kvs + 4K45 + 2Khx + 4Kdsy1 + 4Kdsy2 (10)

Kri = 10π
EI
r3

r
(i = 1, 2), Kns =

2πEIs

(π2 − 8)rs3 , Kts =
2EIs

πrs3 , K45 =
2
(
π2
− 4

)
EIs

π(π2 − 8)rs3 (11)

Here, Mi(i = 1, 2) describes the modal mass associated with the flexural modes of HFVRG. m f is
the mass of the drive/sense frame. ρ and V represent the density and volume of the ring structure,
respectively. Mi(i = 3, 4) describes the modal mass associated with the translation modes of the
architecture. The quantities γ1 and γ2 denote respectively a modal coupling induced by the Coriolis
force and angular acceleration, and the quantities α1 and β2 indicate additional stiffness induced by
the centripetal acceleration. cii(i = 1, 2, 3, 4) are the modal damping coefficients. k1 and k2 are the
modal stiffnesses of two flexural modes of HFVRG (KF herein). k3 and k4 are the modal stiffnesses
of two translation modes of the design (KT herein). Kri(i = 1, 2) are the equivalent stiffnesses of ring
structures associated with two flexural modes. Khs, Kvs, and K45 are the horizontal stiffness, the vertical
stiffness and the stiffness along to the 45◦ direction of the semicircular elastic support beam, respectively.
As shown in Figure 4. E is the elastic modulus of the silicon material. I and Is represent respectively
the second moment of area of the ring cross-section and support beam cross-section. It is necessary to
point out that the (111) silicon wafer was found to be in-plane isotropic in the literature [36,37]. rr and
rs are the radius of the ring structure and semicircular elastic support beam, respectively. Mentioning
that the pairs of modal masses and modal stiffnesses are identical if the ring gyroscope is uniform and
axisymmetric (i.e., ideally fabricated). In addition, Kdsy1 and Kdsy1 are the stiffness of the drive/sense
beam near and away from the resonant ring, respectively. Khx is the stiffness of the hinge beam.
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3.3. The Stiffness Analysis of Drive/Sense Beam and Hinge Beam

The elastic beams with a large length and relatively small flexural strength such as hinge beams
and drive/sense beams can be analyzed using a lumped-parameter model. On the other hand,
the drive/sense beams and hinge beams in the design are U-shaped in series or in parallel, which can
reduce their axial stress to some extent. Hence, there is a linear relationship between force and
displacement. Energy principles in structural mechanics will be used to derive the stiffness of hinge
beams and drive/sense beams.

The drive/sense beam is composed of three rectangular beams, as shown in Figure 5. The stiffness
characteristics of drive/sense beams are explored using the Castigliano’s second theorem and the
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derivation is described in detail in Appendix A. The stiffness of drive/sense beam in the direction of
x-axis and y-axis can be written as:

Kdsy =
E
D

, Kdsx =
E
H

(12)

where

D =

 I1I2l3
(
(A + l2)

2C2 + (A + l2)(2B− 2l1 + l3)C + l21 − (2B + l3)l1 + l23/3 + l3B + B2
)
+

I1l2I3
((

A2 + l2A + l22/3
)
C2 + C(2A + l2)(B− l1) + (B− l1)

2
)
+ l1I2I3

(
A2C2 + AC(2B− l1) + B2

− l1B + l21/3
) 

I1I2I3
,

H =

 I1I2l3
((

l21 − (2B + l3)l1 + l23/3 + Bl3 + B2
)
G2 + (A + l2)(2B− 2l1 + l3)G + (A + l2)

2
)
+

I1l2I3
(
(B− l1)

2G2 + (2A + l2)(B− l1)G +
(
A2 + Al2 + l22/3

))
+ l1I2I3

((
B2
− Bl1 + l21/3

)
G2 + AG(2B− l1) + A2

) 
I1I2I3

C = −
I1I2l3(A+l2)(B−l1+l3/2)+I1l2I3(A+l2/2)(B−l1)+l1I2I3A(B−l1/2)

I1I2l3(A+l2)
2+I1l2I3(A2+l2A+l22/3)+l1I2I3A2

G = −
I1I2l3(A+l2)(B−l1+l3/2)+I1l2I3(A+l2/2)(B−l1)+l1I2I3A(B−l1/2)

I1I2l3(l21−(2B+l3)l1+B2+Bl3+l23/3)+I1l2I3(B−l1)
2+l1I2I3(B2−Bl1+l21/3)

A = −
I1l2(2I2l3+l2I3)

2(I1I2l3+I1l2I3+l1I2I3)
, B =

I1I2l3(2l1−l3)+l1I3(2I1l2+l1I2)
2(I1I2l3+I1l2I3+l1I2I3)

(13)
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Figure 6a displays the structure schematic diagram of the hinge beam. It can be seen that the hinge
beam consists of three parts and can be simplified to the lumped model shown in Figure 6b, where the
stiffness characteristics of kh2 are exactly the same as those of kh3. The stiffness characteristics of hinge
beams are investigated using the same strategy as those of driving (or sense) beams. According to the
previous analysis, the stiffness of the hinge beam in the direction of x-axis and y-axis can be written as:

khx =
2kh1xkh2x

2kh2x + kh1x
, khy =

2kh1ykh2y

2kh2y + kh1y
(14)

where
kh1x =

E
D1

, kh1y =
E

H1
, kh2x =

E
D2

, kh2y =
E

H2
(15)

D1 =
(A1

2+A1l4+l24/3)l4
I4

, H1 = 0, A1 = − l4
2 , A2 =

I5l26
2(I5l6+I6l5)

, B2 = −
2I5l5l6+I6l25
2(I5l6+I6l5)

D2 =


(
I5l6(B2 + l5)

2 + I6l5
(
B2

2 + l5B2 + l25/3
))

C2
2 +

(
l6A2

2 − l26A6 + l36/3
)
I5

+I6l5A2
2 + (2I5l6(A2 − l6/3)(B2 + l5) + I6l5A2(2B2 + l5))C2


I5I6

H2 =

 I5l6
(
l25 + l5(2A2G2 + 2B2 −G2l6) + G2

2l26/3− l6
(
B2G2 + A2G2

2

)
+ (A2G2 + B2)

2
)

+I6l5
(
(A2G2 + B2)

2 + l5(A2G2 + B2) + l25/3
) 

I5I6

C2 = −
6I5l6A2B2+6I6l5A2B2+6I5l5l6A2+3I6l25A2−3I5l26B2−3I5l5l26

6B2
2I5l6+6B2

2I6l5+12B2I5l5l6+6B2I6l25+6I5l25l6+2I6l35

G2 = −
6I5l6(B2+l5)(A2−l6/2)+3I6l5A2(2B2+l5)

(6l6A2
2−6l26A2+2l36)I5+6I6l5A2

2

(16)
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3.4. Discussion of Resonant Frequency and FDR

The developed dynamical model concerning the HFVRG can be utilized to further predict the
resonant frequencies of flexural modes and translation modes of the sensor. At typical working
frequencies of the HFVRG, the angular acceleration term and centrifugal stiffness will not cause too
much change and can be neglected. The natural frequencies for four normal modes are given by the
simple relationships.

f f =
1

2π

√
ki

Mi
(i = 1, 2), ft =

1
2π

√
ki
Mi

(i = 3, 4) (17)

where f f and ft are the resonant frequencies of the flexural modes and translation modes in HFVRG,
respectively.

In order to further investigate the optimization effect of each key parameter (mass parameter and
stiffness parameter) on the mode ordering, the dimensionless parameter η is defined by:

η =
ft − f f

f f
(18)

where η is defined as the frequency difference ratio (FDR) denoting the ratio of the frequency difference
between translation and flexural modes to the resonant frequency of flexural mode.

Substituting Equations (8), (10) and (17) into Equation (18), we obtain:

η =

√√√√
(kns + kts)

(
5mr + 32m f

)
8(kr + 2kns)

(
mr + 2m f

) − 1 (19)

where kns = 2Kns + 4Kdsy1 + 4Kdsy2 and kts = 2Kts + 2Khx+4K45 represent the normal stiffness and
tangential stiffness of the whole structure, respectively. kr = Kri and mr represent modal stiffness of
resonant ring associated with two flexural modes and the mass of the ring structure, respectively.

It can be seen that the FDR is mainly determined by the stiffness parameters kns, kts and kr as well
as mass parameters mr and m f . By solving the partial derivative of function η with respect to these
variables, we obtain that:

∂η

∂kns
=

√
2
(
5mr + 32m f

)
(kr − 2kts)

8
√
(kns + kts)

(
mr + 2m f

)
(kr + 2kns)

3
(20)
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∂η

∂kts
=

√
2
(
5mr + 32m f

)
8
√
(kns + kts)

(
mr + 2m f

)
(kr + 2kns)

(21)

∂η

∂kr
= −

√
2(kns + kts)

(
5mr + 32m f

)
√(

mr + 2m f
)
(kr + 2kns)

3
(22)

∂η

∂mr
= −

11m f
√

2(kns + kts)

4
√(

5mr + 32m f
)(

mr + 2m f
)3
(kr + 2kns)

(23)

∂η

∂m f
=

11mr
√

2(kns + kts)

4
√(

5mr + 32m f
)(

mr + 2m f
)3
(kr + 2kns)

(24)

In general, the values of the stiffness parameters kns, kts and kr as well as mass parameters mr and
m f are greater than 0. From Equations (21)–(24), we can find that:

∂η

∂kts
> 0,

∂η

∂kr
< 0,

∂η

∂mr
< 0,

∂η

∂m f
> 0 (25)

From Equation (25), the FDR η monotonically increases with increasing kts and m f , but decreases
with increasing kr and mr. Within a reasonable range, kr and mr are as small as possible and kts and m f
are as large as possible; the FDR can be improved effectively and the effect of translation vibration on
the performance of ring gyroscope can be eliminated effectively.

From Equation (20), it appears that the influence of the normal stiffness of the whole device on
FDR depends on the difference between the flexural modal stiffness of resonant ring and the two
times tangential stiffness of the design. Therefore, we conclude that under the premise of kr − 2kts < 0,
the FDR decreases with increasing the normal stiffness of the whole device.

The aforementioned VRG with different forms of supporting beams often provided poor modal
ordering. It can be remarked that the hinge-frame mechanism we proposed can change the modal
ordering of original ring gyroscope and is expected to be applied to all kinds of existing ring gyroscopes.
Here, four architectures based on HFVRG are designed to explore the impact of the parameters of
hinge-frame mechanism such as Khx, Kdsy and m f on FDR, defined as types A, B, C, and D. The Khx of
type B, the m f of type C and the Kdsy of type D are slightly larger than those of type A. This can be
achieved by intentionally decreasing the spring width of the hinge beam and drive/sense beam as well
as the volume of drive/sense frame, respectively.

3.5. Theoretical Calculation

The critical parameters of the geometric and material properties of the HFVRG in the designs and
FEM simulation stage are shown in Tables 1 and 2, respectively.

These parameters are substituted into the previous equation, and the main theoretical stiffness,
theoretical resonant frequencies of flexural modes and translation modes as well as FDR in all types
can be obtained, as indicated in Table 3.

It can be seen that the theoretical resonant frequency of flexural mode is lower than that of
translation mode in all types, which results in an excellent mode ordering. Furthermore, it is necessary
to point out that the FDR of type A is higher than that of type B and C, and lower than that of type D
from Table 3, which is consistent with previous analysis.
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Table 1. Main parameters of the structures.

Parameter Value

Radius of resonant ring in all types (rr) (µm) 1500
Width of resonant ring in all types (wr) (µm) 25
Radius of support beam in all types (rs) (µm) 690
Width of support beam in all types (wr) (µm) 12

Length of drive/sense beam 1 in type A, B and C [l11, l21, l31] (µm) [345,16,345]
Width of drive/sense beam 1 in type A, B and C [w11, w21, w31] (µm) [8,16,8]

Length of drive/sense beam 1 in type D [w11, w21, w31] (µm) [345,18,345]
Width of drive/sense beam 1 in type D [w11, w21, w31] (µm) [7,16,7]
Length of drive/sense beam 2 in all types [l12, l22, l32] (µm) [537,16,537]

Width of drive/sense beam 2 in all types [w12, w22, w32] (µm) [8,16,8]
Length of hinge beam in type A, C and D [l4, l5, l6] (µm) [505,30,485]

Width of hinge beam in type A, C and D [w4, w5, w6] (µm) [18,20,14]
Length of hinge beam in type B [l4, l5, l6] (µm) [505,32,485]

Width of hinge beam in type B [ w4, w5, w6] ( µm) [18,20,12]
Height of the whole structure in all types (h) (µm) 80

Mass of resonant ring in all types (mr) (kg) 4.35× 10−8

Mass of drive/sense frame in type A, B and D (m f ) (kg) 6.94× 10−8

Mass of drive/sense frame in type C (m f ) (kg) 6.73× 10−8

Table 2. Material parameters for FEM simulation.

Parameter Young’s Modulus (Pa) Poisson’s Ratio Density ( kg/m3)

Values 1.7× 1011 0.28 2330

Table 3. Main theoretical stiffness and theoretical resonant frequencies.

Parameter Type A Type B Type C Type D

Stiffness of resonant ring (Kr) (N/m) 164.75
Normal stiffness of support beam (Kns) (N/m) 20.13

Tangential stiffness of support beam (Kts) (N/m) 3.80
The stiffness along to the 45◦ of support beam (K45) (N/m) 11.96

Stiffness of drive/sense beam 1 (Kdsy1) (N/m) 84.06 84.06 84.06 56.25
Stiffness of drive/sense beam 2 (Kdsy2) (N/m) 22.36

Stiffness of hinge beam (Khx) (N/m) 314.82 245.29 314.82 314.82
Resonant frequency of flexural mode of HFVRG ( f f ) (Hz) 9551 9551 9685 8528

Resonant frequency of translation mode of HFVRG ( ft) (Hz) 12,652 11,863 12,800 12,025
Frequency difference ratio (FDR) (η) 32.46% 24.20% 32.16% 41.01%

4. FEM Simulation and Analysis

4.1. Analysis of Various Beams

From Equation (20), the modal stiffness is dependent on the stiffness of various beams in the
designs. Therefore, simulations are carried out on the stiffness of these beams by applying a 1 µN force
in the linked structure, as shown in Figure 7. The normal stiffness, tangential stiffness and the stiffness
along to the 45◦ support beam are shown in Figure 7a–c, respectively. The stiffness of the hinge beam
and the two drive/sense beams are shown in Figure 7d–f, respectively. Using the formula k = F/x,
the stiffness can be obtained:

Kns =
1 µN

0.04972 µm = 20.11 N/m, Kts =
1 µN

0.36193 µm = 2.76 N/m

K45 = 1 µN
0.1113 µm = 8.98 N/m, Khx_A_C_D = 1 µN

0.003165 µm = 315.96 N/m

Khx_B = 1 µN
0.004009 µm = 249.44 N/m, Kdsy1_A_B_C = 1 µN

0.011983 µm = 83.45 N/m

Kdsy1_D = 1 µN
0.017716 µm = 56.45 N/m, Kdsy2 = 1 µN

0.045095µm = 22.18 N/m

(26)
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It can be seen that the stiffness of various beams by FEM from Equation (26) and Figure 7 is
basically in accordance with the theoretical results depicted in Table 3, which verifies the proposed
theoretical model.

4.2. Modal Analysis and Comparisons

Modal analysis can be applied to investigate the vibration characteristics of the device structure,
such as the mode shape, resonant frequency and vibration stability. A more detailed structural model
simulation is carried out by FEM using the commercial software ANSYS-Workbench. The mesh
element is SOLID186, which is a high-order three-dimensional 20-node solid structure unit. All the
structures use hexahedral meshes: the linear beam uses a small mesh, the drive/sense frames use
slightly larger meshes, and all anchor uses larger hexahedral meshes. Types A, B, C, and D have a total
of 586,872, 597,224, 586,040, and 587,704 nodes, respectively. The main parameters of the structures
and the material properties of silicon are shown in Tables 1 and 2, respectively.

Figure 8 shows the flexural modal diagram and translation modal diagram of all types. It is
necessary to point out that the two flexural modes of all types are the first two order modes and the
two translation modes of them are the third and fourth modes. It can be seen that minor adjustment
of structural parameters for hinge-frame mechanism cannot cause a change in the mode ordering.
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Besides, this design can effectively improve the resonant frequency of disturbance modes such as
torsional mode, out-of-plane translation mode and out-of-plane rocking mode compared with the
original one. The natural frequencies of the flexural and translation modes and the FDR of all types are
listed in Table 4.Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 
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Figure 8. Flexural modal diagram (a), (c), (e), (g) and translation modal diagram (b), (d), (f), (h) of type
A, B, C, and D.
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Table 4. Natural frequencies of the flexural and translation modes and the FDR of all types.

Parameter Type A Type B Type C Type D

Resonant frequency of flexural mode (Hz) 9884.8 9857.4 10,005 8986.5
Resonant frequency of translation mode (Hz) 12,119 11,573 12,256 11,408

Frequency difference ratio (FDR) 22.60% 17.40% 22.50% 26.95%

It can be seen from Table 4 that the FDR of type A is higher than that of type B and C, and is lower
than that of type D, which is in keeping with theoretical results in Section 3.5. The theoretical and
simulation values of all types and the corresponding error rates are obtained and listed in Table 5.

Table 5. Comparison of theoretical and simulation values of types A, B, C, and D.

Type Mode Shape Theoretical Value Simulation Value Error Rate

Type A Flexural mode 9551 9884.8 −3.50%
Translation mode 12,652 12,119 4.21%

Type B Flexural mode 9551 9857.4 −3.21%
Translation mode 11,863 11,573 2.44%

Type C Flexural mode 9685 10,005 −3.40%
Translation mode 12,800 12,256 4.25%

Type D Flexural mode 8528 8986.5 −5.38%
Translation mode 12,025 11,408 5.13%

From Table 5, it can be found that the simulation results are consistent with the theoretical values in
all types. In addition, the frequency of flexural mode is lower than that of translation mode in each type.
Therefore, the proposed theoretical model is accurate and rational for the hinge-frame mechanism.

4.3. Nonlinear and Coupling Analysis

One of the driving and detecting errors neglected in the above simplified model is derived from
the structure nonlinearity, which is caused by the large deformation of drive or sense beams. Therefore,
a validation is provided here. Since most of the literatures have pointed out that the dominant signal
in output signals is the quadrature error, it is necessary to further validate the advantage of decoupling
and high linearity in the design with a simple analysis by FEM using ANSYS-Workbench.

The nonlinear analysis can be used to analyze problems where the stress–strain relationship of the
material is nonlinear and check whether the model gives reasonable results or not. In this simulation,
the parameters of the structure, material properties of silicon, mesh division and element type are the
same as those of the modal analysis. The predefined environments (i.e., supports and loads) are shown
in Figure 9a. It can be seen that all the anchors are set to the fixed support, and the equivalent force
of 300 µN is applied at the antinode on the ring to simulate the deformation of the flexural mode.
The total deformation with a magnification of 50 times is depicted in Figure 9b. We define that dd is the
displacement of drive frame, dsc is the coupling displacement of sense frame and drc is the coupling
displacement of node on resonant ring. For comparison purposes, drc is represented as the coupling
displacement of sense electrodes in typical VRG.

From Table 1. It can be seen that the interval of drive/sense U-shape beam has a width of 16 µm
(l21). Therefore, the maximum displacement of the whole structure is 16 µm. After nonlinear analysis,
the input equivalent force vs. output displacement of drive frame (dd), sense frame (dsc) and node of
resonant ring (drc) as well as linear fit of measured data are shown in Figure 10.
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As can be seen from Figure 10, the displacement of drive frame (Line A) and the node on resonant
ring increases (Line C) almost linearly with the increase of the input force, and the displacement of drive
frame (Line A) is about twice that of the node on the resonant ring (Line C). However, the displacement
of sense frame (Line B) remains at a low level though it has a tendency to increase, which verifies that
the design has an advantage of quadrature decoupling compared with the typical VRG. Additionally,
in order to verify the linearity of the HFVRG in the maximum working range, the deviation from the
best-fit line (Line D) is calculated. The structure nonlinearity caused by large deformation of drive or
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sense beams is found to be negligible (adjusted R2 = 0.99999), which verifies that the design works
within a linear interval.

5. Discussion

It is noteworthy that there are still some errors in the theoretical results and simulation results of
the resonant frequencies for both translation and flexural modes. This is due to the assumption that
drive/sense beam as a one-dimensional linear spring in theoretical analysis. However, these errors
have no effect on the final modal characteristics.

The present work is fundamental for the novel HFVRG, which focuses on the structure design and
principle verification. Further research includes: (1) The investigation of high shock reliability will pay
more attention to VRG architecture. (2) The proposed HFVRG will be fabricated through a conventional
silicon-on-glass (SOG) and deep reactive ion etching (DRIE) process for experimental verification.

6. Conclusions

In this study, a high-linearity, low quadrature error and prefect mode ordering MEMS vibrating
ring gyroscope with a hinge-frame mechanism is proposed. A systematic dynamic model is established
to investigate the modal characteristics, and the FDR is introduced to characterize the optimization effect.
The theoretical calculation results show that the FDR increases with increased tangential stiffness of the
whole structure, while the mass of drive/sense frame decreases with increased normal stiffness of the
whole structure under certain conditions. Four architectures based on HFVRG with different values of
stiffness or mass are designed. In addition, the stiffness of all the four types of beams and modal analysis
are carried out by FEM simulation, which demonstrates that the stiffness and modal characteristics of
the design are in keeping with theoretical results. Furthermore, the nonlinearity analysis indicates
that the HFVRG possesses high-linearity and decoupling characteristics. Consequently, the proposed
HFVRG is capable to offer a high linearity excitation and detection strategy, improved mode ordering
and eliminate the quadrature coupling effectively.
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Appendix A

For this analysis the drive/sense beams are divided into three sections: AB, BC and CD. The applied
torque M0 provided by the drive/sense frame on the left side of AB segment will constrain the rotation of
the beam from Figure 5. The torques of each section of the elastic beam can be obtained by establishing
a local rectangular coordinate system (ξ− δ) for the three sections.

AB sec tion : M1 = M0 − Fy · ξ (A1)

BC sec tion : M2 = M0 − Fy · l1 + Fx · ξ (A2)

CD sec tion : M3 = M0 − Fy · (l3 − ξ) + Fx · l2 (A3)

where ξ is the independent variable of the local coordinate system.
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According to elastic mechanics and material mechanics, the strain energy of the entire drive/sense
beam can be obtained.

U =

∫ l1

0

M2
1

2EI1
dξ+

∫ l2

0

M2
2

2EI2
dξ+

∫ l3

0

M2
3

2EI3
dξ (A4)

The elastic stiffness of drive/sense beam in the direction of y-axis will be explored through
Castigliano’s second theorem, we assume that a force is applied in the y-axis. At this point, the angle
and the displacement along the x-axis of the end of the elastic beam (point A) are both 0. We can obtain
that:

θz =
∂U
∂M0

=

∫ l1

0

M1

EI1

∂M1

∂M0
dξ+

∫ l2

0

M2

EI2

∂M2

∂M0
dξ+

∫ l3

0

M3

EI3

∂M3

∂M0
dξ = 0 (A5)

δx =
∂U
∂Fx

=

∫ l1

0

M1

EI1

∂M1

∂Fx
dξ+

∫ l2

0

M2

EI2

∂M2

∂Fx
dξ+

∫ l3

0

M3

EI3

∂M3

∂Fx
dξ = 0 (A6)

Substituting Equation (A1), (A2) and (A3) into Equations (A5), we obtain:

M0 = AFx + BFy (A7)

where

A = −
I1l2(2I2l3 + l2I3)

2(I1I2l3 + I1l2I3 + l1I2I3)
, B =

I1I2l3(2l1 − l3) + l1I3(2I1l2 + l1I2)

2(I1I2l3 + I1l2I3 + l1I2I3)
(A8)

Substituting Equation (A7) into Equations (A1), (A2) and (A3), we obtain:
M1 = AFx + (B− ξ)Fy

M2 = (A + ξ)Fx + (B− l1)Fy

M3 = (A + l2)Fx + (B− l3 + ξ) · Fy

(A9)

Substituting Equation (A9) into Equations (A6), we obtain:

Fx = CFy (A10)

where

C = −
I1I2l3(A + l2)(B− l1 + l3/2) + I1l2I3(A + l2/2)(B− l1) + l1I2I3A(B− l1/2)

I1I2l3(A + l2)
2 + I1l2I3

(
A2 + l2A + l22/3

)
+ l1I2I3A2

(A11)

Substituting Equation (A10) into Equations (A9), we obtain:
M1 = (AC + B− ξ)Fy

M2 = (AC + Cξ+ B− l1)Fy

M3 = (AC + Cl2 + B− l3 + ξ)Fy

(A12)

The Castigliano’s second theorem is used to calculate the displacement in the direction of y-axis at
point A.

δy =
∂U
∂Fy

=

∫ l1

0

M1

EI1

∂M1

∂Fy
dξ+

∫ l2

0

M2

EI2

∂M2

∂Fy
dξ+

∫ l3

0

M3

EI3

∂M3

∂Fy
dξ (A13)

Substitute Equation (A12) into Equation (A13) and simplify it, we can obtain that:

δy =
FyD

E
(A14)
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where

D =

 I1I2l3
(
(A + l2)

2C2 + (A + l2)(2B− 2l1 + l3)C + l21 − (2B + l3)l1 + l23/3 + l3B + B2
)
+

I1l2I3
((

A2 + l2A + l22/3
)
C2 + C(2A + l2)(B− l1) + (B− l1)

2
)
+ l1I2I3

(
A2C2 + AC(2B− l1) + B2

− l1B + l21/3
) 

I1I2I3
(A15)

The elastic stiffness of drive/sense beam in the direction of y-axis can be obtained.

Kdsy =
E
D

(A16)

The same method is used to derive the elastic stiffness of drive/sense beam in the direction
of x-axis.

Kdsx =
E
H

(A17)

where

H =

 I1I2l3
((

l21 − (2B + l3)l1 + l23/3 + Bl3 + B2
)
G2 + (A + l2)(2B− 2l1 + l3)G + (A + l2)

2
)
+

I1l2I3
(
(B− l1)

2G2 + (2A + l2)(B− l1)G +
(
A2 + Al2 + l22/3

))
+ l1I2I3

((
B2
− Bl1 + l21/3

)
G2 + AG(2B− l1) + A2

) 
I1I2I3

(A18)

G = −
I1I2l3(A + l2)(B− l1 + l3/2) + I1l2I3(A + l2/2)(B− l1) + l1I2I3A(B− l1/2)

I1I2l3
(
l21 − (2B + l3)l1 + B2 + Bl3 + l23/3

)
+ I1l2I3(B− l1)

2 + l1I2I3
(
B2 − Bl1 + l21/3

) (A19)
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