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Breast cancer cell lines are frequently used to elucidate the molecular mechanisms of
the disease. However, a large proportion of cell lines are affected by problems such
as mislabeling and cross-contamination. Therefore, it is of great clinical significance
to select optimal breast cancer cell lines models. Using tamoxifen survival-related
genes from breast cancer tissues as the gold standard, we selected the optimal
cell line model to represent the characteristics of clinical tissue samples. Moreover,
using relative expression orderings of gene pairs, we developed a gene pair signature
that could predict tamoxifen therapy outcomes. Based on 235 consistently identified
survival-related genes from datasets GSE17705 and GSE6532, we found that only
the differentially expressed genes (DEGs) from the cell line dataset GSE26459 were
significantly reproducible in tissue samples (binomial test, p = 2.13E-07). Finally, using
the consistent DEGs from cell line dataset GSE26459 and tissue samples, we used
the transcriptional qualitative feature to develop a two-gene pair (TOP2A, SLC7A5;
NMU, PDSS1) for predicting clinical tamoxifen resistance in the training data (logrank
p = 1.98E-07); this signature was verified using an independent dataset (logrank
p = 0.009909). Our results indicate that the cell line model from dataset GSE26459
provides a good representation of the characteristics of clinical tissue samples; thus,
it will be a good choice for the selection of drug-resistant and drug-sensitive breast
cancer cell lines in the future. Moreover, our signature could predict tamoxifen treatment
outcomes in breast cancer patients.

Keywords: breast cancer, tamoxifen, cell line, resistant, sensitive

INTRODUCTION

The overall recurrence rate of estrogen receptor positive (ER+) early breast cancer can be
reduced by adjuvant treatment with tamoxifen. However, approximately 30–40% of ER + breast
cancer patients receiving adjuvant tamoxifen therapy still would relapse or progress to deadly
advanced metastatic stages within 15 years follow-up; this is largely attributed to tamoxifen

Abbreviations: DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; ER + , estrogen receptor positive;
KEGG, Kyoto Encyclopedia of Genes and Genomes; REO, relative expression ordering; RFS, relapse-free survival; SAM,
significance analysis of microarrays.
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resistance (Ye et al., 2019). Therefore, it is of great clinical
significance to identify the efficacy of tamoxifen in ER + breast
cancer patients. Cell lines are a common modeling tool in
cancer research (Domcke et al., 2013); they can help us to better
understand the biological processes and molecular mechanisms
of cancer and aid in the development of anticancer drugs (Kong
and Yamori, 2012; Knudsen et al., 2014). However, whether
cell line models could adequately reflect the characteristics of
clinical tissue samples is controversial (American Type Culture
Collection Standards Development Organization Workgroup
ASN-0002, 2010; Liedtke et al., 2010; Bayer et al., 2013;
Capes-Davis et al., 2019; Wass et al., 2019). It is well known
that tumor cell lines might lose some of their tumor-related
characteristics owing to the culture environment (Masters, 2000).
Cross-contamination (International Cell Line Authentication
Committee, 2014) and misidentification (American Type Culture
Collection Standards Development Organization Workgroup
ASN-0002, 2010) of cell lines exacerbates such issues. Moreover,
there is no unified gold standard for the identification of drug-
resistant cell lines, which also results in some cell lines poorly
reflecting the characteristics of clinical tissue samples (Liedtke
et al., 2010). Thus, it is of great value to find resistant/sensitive cell
line models that are more representative of clinical tissue samples.

Considering tamoxifen survival-related genes from breast
cancer tissue samples as the gold standard, we screened for
the optimal cell line model. In the survival-related analysis
of tissue samples, we assumed that genes that were positively
(negatively) correlated with survival risk in tissue samples were
comparable with genes that are upregulated (downregulated)
in resistant compared with sensitive cell lines. In this study,
through evaluating the consistency of prognosis-related genes
in tissue samples from patients undergoing tamoxifen treatment
with drug-resistance genes in cell lines, we selected the optimal
cell line model to represent the characteristics of clinical tissue
samples; the consistent genes between tissues and cell lines were
identified as clinical drug-resistance-related genes.

Moreover, the relative expression orderings (REOs) of
gene pairs within individual samples, also called qualitative
transcriptional characteristics, are robust against experimental
batch effects and can be directly applied to samples at
an individual level (Eddy et al., 2010; Guan et al., 2019).
The robustness property of the qualitative transcriptional
characteristics enables integration of multiple datasets from
different sources to develop disease signatures or classifiers,
which improves the probability of finding robust signatures
(Xu et al., 2008; Guan et al., 2019). Thus, based on qualitative
transcriptional characteristics and the clinical drug-resistance-
related genes that we identified, we developed a tamoxifen-
resistance signature for ER + breast cancer and verified it in
independent data.

MATERIALS AND METHODS

Data and Preprocessing
Breast cancer gene expression data and corresponding clinical
information were downloaded from the GEO database

(Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/).
Relapse-free survival (RFS) time was defined as the interval
between the first day of surgery and the date of death from
any cause or of recurrence (local and/or distant) (Punt et al.,
2007; Merok et al., 2013). Breast cancer tissue samples from
ER+ patients who had received post-operative tamoxifen
treatment were selected from the seven datasets, as described
in Table 1. Nine gene expression datasets for breast cancer
tamoxifen-resistant/sensitive cell lines were also downloaded
from the GEO database, as shown in Table 1.

For the array data measured by Affymetrix platform,
raw mRNA expression data (.CEL files) were downloaded,
and the Robust Multi-array Average algorithm was used for
normalization with Affy package in R software (Bolstad et al.,
2003; Irizarry et al., 2003). For sequence-based data, the processed
data were directly downloaded.

Identification of Survival-related Genes
in Tissue
The Cox proportional hazard model was used to study the
relationships between gene expression levels and survival (Kreike
et al., 2010). For the coefficient β obtained from the Cox model,
if β > 0 for a certain gene, this gene was considered to be
positively correlated with survival risk and was comparable
with the upregulated gene between resistant and sensitive cell
lines. Similarly, if β < 0, the gene was comparable with the
downregulated gene between resistant and sensitive cell lines.

Identification of Differentially Expressed
Genes (DEGs) in Cell Lines
In this study, the SAM (significance analysis of microarrays)
algorithm (Tusher et al., 2001) was used to identify DEGs
between resistant and sensitive cell lines.

Consistency Evaluation Between Tissues
and Cell Lines
In this study, we hypothesized that genes positively (negatively)
associated with survival in tissues corresponded to those
genes upregulated (downregulated) between resistant and
sensitive cell lines.

The consistency ratio, which is the number of overlapping
and consistent DEGs/number of overlapping DEGs, was used
to evaluate the similarity between tissues and cell lines.
The significance was evaluated by the binomial distribution
test as follows:

p = 1−
k−1∑
i=0

(
n
i

)
0.5i(1− 0.5)n−i

where n denotes the number of overlapping DEGs between tissue
and cell line, and k denotes the number of those overlapping
DEGs with the same dysregulation direction.

Then, the p-values were adjusted using the Benjamini-
Hochberg method (Benjamini and Hochberg, 1995).
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TABLE 1 | Data used in this study.

Tissue

GEO Acc Platform ER+ Sample Endpoint

GSE17705 Affymetrix GPL96 298 RFS

GSE6532 Affymetrix GPL96 176 RFS

GSE12093 Affymetrix GPL96 136 RFS

GSE4922 Affymetrix GPL96 66 RFS

GSE2990 Affymetrix GPL96 54 RFS

GSE42568 Affymetrix GPL570 67 RFS

GSE9195 Affymetrix GPL570 77 RFS

Cell line

GEO Acc Platform Sensitive Resistant Sample (R vs S) Method

GSE27473 Affymetrix GPL570 MCF7 MCF7 silenced ER 3:3 RNA silencing

GSE12708 Affymetrix GPL96 SUM44 SUM44/LCCTam 3:3 Drug pressure

GSE26459 Affymetrix GPL570 B7 G11OH-T 3:3 MCF7 subclones

GSE8562 Affymetrix GPL96 MCF7 MCF7/XBP1 3:3 XBP1 overexpression

GSE14986 Affymetrix GPL570 MCF7 T8, T17, T29, T52 4:3 Drug pressure

GSE21618 Affymetrix GPL570 WT tamR 20:11 Drug pressure

GSE67916 Affymetrix GPL570 MCF7 MCF-7/TAMR 10:8 Drug pressure
#GSE118713 Illumina GPL16791 MCF7 MCF-7/TAMR 3:3 Drug pressure
#GSE125738 HiSeq GPL20795 T47D T47D-TR 3:3 Drug pressure

RFS: relapse-free survival; ER: estrogen receptor. Sample (R vs S) denotes the number of the resistant and sensitive cell line sample from the corresponding dataset;
Method denotes the production process for tamoxifen-resistant breast cancer cell lines. #High-throughput sequencing data.

KEGG Pathway Enrichment
The hypergeometric distribution model was used to determine
the significance of KEGG (Kanehisa and Goto, 2000) (Kyoto
Encyclopedia of Genes and Genomes) pathways enriched with
the genes of interest using the following statistical model:

p = 1−
k−1∑
i=0

(
m
i

)(
N−m
n− i

)
(

N
n

)
where N denotes the number of background genes, n denotes the
number of genes of interest, m denotes the number of genes in
a given pathway, and k denotes the number of genes of interest
in that pathway.

Identification of REO-based
Tamoxifen-resistance Signature
Taking the consistent DEGs between tissues and cell lines as
candidate genes, we used the Cox model and C-index analysis
(Harrell et al., 1984) to develop a tamoxifen-resistance signature.
The detailed process was described as follows.

Step 1: Selecting Survival-related Gene Pairs
(1) For the n candidate DEGs, pairwise comparisons were
performed for all genes (generating a total of C2

n gene pairs), and
this gene pair set was defined as Set 1. (2) From all gene pairs
(Gi, Gj) in Set 1, the Cox model was used to select those that
were significantly correlated with RFS of the tamoxifen-treated

breast cancer patients. The set of significantly correlated gene
pairs (FDR < 10%) was defined as Set 2.

Step 2: Optimizing the Gene Pair Signature
First, we enumerated all the gene pair combinations in Set 2. For
each gene pair combination in a sample, if at least half of the
gene pairs in the combination were consistent with tamoxifen
sensitivity, the sample was identified as low risk; otherwise, it was
considered high risk. Then, we calculated the C-index value for
each gene pair combination, and selected the combination with
maximum C-index as our tamoxifen-resistance signature (Set 3).

RESULTS

Identification and Evaluation of DEGs in
Cell Lines
A flowchart of the analysis procedure is shown in Figure 1. We
identified the DEGs between tamoxifen-resistant and tamoxifen-
sensitive cell line samples within each of the nine datasets
using the SAM method (FDR < 20%). We also evaluated the
consistency of DEGs among different datasets (a total of C2

9 = 36
combinations). Among the 36 combinations, only 16 showed
significant consistency (p < 0.05), as described in Table 2. These
results indicate that there is greater heterogeneity among cell lines
from different sources.

Identification of Tamoxifen
Survival-related Genes in Tissues
Based on the univariate Cox regression model with FDR < 20%,
893 and 968 tamoxifen survival-related genes were identified
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FIGURE 1 | Flowchart of the analysis procedure.

in datasets GSE17705 and GSE6532, respectively; 235 genes
were common to the two groups, all of which had the same
dysregulation direction (which could not occur by chance;
binomial test, p < 1.0E-16), further verifying the reliability of the
results. These 235 genes were considered to be breast cancer tissue
candidate genes.

Owing to the heterogeneity among cell lines, we evaluated
the consistency between tissue candidate genes and DEGs
from different cell line datasets (resistant vs sensitive) to select
an optimal cell line model that could well represent the
characteristics of clinical tissue samples. We found that only
the DEGs from dataset GSE26459 were well reproduced among
tissue candidate genes; the consistency ratio was above 73%,
indicating that this did not occur by chance (binomial test,
p = 2.13E-07). The DEGs from the other cell line datasets were
not well reproduced among the tissue candidate genes (Table 3).
These results demonstrate that the cell line data from dataset
GSE26459 could well represent the characteristics of clinical
breast cancer tissue samples.

KEGG Pathway Enrichment
KEGG pathway enrichment analysis was performed for the 235
tissue candidate genes from datasets GSE17705 and GSE6532
using a threshold of FDR < 0.2, and for the DEGs from cell
line dataset GSE26459 using the same threshold (Table 4). There
was no pathway commonly enriched between tissues and the
cell line, possibly owing to the low statistical power (Zou et al.,
2011) or to partial differences between resistant and sensitive cell
lines induced by tamoxifen treatment (Dancik et al., 2011). Thus,
taking the pathways enriched in tissues as the gold standard, we
obtained the p-values of these pathways in dataset GSE26459
(Table 4). With p < 0.2, the cell cycle, p53 signaling pathway,
oocyte meiosis, and progesterone-mediated oocyte maturation

were recurring themes in the pathway analysis for both tissues
and cell lines. These pathways have been reported to be correlated
with tamoxifen resistance.

Studies have shown that tamoxifen could affect the cell
cycle of human breast cancer cell lines, the major sensitivity to
tamoxifen in terms of both inhibition of cell cycle progression
and drug cytotoxicity occurring particularly in the G0-G1
stage (Taylor et al., 1983). Tamoxifen could also affect the
mitosis of oocytes and lead to premature centromere separation
(London and Mailhes, 2001). The PTEN protein, encoded by
the gene, in the p53 signaling pathway has been shown to
be associated with tamoxifen resistance (Shoman et al., 2005).
Similarly, the PGR protein in the progesterone-mediated oocyte
maturation signaling pathway has been shown to be associated
with tamoxifen response (Elledge et al., 2000). In summary,
the pathways found to be enriched in tissues and also in
cell line dataset GSE26459 (p < 0.2) were correlated with
tamoxifen resistance, further demonstrating that the cell line
model from dataset GSE26459 could represent the characteristics
of clinical tissue samples.

Moreover, with FDR < 20%, the DEGs from cell line dataset
GSE26459 were enriched in 31 pathways, compared with only
seven pathways for the genes from tissue samples. However,
as shown in Table 4, many of the pathways enriched for the
cell lines from dataset GSE26459 are associated with tamoxifen
treatment. For example, the prolactin signaling pathway and
neurotrophin signaling pathway are related to side effects of
tamoxifen (Lamberts et al., 1982; El-Ashmawy and Khalil, 2014),
indicating that some of the differences between resistant and
sensitive cell lines were due to tamoxifen treatment.

Identification of Tamoxifen Response
Signature
First, we considered the 84 consistent DEGs between tissues
and cell line dataset GSE26459 to be clinical tamoxifen-
resistance-related genes. In the training dataset GSE12093,
pairwise comparisons were performed for all clinical tamoxifen-
resistance-related genes, and all the gene pairs were analyzed
with a univariate Cox regression model. With FDR < 10%, 20
gene pairs were identified that were significantly associated with
RFS. Then, among the 20 gene pairs, we enumerated all the
gene pair combinations to calculate their C-index values, and
selected the gene combination with the maximum C-index as the
tamoxifen response signature. Finally, two gene pairs (TOP2A,
SLC7A5; NMU , PDSS1) were identified. Based on our signature
and the majority vote rule, the training dataset samples could be
divided into high- and low-risk samples, which had significantly
different RFS (hazard ratio [HR] = 9.509, logrank p = 1.98E-
07). Our signature was also verified in an independent validation
test using combined data from datasets GSE4922 and GSE2990
(HR = 2.191, logrank p = 0.009909), as shown in Figure 2A.
Moreover, we searched public databases again for breast cancer
tissue samples treated only with post-operative tamoxifen, for
which associated RFS information was available, to further verify
the performance of our signature. Finally, two new independent
datasets were obtained. For the breast cancer tissue samples
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TABLE 2 | Consistency evaluation of DEGs from different cell line datasets.

GEO Acc Cell line* Def_gene Com_gene Con_gene Ratio P

GSE27473 si-ER MCF7: MCF7 15937 10795 6147 0.5694 <1.00E-16

GSE14986 T8/17/29/52: MCF7 13391

GSE27473 si-ER MCF7: MCF7 15937 12580 7427 0.5904 <1.00E-16

GSE21618 TamR: WT 15481

GSE27473 si-ER MCF7: MCF7 15937 9675 5424 0.5606 <1.00E-16

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE27473 si-ER MCF7: MCF7 15937 8074 4450 0.5512 <1.00E-16

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE14986 T8/17/29/52: MCF7 13391 10494 7391 0.7043 <1.00E-16

GSE21618 TamR: WT 15481

GSE14986 T8/17/29/52: MCF7 13391 8125 5396 0.6641 <1.00E-16

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE14986 T8/17/29/52: MCF7 13391 6534 4139 0.6335 <1.00E-16

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE14986 T8/17/29/52: MCF7 13391 6505 4042 0.6214 <1.00E-16

GSE125738 T47D-TR:T47D 10685

GSE21618 TamR: WT 15481 9331 5386 0.5772 <1.00E-16

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE26459 G11OH-T: B7 6375 5525 3192 0.5777 <1.00E-16

GSE27473 si-ER MCF7: MCF7 15937

GSE21618 TamR: WT 15481 7729 4189 0.5420 8.22E-14

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE118713 MCF-7/TAMR:MCF-7 10023 5808 3161 0.5442 8.16E-12

GSE125738 T47D-TR:T47D 10685

GSE21618 TamR: WT 15481 7597 4061 0.5346 9.04E-10

GSE125738 T47D-TR:T47D 10685

GSE67916 MCF-7/TAMR:MCF-7 12227 5824 3212 0.5515 2.00E-15

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE26459 G11OH-T: B7 6375 3767 2044 0.5426 9.10E-08

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE27473 si-ER MCF7: MCF7 15937 7991 4163 0.5210 9.32E-05

GSE125738 T47D-TR:T47D 10685

GSE26459 G11OH-T: B7 6375 1163 521 0.4480 1.00E + 00

GSE12708 SUM44/LCCTam: SUM44 2538

GSE26459 G11OH-T: B7 6375 52 21 0.4038 9.37E-01

GSE8562 MCF7/XBP1: MCF7 97

GSE26459 G11OH-T: B7 6375 4623 2084 0.4508 1.00E + 00

GSE14986 T8/17/29/52: MCF7 13391

GSE26459 G11OH-T: B7 6375 5262 2643 0.5023 3.76E-01

GSE21618 TamR: WT 15481

GSE26459 G11OH-T: B7 6375 4090 1946 0.4758 9.99E-01

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE26459 G11OH-T: B7 6375 3750 1321 0.3523 1.00E + 00

GSE125738 T47D-TR:T47D 10685

GSE27473 si-ER MCF7: MCF7 15937 2264 1056 0.4664 9.99E-01

GSE12708 SUM44/LCCTam: SUM44 2538

GSE27473 si-ER MCF7: MCF7 15937 89 33 0.3708 9.95E-01

GSE8562 MCF7/XBP1: MCF7 97

GSE12708 SUM44/LCCTam: SUM44 2538 23 12 0.5217 5.00E-01

GSE8562 MCF7/XBP1: MCF7 97

GSE12708 SUM44/LCCTam: SUM44 2538 1885 702 0.3724 1.00E + 00

GSE14986 T8/17/29/52: MCF7 13391

GSE12708 SUM44/LCCTam: SUM44 2538 2134 920 0.4311 1.00E + 00

(Continued)
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TABLE 2 | Continued

GEO Acc Cell line* Def_gene Com_gene Con_gene Ratio P

GSE21618 TamR: WT 15481

GSE12708 SUM44/LCCTam: SUM44 2538 1676 862 0.5143 1.25E-01

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE12708 SUM44/LCCTam: SUM44 2538 1588 625 0.3936 1.00E + 00

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE12708 SUM44/LCCTam: SUM44 2538 1630 840 0.5153 1.12E-01

GSE125738 T47D-TR:T47D 10685

GSE8562 MCF7/XBP1: MCF7 97 80 42 0.5250 3.69E-01

GSE14986 T8/17/29/52: MCF7 13391

GSE8562 MCF7/XBP1: MCF7 97 84 46 0.5476 2.23E-01

GSE21618 TamR: WT 15481

GSE8562 MCF7/XBP1: MCF7 97 57 30 0.5263 3.96E-01

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE8562 MCF7/XBP1: MCF7 97 63 25 0.3968 9.62E-01

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE8562 MCF7/XBP1: MCF7 97 63 25 0.3968 9.62E-01

GSE125738 T47D-TR:T47D 10685

GSE67916 MCF-7/TAMR:MCF-7 12227 5751 2910 0.5060 1.85E-01

GSE125738 T47D-TR:T47D 10685

*Resistant and sensitive cell line samples from the corresponding dataset. Taking dataset GSE14986 as an example, among T8/17/29/52: MCF7, T8/17/29/52
denote resistant cell lines, MCF7 denotes sensitive cell line; Def_gene denotes the number of DEGs in the corresponding dataset; Com_gene denotes the number
of overlapped DEGs between two datasets; Con_gene denotes the number of overlapping DEGs with the same dysregulation between two datasets; Ratio denotes the
consistency ratio of DEGs.

from dataset GSE42568, 37 samples were identified as high
risk, and 30 were identified as low risk (HR = 1.804, logrank
p = 0.2), as shown in Figure 2B. For the breast cancer tissue
samples from dataset GSE9195, 41 samples were identified as
high risk and 36 as low risk (HR = 1.516, logrank p = 0.5),
as shown in Figure 2C. Although the difference between the
groups was not significant according to statistical tests, there was
a clear trend indicating a difference in RFS between the high-
and low-risk groups identified by our signature (Figure 2B-C).
Moreover, we combined the above two datasets to further verify
the performance of our signature. In the combined data from
datasets GSE42568 and GSE9195, 78 samples were identified as
high risk and 66 samples were identified as low risk (HR = 1.7,
logrank p = 0.1), as shown in Figure 2D. In summary, the results
indicate that our signature (consisting of two gene pairs) can
predict drug efficacy to some extent.

DISCUSSION

Cell line models are widely used in various fields of medical
research, especially in basic cancer research and drug discovery
(Masters, 2000; Mirabelli et al., 2019). Despite the successful
application of cell lines in basic research, their use as model
systems remains controversial (Masters, 2002; Sandberg and
Ernberg, 2005; Peng et al., 2018; Hallas-Potts et al., 2019).
Owing to issues such as cross-contamination, mislabeling, or the
identification of drug resistance, some cell line models do not
adequately represent the characteristics of clinical tissues. In this
study, based on evaluation of the consistency of DEGs between

tissues and cell lines, we selected the optimal cell line model to
represent the characteristics of clinical tissue samples; this was
further verified by pathway analysis. Our analysis method is also
suitable for other types of cell line modes.

The tamoxifen survival-related genes identified in tissue
samples from different datasets were significantly consistent,
suggesting that the results were reliable. However, the DEGs
found in tamoxifen-resistant and tamoxifen-sensitive cell lines
from different sources were less reproducible, indicating that
cell line models from different sources show more heterogeneity.
Therefore, it will be of great clinical significance to screen

TABLE 3 | Consistency evaluation between tissues and cell lines.

GEO Acc Def_gene Com_gene Con_gene Ratio P

GSE26459 6375 114 84 0.7368 2.13E-07

GSE27473 15937 211 93 0.4408 9.63E-01

GSE12708 2538 46 15 0.3261 9.94E-01

GSE8562 97 5 3 0.6000 5.00E-01

GSE14986 13391 178 55 0.3090 1.00E + 00

GSE21618 15481 207 82 0.3961 9.99E-01

GSE67916 12227 162 61 0.3765 9.99E-01

GSE118713 10023 159 63 0.3962 9.97E-01

GSE125738 10685 159 32 0.2013 1.00E + 00

Def_gene denotes the number of DEGs in the corresponding dataset; Com_gene
denotes the number of overlapping DEGs between the 235 tissue candidate
genes and the corresponding cell line dataset; Con_gene denotes the number
of overlapping DEGs with the same dysregulation between two datasets; Ratio
denotes the consistency ratio of DEGs.
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TABLE 4 | KEGG pathway enrichment of tissue and cell line.

Tissue Cell line

Pathway num Pathway namea P* Pathway num Pathway nameb FDR

hsa04110 Cell cycle 0.0270 hsa03013 RNA transport 4.62E-08

hsa04115 p53 signaling pathway 0.0226 hsa03010 Ribosome 1.14E-05

hsa04114 Oocyte meiosis 0.0726 hsa00970 Aminoacyl-tRNA biosynthesis 1.82E-05

hsa04914 Progesterone-mediated oocyte maturation 0.1176 hsa03008 Ribosome biogenesis in eukaryotes 1.64E-04

hsa03440 Homologous recombination 0.3907 hsa03040 Spliceosome 7.40E-04

hsa04672 Intestinal immune network for IgA production 0.8288 hsa03410 Base excision repair 1.98E-03

hsa04060 Cytokine-cytokine receptor interaction 0.9977 hsa00620 Pyruvate metabolism 9.57E-03

hsa01230 Biosynthesis of amino acids 0.0119

hsa01100 Metabolic pathways 0.0194

hsa01212 Fatty acid metabolism 0.0194

hsa01200 Carbon metabolism 0.0214

hsa00510 N-Glycan biosynthesis 0.0244

hsa00531 Glycosaminoglycan degradation 0.0244

hsa04360 Axon guidance 0.0244

hsa04612 Antigen processing and presentation 0.0244

hsa04917 Prolactin signaling pathway 0.0257

hsa00511 Other glycan degradation 0.0272

hsa04144 Endocytosis 0.0272

hsa03018 RNA degradation 0.0300

hsa04142 Lysosome 0.0322

hsa04330 Notch signaling pathway 0.0513

hsa01040 Biosynthesis of unsaturated fatty acids 0.0573

hsa04722 Neurotrophin signaling pathway 0.0754

hsa04910 Insulin signaling pathway 0.0872

hsa01210 2-Oxocarboxylic acid metabolism 0.0945

hsa04141 Protein processing in endoplasmic reticulum 0.1101

hsa00280 Valine, leucine and isoleucine degradation 0.1121

hsa04120 Ubiquitin mediated proteolysis 0.1121

hsa00270 Cysteine and methionine metabolism 0.1319

hsa00020 Citrate cycle (TCA cycle) 0.1527

hsa03050 Proteasome 0.1848

Tissue: aKEGG pathway enriched for survival-related genes in tissues (FDR < 0.2); P denotes the p-value for a KEGG pathway, enriched for tissues, in the cell line
dataset GSE26459. Cell line:bKEGG pathway enriched by DEGs between resistant and sensitive cell lines in dataset GSE26459 (FDR < 0.2).

for drug-resistant and drug-sensitive cell line models that
better represent the characteristics of clinical tissue samples.
According to our results, the DEGs from cell line dataset
GSE26459 were reproducible in tissue samples, indicating that
the cell line model from this dataset was representative of
the characteristics of clinical tissue samples. Tissue samples
were obtained by surgical resection before tamoxifen therapy.
Thus, the survival-related genes obtained from tissues were
intrinsic to the patient and not induced by tamoxifen
treatment. The resistant and sensitive cell lines from dataset
GSE26459 were selected from MCF subclones (Gonzalez-
Malerva et al., 2011); this might partly explain why the cell
lines from GSE26459 could represent the characteristics of
clinical tissue samples. The pathways enriched in tissues and
in cell line dataset GSE26459 (p < 0.2) have been reported
to be associated with tamoxifen resistance (Lamberts et al.,
1982; El-Ashmawy and Khalil, 2014). Moreover, the clinical
tamoxifen-resistance gene-pair signature we developed was

verified in independent validation dataset, which indicates
that our signature has some power to predict response to
tamoxifen therapy, and further demonstrates that we have
selected appropriate tamoxifen-resistant and tamoxifen-sensitive
cell line models.

Although the cell line models identified by our analytical
method could well reflect the information of clinical tissue
samples, there were some limitations. As patients with breast
cancer usually have good prognosis, the endpoint of their follow-
up is usually survival or recurrence time. Furthermore, as well as
the effects of drugs, many factors including mood, marital status,
and economic status could affect the survival of patients. The
above factors might cause that some of the survival-related genes
that we have identified are not involved in tamoxifen resistance.
In future work, use of more tissue sample data or an improved
algorithm should be considered. Moreover, as DNA methylation
patterns, genomic changes, etc., might also predict sensitivity
to drugs, the use of other types of data (such as microRNAs,

Frontiers in Molecular Biosciences | www.frontiersin.org 7 December 2020 | Volume 7 | Article 564005

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-564005 November 30, 2020 Time: 20:33 # 8

Guan et al. Identification of Breast Cancer Cell Lines

FIGURE 2 | Performance of our signature in independent dataset. (A) RFS curves in the combined data from datasets GSE4922 and GSE2990. (B) RFS curves in
the dataset GSE42568. (C) RFS curves in the dataset GSE9195. (D) RFS curves in the combined data from datasets GSE42568 and GSE9195.

DNA methylations, and genomic changes) in cell line model
optimization deserve consideration in future studies.
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